1
|
Yu H, Liu C, Zhang Y, Li Z, Pi W, Hu G. Regulation of PPARγ in the development of early sheep embryos in vitro. Theriogenology 2025; 234:143-150. [PMID: 39700755 DOI: 10.1016/j.theriogenology.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Lipid metabolism plays an important role in the regulation of early embryonic development in mammals. However, the effect of lipid metabolism mediated by peroxisome proliferator-activated receptor γ (PPARγ) on the early embryonic development of sheep remains unclear. In this study, rosiglitazone (RSG), a PPARγ activator, was added to the in vitro embryo culture (IVC) medium to regulate the continuous expression of PPARγ. This study aimed to evaluate PPARγ expression during early embryonic development in sheep as well as its effects on lipid deposition, reactive oxygen species (ROS) and glutathione (GSH) levels, apoptosis and lipid metabolism-related gene expression, and embryonic development. PPARγ was not detected at 2-cell, 4-cell, 8-cell, and morula stage, while widely expressed with obvious nuclear expression features in blastocysts. Notably, treatment with 5 μM RSG in sheep parthenogenetic activated (PA) embryos significantly increased the blastocyst rate, lipid content, and GSH levels, while decreasing ROS levels. Further analysis revealed that RSG treatment upregulated the expression levels of antioxidant genes (SOD2 and CAT), anti-apoptotic gene (BCL2), and lipid metabolism-related genes (SCD-1, CD36, PLIN2, FABP3, and FABP4). Taken together, these results suggest that PPARγ plays a vital role in promoting embryonic development by enhancing lipid metabolism and reducing oxidative stress.
Collapse
Affiliation(s)
- Hengbin Yu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Chang Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yue Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Zhenghang Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Wenhui Pi
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
2
|
Ferreira FC, Teixeira J, Lidon F, Cagide F, Borges F, Pereira RMLN. Assisted Reproduction Technologies (ART): Impact of Mitochondrial (Dys)function and Antioxidant Therapy. Animals (Basel) 2025; 15:289. [PMID: 39943058 PMCID: PMC11815877 DOI: 10.3390/ani15030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
In the last decades, major changes in ecosystems related to industrial development and environmental modifications have had a direct impact on mammalian fertility, as well as on biodiversity. It is widely demonstrated that all these changes impair reproductive function. Several studies have connected the increase of reactive oxygen species (ROS) generated in mitochondria to the recently identified decline of fertility due to various factors, including heat stress. The study of antioxidants, and especially of mitochondria targeted antioxidants, has been focused on identifying more efficient and less toxic therapies that could circumvent fertility problems. These antioxidants can be derived from natural compounds in the diet and delivered to the mitochondria in more effective forms, providing a much more natural therapy. The use of mitochondriotropic diet-based antioxidants in assisted reproductive technologies (ART) may be an important way to overcome low fertility, allowing the conservation of animal biodiversity and productivity. This paper provides a concise review of the current state of the art on this topic, with a particular focus on the antioxidants mitoquinone, AntiOxBEN2, AntiOxCIN4, urolithin A and piperine, and their effects on bovine and other animal species.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal;
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - José Teixeira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernando Lidon
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Fernando Cagide
- CIQ-Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Campo Alegre, 4169-007 Porto, Portugal; (F.C.); (F.B.)
| | - Fernanda Borges
- CIQ-Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Campo Alegre, 4169-007 Porto, Portugal; (F.C.); (F.B.)
| | - Rosa M. L. N. Pereira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-424 Vale de Santarém, Portugal;
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, and Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
Shahzad M, Cao J, Kolachi HA, Ayantoye JO, Yu Z, Niu Y, Wan P, Zhao X. Unravelling the Signature Follicular Fluid Metabolites in Dairy Cattle Follicles Growing Under Negative Energy Balance: An In Vitro Approach. Int J Mol Sci 2024; 25:12629. [PMID: 39684341 DOI: 10.3390/ijms252312629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The astringent selection criteria for milk-oriented traits in dairy cattle have rendered these animals prone to various metabolic disorders. Postpartum lactational peak and reduced feed intake lead to negative energy balance in cattle. As a compensatory mechanism, cattle start mobilizing fat reserves to meet the energy demand for vital body functions. Consequently, diminished glucose concentrations and elevated ketone body levels lead to poor ovarian function. The impaired follicular development and subpar oocyte quality diminish the conception rates, which poses significant economic repercussions. Follicular fluid is integral to the processes of follicular growth and oocyte development. Hence, the present study was performed to identify potential alterations in metabolites in the follicular fluid under in vitro culture conditions mimicking negative energy balance. Our results revealed nine distinct metabolites exhibiting differential expression in follicular fluid under negative energy balance. The differentially expressed metabolites were predominantly associated with pathways related to amino acid metabolism, lipid metabolism, signal transduction mechanisms, and membrane transport, alongside other biological processes. The identified signature metabolites may be further validated to determine oocyte fitness subjected to in vitro fertilization or embryo production from slaughterhouse source ovaries.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Jianhua Cao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Hubdar Ali Kolachi
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Jesse Oluwaseun Ayantoye
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Zhou Yu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Yifan Niu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
4
|
Pan B, Qin J, Du K, Zhang L, Jia G, Ye J, Liang Q, Yang Q, Zhou G. Integrated ultrasensitive metabolomics and single-cell transcriptomics identify crucial regulators of sheep oocyte maturation and early embryo development in vitro. J Adv Res 2024:S2090-1232(24)00381-3. [PMID: 39233000 DOI: 10.1016/j.jare.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Developmental competence of oocytes matured in vitro is limited due to a lack of complete understanding of metabolism and metabolic gene expression during oocyte maturation and embryo development. Conventional metabolic analysis requires a large number of samples and is not efficiently applicable in oocytes and early embryos, thereby posing challenges in identifying key metabolites and regulating their in vitro culture system. OBJECTIVES To enhance the developmental competence of sheep oocytes, this study aimed to identify and supplement essential metabolites that were deficient in the culture systems. METHODS The metabolic characteristics of oocytes and embryos were determined using ultrasensitive metabolomics analysis on trace samples and single-cell RNA-seq. By conducting integrated analyses of metabolites in cells (oocytes and embryos) and their developmental microenvironment (follicular fluid, oviductal fluid, and in vitro culture systems), we identified key missing metabolites in the in vitro culture systems. In order to assess the impact of these key missing metabolites on oocyte development competence, we performed in vitro culture experiments. Furthermore, omics analyses were employed to elucidate the underlying mechanisms. RESULTS Our findings demonstrated that betaine, carnitine and creatine were the key missing metabolites in vitro culture systems and supplementation of betaine and L-carnitine significantly improved the blastocyst formation rate (67.48% and 48.61%). Through in vitro culture experiments and omics analyses, we have discovered that L-carnitine had the potential to promote fatty acid oxidation, reduce lipid content and lipid peroxidation level, and regulate spindle morphological grade through fatty acid degradation pathway. Additionally, betaine may participate in methylation modification and osmotic pressure regulation, thereby potentially improving oocyte maturation and early embryo development in sheep. CONCLUSION Together, these analyses identified key metabolites that promote ovine oocyte maturation and early embryo development, while also providing a new viewpoint to improve clinical applications such as oocyte maturation or embryo culture.
Collapse
Affiliation(s)
- Bo Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - JianPeng Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - KunLin Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - LuYao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - GongXue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - JiangFeng Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - QiuXia Liang
- College of Life Science, Sichuan Agricultural University, Sichuan, Ya'an 625014, PR China
| | - QiEn Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China.
| | - GuangBin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China.
| |
Collapse
|
5
|
Huang C, Yu X, Bao L, Mai L, Li A. Ammonia negatively impacted egg production and altered the diversity of microbial communities in cage-reared Muscovy ducks. Poult Sci 2024; 103:103938. [PMID: 38908123 PMCID: PMC11246063 DOI: 10.1016/j.psj.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
The aim of this study was to examine the effects of NH3 variations across different positions within a cage-reared duck house on the egg production performance and fecal microbiome in Muscovy ducks. Totals of 3,168 female Muscovy ducks (180 ± 2 d) were randomly assigned to 1,056 cages. From d 293 to 300, the egg production rate and levels of NH3, H2S, CO2, temperature, humidity, light intensity, and dust particles were recorded. Two spatial distribution-based experimental classification methods were applied, one grouping ducks into Front, Middle, and End categories, and the other into First, Second, and Third layers. On d 300, serum and feces samples were collected for further analysis. The result showed that both the egg production rate and serum PROG level in the Front were higher than End (P < 0.05). However, no significant differences were found among the First, Second, and Third groups. Among the environmental factors, ammonia (NH3) is a major harmful gas in cage-reared duck houses, with observed concentrations showing a gradient from lower levels in the Front group to higher levels in the Middle group (P < 0.05), and even higher levels in the End group (P < 0.05). Gene sequencing of the 16S rRNA gene revealed a higher relative abundance of Firmicutes in both the Front and Middle groups compared to the End group (P < 0.05). Specifically, within the Firmicutes phylum, the relative abundance of Lactobacillus and Romboutsia was notably higher in the Front group compared to both the Middle and End groups (P < 0.05). What's more, the abundance of Lactobacillus had a negative correlation with NH3 concentration and positive correlation with egg production rate. In conclusion, NH3 concentrations showed variations across different areas of the cage-reared duck house, with higher levels detected at the rear. The elevated NH3 level was identified as the main factor negatively impacting egg production in Muscovy ducks and contributing to a decline in the abundance of Firmicutes, specifically Lactobacillus.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Bao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijun Mai
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Hong J, Tong H, Wang X, Lv X, He L, Yang X, Wang Y, Xu K, Liang Q, Feng Q, Niu T, Niu X, Lu Y. Embryonic diapause due to high glucose is related to changes in glycolysis and oxidative phosphorylation, as well as abnormalities in the TCA cycle and amino acid metabolism. Front Endocrinol (Lausanne) 2023; 14:1135837. [PMID: 38170036 PMCID: PMC10759208 DOI: 10.3389/fendo.2023.1135837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction The adverse effects of high glucose on embryos can be traced to the preimplantation stage. This study aimed to observe the effect of high glucose on early-stage embryos. Methods and results Seven-week-old ICR female mice were superovulated and mated, and the zygotes were collected. The zygotes were randomly cultured in 5 different glucose concentrations (control, 20mM, 40mM, 60mM and 80mM glucose). The cleavage rate, blastocyst rate and total cell number of blastocyst were used to assess the embryo quality. 40 mM glucose was selected to model high glucose levels in this study. 40mM glucose arrested early embryonic development, and the blastocyst rate and total cell number of the blastocyst decreased significantly as glucose concentration was increased. The reduction in the total cell number of blastocysts in the high glucose group was attributed to decreased proliferation and increased cell apoptosis, which is associated with the diminished expression of GLUTs (GLUT1, GLUT2, GLUT3). Furthermore, the metabolic characterization of blastocyst culture was observed in the high-glucose environment. Discussion The balance of glycolysis and oxidative phosphorylation at the blastocyst stage was disrupted. And embryo development arrest due to high glucose is associated with changes in glycolysis and oxidative phosphorylation, as well as abnormalities in the TCA cycle and amino acid metabolism.
Collapse
Affiliation(s)
- Jiewei Hong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxuan Tong
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Wang
- Party Committee Office, Shanxi Health Vocational College, Shanxi, China
| | - Xiaoyan Lv
- Library Collection and Editing Department, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan He
- Rehabilitation Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhi Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingli Wang
- Experimental Management Center, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Kaixia Xu
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Qianjin Feng
- Experimental Management Center, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Tingli Niu
- Medical Insurance Office, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xin Niu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Lu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Yang F, Liu Y, Wang P, Wang X, Chu M, Wang P. Mutation of the ETS1 3'UTR interacts with miR-216a-3p to regulate granulosa cell apoptosis in sheep. Theriogenology 2023; 210:133-142. [PMID: 37499371 DOI: 10.1016/j.theriogenology.2023.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
ETS1, an important member of the ETS transcription factor family, is involved in a variety of physiological processes in living organisms, such as cell development, differentiation, proliferation and apoptosis, and is thought to be associated with embryonic development and reproduction. However, the polymorphism of ETS1 has been rarely studied, and its potential impact on the formation of reproductive traits in sheep remains unclear. Here, we first analyzed polymorphisms of ETS1 in a population of 382 small-tailed Han sheep with a lambing number record using the Kompetitive Allele Specific PCR (KASP) technique. The results showed the presence of a SNP locus rs161611767 (T > C) in the 3'UTR of ETS1. The association analysis showed the lambing number of first, second and third parity in the individuals with the CC genotype (2.51 ± 0.108, 2.51 ± 0.179, 1.27 ± 0.196) was higher than that of individuals with the TT genotype (1.79 ± 0.086, 1.56 ± 0.102, 0.56 ± 0.100) (P < 0.05). Then, molecular biotechnologies were used to investigate the effects of the EST1 rs161611767 mutant locus on host gene expression in sheep and the underlying mechanism of its effect on sheep reproduction. The RT‒qPCR results showed that the expression of ETS1 was higher in individuals with the CC genotype than in those with the TT genotype (P < 0.05). The dual luciferase reporter assay showed that the luciferase activity of ETS1 in sheep with the TT genotype was decreased compared to CC genotype (P < 0.05), confirming the existence of EST1 rs161611767 in the 3'UTR as a functional SNP. Given that the 3'UTR is an important regulatory region of gene transcription and translation, we performed bioinformatics prediction and confirmed that the SNP rs161611767 of ETS1 was a direct functional target of miR-216a-3p using dual luciferase activity assay, and the binding capacity of allele T was stronger than that of allele C. Subsequently, the cell transfection results showed that miR-216a-3p suppressed the endogenous expression of ETS1 in sheep primary granulosa cells (GCs). Finally, CCK-8, EdU, WB detection of marker proteins and flow cytometry were used to detect the effects of miR-216a-3p on GCs viability and proliferation/apoptosis, respectively. The results showed that miR-216a-3p inhibited the proliferation of GCs while promoting apoptosis of GCs. In conclusion, these results demonstrate that the SNP rs161611767 of ETS1 is associated with lambing number in small-tailed Han sheep, and miR-216a-3p can act as a regulatory element binding to the T mutation in rs161611767 to regulate ETS1 expression and affect GCs development, which may indirectly affect the number of lambs in sheep. These studies provide evidence for the involvement of ETS1 polymorphisms in sheep reproduction and are expected to provide new insights to elucidate the molecular genetic mechanisms of lambing traits in sheep.
Collapse
Affiliation(s)
- Fan Yang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
8
|
Zhang KY, Guo J, Zhan CL, Yuan CS, Min CG, Li ZQ, Liu HY, Wang J, Zhao J, Lu WF, Ma X. β-hydroxybutyrate impairs bovine oocyte maturation via pyruvate dehydrogenase (PDH) associated energy metabolism abnormality. Front Pharmacol 2023; 14:1243243. [PMID: 37637420 PMCID: PMC10450765 DOI: 10.3389/fphar.2023.1243243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Background: Ketosis is one of the most frequent and costly metabolic disorders in high-producing dairy cows, and negatively associated with the health and reproductive performance of bovine. Ketosis is mainly caused by the accumulation of ketone body β-hydroxybutyric acid and its diagnosis is based on β-hydroxybutyrate (βHB) concentration in blood. Methods: In this study, we investigated the effects of βHB on bovine oocyte maturation in the concentration of subclinical (1.2 mM) βHB and clinical (3.6 mM). Results: The results showed βHB disrupted bovine oocyte maturation and development capacity. Further analysis showed that βHB induced oxidative stress and mitochondrial dysfunction, as indicated by the increased level of reactive oxygen species (ROS), disrupted mitochondrial structure and distribution, and depolarized membrane potential. Furthermore, oxidative stress triggered early apoptosis, as shown by the enhanced levels of Caspase-3 and Annexin-V. Moreover, 3.6 mM βHB induced the disruption of the pyruvate dehydrogenase (PDH) activity, showing with the decrease of the global acetylation modification and the increase of the abnormal spindle rate. Conclusion: Our study showed that βHB in subclinical/clinical concentration had toxic effects on mitochondrial function and PDH activity, which might affect energy metabolism and epigenetic modification of bovine oocytes and embryos.
Collapse
Affiliation(s)
- Kai-Yan Zhang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Guo
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Cheng-Lin Zhan
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Chong-Shan Yuan
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Chang-Guo Min
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhi-Qiang Li
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Hong-Yu Liu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Zhao
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Wen-Fa Lu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Ma
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
9
|
Tripathi SK, Nandi S, Gupta PSP, Mondal S. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology 2023; 201:41-52. [PMID: 36827868 DOI: 10.1016/j.theriogenology.2022.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The present study assessed the effects of supplementation of different antioxidants on oocyte maturation, embryo production, reactive oxygen species (ROS) production and expression of key developmental genes. In this study, using ovine as an animal model, we tested the hypothesis that antioxidant supplementation enhanced the developmental competence of oocytes. Ovine oocytes aspirated from local abattoir-derived ovaries were subjected to IVM with different concentrations of antioxidants [(Melatonin, Ascorbic acid (Vit C), alpha-tocopherol (Vit E), Sodium selenite (SS)]. Oocytes matured without any antioxidant supplementation were used as controls. The oocytes were assessed for maturation rates and ROS levels. Further, embryo production rates in terms of cleavage, blastocysts and total cell numbers were evaluated after performing in vitro fertilization. Real-Time PCR analysis was used to evaluate the expression of stress related gene (SOD-1), growth related (GDF-9, BMP-15), and apoptosis-related genes (BCL-2 and BAX). We observed that maturation rates were significantly higher in alpha-tocopherol (100 μM; 92.4%) groups followed by melatonin (30 μM; 89.1%) group. However, blastocyst rates in ascorbic acid (100 μM; 19.5%), melatonin (30 μM; 18.4%), alpha-tocopherol (100 μM; 18.2%), and sodium selenite (20 μM; 16.9%) groups were significantly higher (P 0.05) than that observed in the control groups. Total cell numbers in blastocysts in the melatonin, ascorbic acid and alpha-tocopherol groups were significantly higher than those observed in sodium selenite and control groups. ROS production was reduced in groups treated with melatonin (30 μM), vitamin C (100 μM), sodium selenite (20 μM) and α-tocopherol (200 μM) compared with that observed in the control group. Supplementation of antioxidants caused the alterations in mRNA expression of growth, stress, and apoptosis related gene expression in matured oocytes. The results recommend that antioxidants alpha-tocopherol (200 μM), sodium selenite (40 μM), melatonin (30 μM) and ascorbic acid (100 μM) during IVM reduced the oxidative stress by decreasing ROS levels in oocytes, thus improving embryo quantity and quality.
Collapse
Affiliation(s)
- S K Tripathi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India.
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| |
Collapse
|
10
|
Gong J, Zhao S, Heng N, Wang Y, Hu Z, Wang H, Zhu H. The Dynamic Transcription Profiles of Proliferating Bovine Ovarian Granulosa When Exposed to Increased Levels of β-Hydroxybutyric Acid. Front Vet Sci 2022; 9:915956. [PMID: 35990259 PMCID: PMC9389329 DOI: 10.3389/fvets.2022.915956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Ketosis is common in high-yield dairy cows. It is a condition that is characterized by the accumulation of serum β-hydroxybutyric acid (BHBA). Both subclinical ketosis and clinical ketosis can compromise the reproductive performance and cause long-lasting negative effects on reproductive efficiency by affecting the proliferation of follicular and granulosa cells. However, the regulatory mechanisms involved in the development of follicular cells and granulosa cells in cows experiencing subclinical ketosis and clinical ketosis remain largely unknown. To investigate the effect of a ketosis-triggered increase in BHBA on bovine follicular granulosa cell development, we detected a significant reduction in the proliferation of granulosa cells (P < 0.05) in the BHBA-1.2 mM and BHBA-2.4 mM groups and a significant increase in the number of granulosa cells in the G1 phase of the cell cycle (P < 0.05). RNA-seq and trend analysis were used to identify differentially expressed genes by comparing three clusters: low-concentration response to 1.2 mM BHBA, high-concentration response to 2.4 mM BHBA, and the similar trend (up or down) response following BHBA concentration increased. GO and KEGG enrichment analyses were performed separately for each cluster. Analysis showed that two novel down-regulated genes (G0S2 and S100A6), which are associated with cell proliferation and cycle progression, were enriched in the low-concentration response to 1.2 mM BHBA. Another differentially expressed gene (PARP), which plays a role in the apoptotic pathway, was enriched in the high-concentration response to 2.4 mM BHBA. We also found that CYP27B1 and CYP17A1, which are associated with Ca2+ homeostasis and estrogen synthesis, were enriched in a similar trend response. In conclusion, we describe the dynamic transcription profiles of granulosa cells under different levels of β-hydroxybutyric stress and report key regulators that may underlie the detrimental effects on the development of follicles and granulosa cells, thus representing potential therapeutic targets to improve fertility in dairy cows with subclinical ketosis or clinical ketosis.
Collapse
|
11
|
Lavanya M, Swathi D, Archana SS, Ramya L, Ranjithkumaran R, Krishnaswamy N, Singh SK, Krishnappa B, Rajendran D, Kumar H, Selvaraju S. Supraphysiological concentration of urea affects the functional competence of Holstein-Friesian (Bos taurus) sperm. Theriogenology 2021; 176:104-114. [PMID: 34600432 DOI: 10.1016/j.theriogenology.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/04/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022]
Abstract
To understand the effects of urea on sperm functional attributes, fresh bull semen (n = 12) was subjected to four different concentrations (mg/mL) of urea to mimic the physiological (0.04 and 0.13), supraphysiological (0.43) concentrations and control (0 mg/mL). Sperm membrane integrity, kinematics, chromatin integrity, and mitochondrial membrane potential were assessed at different time points (before incubation, 0, 1, 2, and 4 h) of incubation. The concentration of urea in serum and seminal plasma was estimated and correlated with the ejaculate rejection rate and sperm functional attributes. The relative expression of urea transporter gene transcripts (UT-A and UT-B) was assessed in sperm and testis (control) using real-time PCR. The supraphysiological concentration of urea affected sperm kinematics, viability, functional membrane integrity, and acrosome integrity within 1 h of incubation (p < 0.05). Sperm head area decreased (p < 0.05) at 0 h and subsequently increased at 1 h of incubation in all media except supraphysiological (0.43 mg/dL) concentration of urea. Seminal plasma urea concentration showed a significant negative correlation with sperm motility, membrane integrity, and mitochondrial membrane potential (p < 0.05), but had a positive correlation with the ejaculate rejection rate (r = 0.69). Relative expression of the urea transporter genes revealed that UT-A was expressed only in the testis. In contrast, UT-B was expressed in both the testis and sperm, suggesting UT-B's role in regulating urea transport in sperm. At a supraphysiological level, urea adversely affected sperm functional attributes, osmoadaptation and may affect fertility.
Collapse
Affiliation(s)
- Maharajan Lavanya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India; Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India
| | - Laxman Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India
| | | | - Sanjay Kumar Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India
| | - Duraisamy Rajendran
- Feed Resources and Informatics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560 030, India.
| |
Collapse
|
12
|
B SAMPATHKUMAR, NANDI S, GUPTA PSP, MONDAL S, V GIRISHKUMAR. Influence of curcumin and carbazole on ovine ovarian preantral follicle and granulosa cell functions. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i7.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study was undertaken to study the effect of plant bioactive compounds curcumin and carbazole on sheep ovarian functions. In the present study, both the bioactive compounds were tested at different levels (Control, T1-1 μM, T2-5 μM, T3-10 μM, T4- 25 μM, T5- 50μM, T6-100 μM) on preantral follicle (PF) growth rate, survival rate (6 days culture), granulosa cell (GC) number increment (2 days culture) and estradiol production (5 days GC culture spent media). Curcumin had shown a significantly higher PF survival rate (%), i.e. 74.3±1.5, 76.3±1.4 at 10 and 25 μM levels respectively. Similarly, higher PF growth rates (μm per day), i.e. 16.1±0.9 was observed at 50 μM levels. Similarly, curcumin was effective @ 50 μM level to increase the granulosa cell number as well as estradiol production with a mean granulosa cell number (×105) and estradiol production (pg) values of 1.55±0.04 and 85.3±3.3 respectively. Likewise, carbazole was effective at the level of 25 μM to increase the PF growth rate (μm per day), survival rate (%)with mean values of 74.3±1.3, 12.1±0.9. Similarly, carbazole was effective at 50 μM dose levels in the granulosa cell number increment (×105) with a mean value of 1.57±0.02. No significant change in estradiol production was observed in carbazole treated group.
Collapse
|
13
|
Epidermal growth factor alleviates the negative impact of urea on frozen-thawed bovine sperm, but the subsequent developmental competence is compromised. Sci Rep 2021; 11:4687. [PMID: 33633199 PMCID: PMC7907109 DOI: 10.1038/s41598-021-83929-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Upon insemination, sperm cells are exposed to components of the female reproductive tract (FRT) fluids, such as urea and epidermal growth factor (EGF). It has been shown that both urea and EGF use EGF receptor signaling and produce reactive oxygen species (ROS) that are required at certain levels for sperm capacitation and acrosome reaction. We therefore hypothesized that during bovine sperm capacitation, a high level of urea and EGF could interfere with sperm function through overproduction of ROS. High-level urea (40 mg/dl urea is equal to 18.8 mg/dl of blood urea nitrogen) significantly increased ROS production and TUNEL-positive sperm (sperm DNA fragmentation, sDF) percentage, but decreased HOS test score, progressive motility, acrosome reaction and capacitation. The EGF reversed the negative effects of urea on all sperm parameters, with the exception of ROS production and DNA fragmentation, which were higher in urea-EGF-incubated sperm than in control-sperm. The developmental competence of oocytes inseminated with urea-EGF-incubated sperm was significantly reduced compared to the control. A close association of ROS production or sDF with 0-pronuclear and sperm non-capacitation rates was found in the network analysis. In conclusion, EGF enhanced urea-reduced sperm motility; however, it failed to reduce urea-increased sperm ROS or sDF levels and to enhance subsequent oocyte competence. The data suggests that any study to improve sperm quality should be followed by a follow-up assessment of the fertilization outcome.
Collapse
|
14
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
15
|
TRIPATHI SK, NANDI S, GUPTA PSP, MONDAL S. Beneficial effect of lysyl oxidase on in vitro development of cultured ovine normal and metabolic stressed cumulus oocytes complexes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i9.83548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|