1
|
Fehringer M, Vogl T. Molecular mimicry in the pathogenesis of autoimmune rheumatic diseases. J Transl Autoimmun 2025; 10:100269. [PMID: 39877080 PMCID: PMC11773492 DOI: 10.1016/j.jtauto.2025.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Autoimmune rheumatic diseases (ARDs) are a heterogeneous group of conditions characterized by excessive and misdirected immune responses against the body's own musculoskeletal tissues. Their exact aetiology remains unclear, with genetic, demographic, behavioural and environmental factors implicated in disease onset. One prominent hypothesis for the initial breach of immune tolerance (leading to autoimmunity) is molecular mimicry, which describes structural or sequence similarities between human and microbial proteins (mimotopes). This similarity can lead to cross-reactive antibodies and T-cell receptors, resulting in an immune response against autoantigens. Both commensal microbes in the human microbiome and pathogens can trigger molecular mimicry, thereby potentially contributing to the onset of ARDs. In this review, we focus on the role of molecular mimicry in the onset of rheumatoid arthritis and systemic lupus erythematosus. Moreover, implications of molecular mimicry are also briefly discussed for ankylosing spondylitis, systemic sclerosis and myositis.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| |
Collapse
|
2
|
Tukaj S, Sitna M, Sitko K. The impact of the mRNA COVID-19 vaccine on the Th-like cytokine profile in individuals with no history of COVID-19: insights into autoimmunity targeting heat shock proteins. Front Immunol 2025; 16:1549739. [PMID: 40160814 PMCID: PMC11949786 DOI: 10.3389/fimmu.2025.1549739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Although some reports suggest that COVID-19 vaccination may exacerbate existing autoimmune diseases or trigger new-onset cases, a definitive causal relationship between the vaccines and these conditions has not been established. Several potential mechanisms have been proposed to explain this association, including: (i) molecular mimicry, which refers to a structural similarity between SARS-CoV-2 and human antigens; (ii) bystander activation, involving both B and T lymphocytes; and (iii) the effects of adjuvants. In this study, we investigated whether two doses of the mRNA COVID-19 vaccine influenced blood cytokine levels associated with major T helper cell populations, which are known to play a significant role in autoimmunity and revisited the role of the humoral autoimmune response directed against heat shock proteins (Hsps) in individuals with no history of COVID-19. While no significant differences were found in the levels of IFN-γ, IL-6, IL-22, IL-4, IL-8, IL-10, and IL-17A, between vaccinated and unvaccinated people, several positive correlations were observed between serum cytokine levels and circulating autoantibodies directed against self-Hsps exclusively in vaccinated individuals. These findings suggest that the mRNA COVID-19 vaccine does not impact cytokines involved in the pathogenesis of autoimmune diseases. Further research is required to evaluate the safety of COVID-19 vaccination in patients with autoimmune conditions, particularly those in whom anti-Hsps autoantibodies are suspected to contribute to disease development.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
3
|
Stoppelenburg AJ, Schreibelt G, Koeneman B, Welsing P, Breman EJ, Lammers L, de Goede A, Duiveman-de Boer T, van Eden W, Leufkens P, de Vries IJM, Broere F, van Laar JM. Design of TOLERANT: phase I/II safety assessment of intranodal administration of HSP70/mB29a self-peptide antigen-loaded autologous tolerogenic dendritic cells in patients with rheumatoid arthritis. BMJ Open 2024; 14:e078231. [PMID: 39266308 PMCID: PMC11409275 DOI: 10.1136/bmjopen-2023-078231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION In rheumatoid arthritis (RA), immunosuppressive therapies may achieve symptomatic relief, but do not induce long-term, drug-free remission. Meanwhile, the lifelong use of immunosuppressive drugs confers increased risk for malignancy and infections. As such, there is an unmet need for novel treatments that selectively target the pathogenic immune response in RA by inducing tolerance to autoantigens. Autologous cell therapy using antigen-loaded tolerogenic dendritic cells (tolDCs) aims to reinstate autoantigen-specific immunological tolerance in RA and could potentially meet this need. METHODS AND ANALYSIS We report here the design of the phase I/II, investigator-initiated, open-label, dose-escalation trial TOLERANT. In this study, we will evaluate the intranodal administration of tolDCs in patients with RA that are in remission under immunosuppressive therapy. The tolDCs in this trial are loaded with the heat shock protein 70-derived peptide mB29a, which is an effective surrogate autoantigen in animal models of arthritis. Within this study, three dose-escalation cohorts (two intranodal injections of 5×106, 10×106 and 15×106 tolDCs), each consisting of three patients, are evaluated to identify the highest safe dose (recommended dose), and an extension cohort of nine patients will be treated with the recommended dose. The (co-)primary endpoints of this study are safety and feasibility, which we assess by the number of AEs and the successful production of tolDCs. The secondary endpoints include the immunological effects of the treatment, which we assess with a variety of high-dimensional and antigen-specific immunological assays. Clinical effects are exploratory outcomes. ETHICS AND DISSEMINATION Ethical approval for this study has been obtained from the Netherlands Central Committee on Research Involving Human Subjects. The outcomes of the trial will be disseminated through publications in open-access, peer-reviewed scientific journals, scientific conferences and to patient associations. TRIAL REGISTRATION NUMBERS NCT05251870; 2019-003620-20 (EudraCT); NL71296.000.20 (CCMO register).
Collapse
Affiliation(s)
- Arie Jan Stoppelenburg
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Biomolecular Health Sciences, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Gerty Schreibelt
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bouke Koeneman
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paco Welsing
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Evert-Jan Breman
- Department of Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Laureen Lammers
- Department of Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anna de Goede
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Willem van Eden
- Department of Biomolecular Health Sciences, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
- Trajectum Pharma B.V, Utrecht, The Netherlands
| | | | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Corsiero E, Caliste M, Jagemann L, Fossati-Jimack L, Goldmann K, Cubuk C, Ghirardi GM, Prediletto E, Rivellese F, Alessandri C, Hopkinson M, Javaheri B, Pitsillides AA, Lewis MJ, Pitzalis C, Bombardieri M. Autoimmunity to stromal-derived autoantigens in rheumatoid ectopic germinal centers exacerbates arthritis and affects clinical response. J Clin Invest 2024; 134:e169754. [PMID: 38950333 PMCID: PMC11178537 DOI: 10.1172/jci169754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/23/2024] [Indexed: 07/03/2024] Open
Abstract
Ectopic lymphoid structures (ELSs) in the rheumatoid synovial joints sustain autoreactivity against locally expressed autoantigens. We recently identified recombinant monoclonal antibodies (RA-rmAbs) derived from single, locally differentiated rheumatoid arthritis (RA) synovial B cells, which specifically recognize fibroblast-like synoviocytes (FLSs). Here, we aimed to identify the specificity of FLS-derived autoantigens fueling local autoimmunity and the functional role of anti-FLS antibodies in promoting chronic inflammation. A subset of anti-FLS RA-rmAbs reacting with a 60 kDa band from FLS extracts demonstrated specificity for HSP60 and partial cross-reactivity to other stromal autoantigens (i.e., calreticulin/vimentin) but not to citrullinated fibrinogen. Anti-FLS RA-rmAbs, but not anti-neutrophil extracellular traps rmAbs, exhibited pathogenic properties in a mouse model of collagen-induced arthritis. In patients, anti-HSP60 antibodies were preferentially detected in RA versus osteoarthritis (OA) synovial fluid. Synovial HSPD1 and CALR gene expression analyzed using bulk RNA-Seq and GeoMx-DSP closely correlated with the lympho-myeloid RA pathotype, and HSP60 protein expression was predominantly observed around ELS. Moreover, we observed a significant reduction in synovial HSP60 gene expression followed B cell depletion with rituximab that was strongly associated with the treatment response. Overall, we report that synovial stromal-derived autoantigens are targeted by pathogenic autoantibodies and are associated with specific RA pathotypes, with potential value for patient stratification and as predictors of the response to B cell-depleting therapies.
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Mattia Caliste
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Lucas Jagemann
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Katriona Goldmann
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Cankut Cubuk
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Giulia M. Ghirardi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Edoardo Prediletto
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Cristiano Alessandri
- Arthritis Center, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Mark Hopkinson
- Comparative Biomedical Sciences Centre, Royal Veterinary College, London, United Kingdom
| | - Behzad Javaheri
- Comparative Biomedical Sciences Centre, Royal Veterinary College, London, United Kingdom
| | - Andrew A. Pitsillides
- Comparative Biomedical Sciences Centre, Royal Veterinary College, London, United Kingdom
| | - Myles J. Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
- IRCCS Istituto Clinico Humanitas Via Manzoni, Rozzano (Milano), Italy
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| |
Collapse
|
5
|
Savant R, Pradhan RK, Bhagat S, Mythri RB, Varghese AM, Vengalil S, Nalini A, Sathyaprabha TN, Raju TR, Vijayalakshmi K. Enhanced levels of fractalkine and HSP60 in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients. Int J Neurosci 2024:1-11. [PMID: 38625841 DOI: 10.1080/00207454.2024.2344581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/07/2024] [Indexed: 04/18/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a multifactorial neurodegenerative disorder with a significant contribution of non-cell autonomous mechanisms to motor neuronal degeneration. Amongst a plethora of molecules, fractalkine (C-X3-C motif chemokine ligand 1), and Heat Shock Protein 60 (HSP60), are key modulators of microglial activation. The contribution of these molecules in Sporadic ALS (SALS) remains unexplored. To investigate this, fractalkine levels were estimated in Cerebrospinal fluid (CSF) of SALS patients (ALS-CSF; n = 44) by Enzyme-linked Immunosorbent Assay (ELISA) and correlated with clinical parameters including disease severity and duration. CSF HSP60 levels were estimated by Western blotting (ALS-CSF; n = 19). Also, CSF levels of Chitotriosidase-1 (CHIT-1), a microglia-specific neuroinflammatory molecule, were measured and its association, if any, with fractalkine and HSP60 was investigated. Both fractalkine and HSP60 levels were significantly elevated in ALS-CSF. Similar to our earlier observation, CHIT-1 levels were also upregulated. Fractalkine showed a moderate negative correlation with the ALS-Functional Rating Scale (ALSFRS) score indicating its significant rise in mild cases which plateaued in cases with high disease severity. However, no obvious correlation was found between fractalkine, HSP60, and CHIT-1. Our study hints that high fractalkine levels in mild cases might be conferring neuroprotection by combating microglial activation and highlights its importance as a novel therapeutic target for SALS. On the other hand, significantly enhanced levels of HSP60, a pro-inflammatory molecule, hint towards its role in accentuating microgliosis, although, it doesn't act synergistically with CHIT-1. Our study suggests that fractalkine and HSP60 act independently of CHIT-1 to suppress and accentuate neuroinflammation, respectively.
Collapse
Affiliation(s)
- Rashmi Savant
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Raj Kumar Pradhan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Savita Bhagat
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Rajeswara Babu Mythri
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Anu Mary Varghese
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Talakad N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Trichur R Raju
- A.S. Paintal Distinguished Scientific Chair National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Wang Q, Kong X, Guo W, Liu L, Tian Y, Tao X, Lin N, Su X. HSP90 Exacerbates Bone Destruction in Rheumatoid Arthritis by Activating TRAF6/NFATc1 Signaling. Inflammation 2024; 47:363-375. [PMID: 37902841 DOI: 10.1007/s10753-023-01914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by a notably high disability rate, primarily attributed to cartilage and bone degradation. The involvement of heat shock protein 90 (HSP90) as a molecular chaperone in the inflammatory response of RA has been established, but its role in bone destruction remains uncertain. In the present study, the expression of HSP90 was augmented in osteoclasts induced by the receptor activator of nuclear factor-κB ligand. Additionaly, it was observed that the outcomes revealed a noteworthy inhibition of osteoclast formation and differentation when triptolide was utilized to hinder the expression of HSP90. Furthermore, the positive influence of HSP90 in osteoclast differentiation was substantiated by overexpressing HSP90 in osteoclast precursor cells. Mechanically, HSP90 significantly activated the TNF receptor-associated factor 6 (TRAF6)/Nuclear factor of activated T cells 1 (NFATc1) signaling axis, accompanied by markedly promoting osteoclast differentiation. This effect was consistently observed in the destructive joint of rats with collagen-induced arthritis, where HSP90 effectively activated osteoclasts and contributed to arthritic bone destruction by activating the TRAF6/NFATc1 signaling. Overall, the findings of this study provide compelling evidence that HSP90 exacerbates bone destruction in RA by promoting osteoclast differentiation through the activation of TRAF6/NFATc1 signaling, and interference with HSP90 may be a promising strategy for the discovery of anti-arthritic bone destruction agents.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Wanyi Guo
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Liling Liu
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Yage Tian
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Xueying Tao
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| |
Collapse
|
7
|
Choi BY, Yang EM, Jung HW, Shin MK, Jo J, Cha HY, Park HS, Kang HC, Ye YM. Anti-heat shock protein 10 IgG in chronic spontaneous urticaria: Relation with miRNA-101-5p and platelet-activating factor. Allergy 2023; 78:3166-3177. [PMID: 37415527 DOI: 10.1111/all.15810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Anti-heat shock protein (HSP) autoantibodies are detected in autoimmune diseases. We sought to ascertain whether anti-HSP10 IgG is present in patients with CSU and to elucidate the role of HSP10 in CSU pathogenesis. METHOD Using a human proteome microarray, six potential autoantibodies had higher expression in 10 CSU samples compared with 10 normal controls (NCs). Among them, HSP10 IgG autoantibody was quantified by immune dot-blot assay in sera from 86 CSU patients and 44 NCs. The serum levels of HSP10 and microRNA-101-5p were measured in CSU patients and NCs. The effects of HSP10 and miR-101-5p on mast cell degranulation in response to IgE, compound 48/80, and platelet-activating factor (PAF) were investigated. RESULTS CSU patients had higher IgG positivity to HSP10 (40.7% vs. 11.4%, p = .001), lower serum HSP10 levels (5.8 ± 3.6 vs. 12.2 ± 6.6 pg/mL, p < .001) than in NCs, and their urticaria severity was associated with anti-HSP10 IgG positivity, while HSP10 levels were related to urticaria control status. MiR-101-5p was increased in CSU patients. PAF enhanced IL4 production in PBMCs from CSU patients. IL-4 upregulated miR-101-5p and reduced HSP10 expression in keratinocytes. Transfection of miR-101-5p reduced HSP10 expression in keratinocytes. MiR-101-5p promoted PAF-induced mast cell degranulation, while HSP10 specifically prevented it. CONCLUSION A new autoantibody, anti-HSP10 IgG was detected in CSU patients, which showed a significant correlation with UAS7 scores. A decreased serum HSP10 level was associated with upregulation of miR-101-5p due to increased IL-4 and PAF in CSU patients. Modulation of miR-101-5p and HSP10 may be a novel therapeutic approach for CSU.
Collapse
Affiliation(s)
- Bo Youn Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Won Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Min-Kyoung Shin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea
| | - Hyun-Young Cha
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Ho-Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
8
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Maggi J, Carrascal M, Soto L, Neira O, Cuéllar MC, Aravena O, James EA, Abian J, Jaraquemada D, Catalan D, Aguillón JC. Isolation of HLA-DR-naturally presented peptides identifies T-cell epitopes for rheumatoid arthritis. Ann Rheum Dis 2022; 81:1096-1105. [PMID: 35459695 DOI: 10.1136/annrheumdis-2021-220371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) immunopathogenesis revolves around the presentation of poorly characterised self-peptides by human leucocyte antigen (HLA)-class II molecules on the surface of antigen-presenting cells to autoreactive CD4 +T cells. Here, we analysed the HLA-DR-associated peptidome of synovial tissue (ST) and of dendritic cells (DCs) pulsed with synovial fluid (SF) or ST, to identify potential T-cell epitopes for RA. METHODS HLA-DR/peptide complexes were isolated from RA ST samples (n=3) and monocyte-derived DCs, generated from healthy donors carrying RA-associated shared epitope positive HLA-DR molecules and pulsed with RA SF (n=7) or ST (n=2). Peptide sequencing was performed by high-resolution mass spectrometry. The immunostimulatory capacity of selected peptides was evaluated on peripheral blood mononuclear cells from patients with RA (n=29) and healthy subjects (n=12) by flow cytometry. RESULTS We identified between 103 and 888 HLA-DR-naturally presented peptides per sample. We selected 37 native and six citrullinated (cit)-peptides for stimulation assays. Six of these peptides increased the expression of CD40L on CD4 +T cells patients with RA, and specifically triggered IFN-γ expression on RA CD4 +T cells compared with healthy subjects. Finally, the frequency of IFN-γ-producing CD4 +T cells specific for a myeloperoxidase-derived peptide showed a positive correlation with disease activity. CONCLUSIONS We significantly expanded the peptide repertoire presented by HLA-DR molecules in a physiologically relevant context, identifying six new epitopes recognised by CD4 +T cells from patients with RA. This information is important for a better understanding of the disease immunopathology, as well as for designing tolerising antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Jaxaira Maggi
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| | - Montserrat Carrascal
- Biological and Environmental Proteomics Group, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Lilian Soto
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
- Departamento de Medicina, Unidad del Dolor, Hospital Clinico de la Universidad de Chile Jose Joaquin Aguirre, Santiago, Chile
| | - Oscar Neira
- Servicio de Reumatología, Hospital del Salvador, Universidad de Chile, Santiago, Chile
| | - María C Cuéllar
- Servicio de Reumatología, Hospital del Salvador, Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| | - Eddie A James
- Translational Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Joaquin Abian
- Biological and Environmental Proteomics Group, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Dolores Jaraquemada
- Immunology Unit, Cell Biology, Physiology and Immunology Department, Institut de Biotecnologia i Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Diego Catalan
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| | - Juan C Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile Facultad de Medicina, Santiago, Chile
| |
Collapse
|
10
|
Danieli MG, Antonelli E, Piga MA, Claudi I, Palmeri D, Tonacci A, Allegra A, Gangemi S. Alarmins in autoimmune diseases. Autoimmun Rev 2022; 21:103142. [PMID: 35853572 DOI: 10.1016/j.autrev.2022.103142] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
Alarmins are endogenous, constitutively expressed, chemotacting and immune activating proteins or peptides released because of non-programmed cell death (i.e. infections, trauma, etc). They are considered endogenous damage-associated molecular patterns (DAMPs), able to induce a sterile inflammation. In the last years, several studies highlighted a possible role of different alarmins in the pathogenesis of various autoimmune and immune-mediated diseases. We reviewed the relevant literature about this topic, for about 160 articles. Particularly, we focused on systemic autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, idiopathic inflammatory myopathies, ANCA-associated vasculitides, Behçet's disease) and cutaneous organ-specific autoimmune diseases (vitiligo, psoriasis, alopecia, pemphigo). Finally, we discussed about future perspectives and potential therapeutic implications of alarmins in autoimmune diseases. In fact, identification of receptors and downstream signal transducers of alarmins may lead to the identification of antagonistic inhibitors and agonists, with the capacity to modulate alarmins-related pathways and potential therapeutic applicability.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Eleonora Antonelli
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Mario Andrea Piga
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
11
|
Tukaj S, Mantej J, Sitko K, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Pathological Relevance of Anti-Hsp70 IgG Autoantibodies in Epidermolysis Bullosa Acquisita. Front Immunol 2022; 13:877958. [PMID: 35514963 PMCID: PMC9065281 DOI: 10.3389/fimmu.2022.877958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Stress-induced heat shock protein 70 (Hsp70) is a key intra- and extracellular molecular chaperone implicated in autoimmune processes. Highly immunogenic extracellular Hsp70 can activate innate and acquired (adaptive) immune responses driving the generation of anti-Hsp70 autoantibodies that are frequently observed in inflammatory/autoimmune disorders. We recently described the direct pathological role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated autoimmune blistering skin disease. Here, we determined the role of anti-Hsp70 autoantibodies in EBA. We observed that circulating anti-Hsp70 IgG autoantibodies were significantly elevated in EBA patients compared to healthy individuals and positively correlated with serum levels of pro-inflammatory interferon gamma (IFN-γ). The pathophysiological relevance of anti-Hsp70 IgG autoantibodies was demonstrated in an antibody transfer-induced EBA mouse model in which elevated serum levels of anti-Hsp70 IgG were found. In addition, anti-Hsp70 IgG-treated animals had a more intense clinical and histological disease activity, as well as upregulated nuclear factor kappa B (NF-κB) activation in skin biopsies compared to isotype-treated animals. Our results suggest that autoantibodies to Hsp70 may contribute to EBA development via enhanced neutrophil infiltration to the skin and activation of the NF-κB signaling pathway in an IFN-γ-associated manner.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Heat Shock Proteins Alterations in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23052806. [PMID: 35269948 PMCID: PMC8911505 DOI: 10.3390/ijms23052806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease characterized by the attack of the immune system on the body's healthy joint lining and degeneration of articular structures. This disease involves an increased release of inflammatory mediators in the affected joint that sensitize sensory neurons and create a positive feedback loop to further enhance their release. Among these mediators, the cytokines and neuropeptides are responsible for the crippling pain and the persistent neurogenic inflammation associated with RA. More importantly, specific proteins released either centrally or peripherally have been shown to play opposing roles in the pathogenesis of this disease: an inflammatory role that mediates and increases the severity of inflammatory response and/or an anti-inflammatory and protective role that modulates the process of inflammation. In this review, we will shed light on the neuroimmune function of different members of the heat shock protein (HSPs) family and the complex manifold actions that they exert during the course of RA. Specifically, we will focus our discussion on the duality in the mechanism of action of Hsp27, Hsp60, Hsp70, and Hsp90.
Collapse
|
13
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
14
|
Sitko K, Bednarek M, Mantej J, Trzeciak M, Tukaj S. Circulating heat shock protein 90 (Hsp90) and autoantibodies to Hsp90 are increased in patients with atopic dermatitis. Cell Stress Chaperones 2021; 26:1001-1007. [PMID: 34532820 PMCID: PMC8578264 DOI: 10.1007/s12192-021-01238-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory dermatoses characterized by persistent itching and recurrent eczematous lesions. While the primary events and key drivers of AD are topics of ongoing debate, cutaneous inflammation due to inappropriate IgE (auto)antibody-related immune reactions is frequently considered. Highly conserved and immunogenic heat shock protein 90 (Hsp90), a key intra- and extracellular chaperone, can activate the immune response driving the generation of circulating anti-Hsp90 autoantibodies that are found to be elevated in several autoimmune disorders. Here, for the first time, we observed that serum levels of Hsp90 and anti-Hsp90 IgE autoantibodies are significantly elevated (p < 0.0001) in AD patients (n = 29) when compared to age- and gender-matched healthy controls (n = 70). We revealed a positive correlation (0.378, p = 0.042) between serum levels of Hsp90 and the severity of AD assessed by Scoring Atopic Dermatitis (SCORAD). In addition, seropositivity for anti-Hsp90 IgE has been found in 48.27% of AD patients and in 2.85% of healthy controls. Although further studies on a larger group of patients are needed to confirm presented data, our results suggest that extracellular Hsp90 and autoantibodies to Hsp90 deserve attention in the study of the mechanisms that promote the development and/or maintenance of atopic dermatitis.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venerology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
15
|
吴 宁, 袁 桃, 姬 进, 程 瑶, 李 明, 梁 玺, 孙 见, 刘 华, 吴 昌. [Effects of Sidaxue, a Miao ethnomedicine recipe, on apoptosis and pyrolysis of human fibroblast-like synovial cells in rheumatoid arthritis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1473-1483. [PMID: 34755662 PMCID: PMC8586859 DOI: 10.12122/j.issn.1673-4254.2021.10.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effects of Sidaxue (SX), a recipe in Miao ethnomedicine, on apoptosis and pyrolysis of human fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS). METHODS The target proteins related with RA and those involved in cell apoptosis and pyroptosis were searched in different online databases, and Venny software was used to obtain apoptosis- and pyroptosis-related proteins in RA. RA-apoptosis-pyroptosis protein interaction (PPI) network was constructed to identity the key target proteins related with apoptosis and pyroptosis in RA. Autodock vina software was used to perform molecular docking to verify the binding ability of the main active ingredients in SX with the apoptosis- and pyroptosis-related proteins. In the cell experiment, MH7A cells were treated with 5 mg/L TGT (positive control) or 5, 10, 20, and 40 mg/L SX, and the changes in cell migration and invasion abilities and expressions of apoptosis- and pyroptosis-related proteins were examined using wound healing assay, Transwell assay, ELISA and Western blotting. RESULTS We identified 9 RA-related apoptotic target proteins, 15 RA-related pyroptosis target proteins, and 4 overlapping target proteins related with RA, apoptosis and pyroptosis. The main active ingredients in SX had a high affinity with the target proteins including TNF-α, Fas, and Bax. In MH7A cells, SX treatment concentration-dependently increased the cell inhibition rate at 24, 48 and 72 h (P < 0.05), and significantly lowered the cell migration ability at 6, 12 and 24 h (P < 0.05); treatment with 20 and 40 mg/L SX for 24 h obviously suppressed MH7A cell invasion (P < 0.05). SX treatment (20 and 40 mg/L) and TGT treatment both significantly lowered the expression levels of TNF-α, IL-1β, and IL-18 in the cells (P < 0.05). The Bax/Bcl-2 ratio and Fas and FasL expressions were increased significantly in cells treated with 20 and 40 mg/L SX (P < 0.05), and caspase-1 expression was decreased significantly in cells treated with 5 and 40 mg/L SX (P < 0.05). CONCLUSION SX can induce apoptosis and pyroptosison in RA-FLSs possibly by down-regulating the expressions of TNF-α, IL-1β and IL-18, up-regulating the expressions of Bax, Fas, and FasL, and inhibiting Bcl-2 and caspase-1 protein expressions.
Collapse
Affiliation(s)
- 宁 吴
- 贵州医科大学基础医学院,贵州 贵阳 550025College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - 桃花 袁
- 贵州医科大学基础医学院,贵州 贵阳 550025College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - 进忠 姬
- 贵州医科大学临床医学院,贵州 贵阳 550025College of Clinical Medicine, Guizhou Medical University, Guiyang 550025, China
| | - 瑶 程
- 贵州医科大学基础医学院,贵州 贵阳 550025College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - 明义 李
- 贵州医科大学临床医学院,贵州 贵阳 550025College of Clinical Medicine, Guizhou Medical University, Guiyang 550025, China
| | - 玺 梁
- 贵州医科大学基础医学院,贵州 贵阳 550025College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - 见飞 孙
- 贵州医科大学基础医学院,贵州 贵阳 550025College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - 华 刘
- 贵州医科大学基础医学院,贵州 贵阳 550025College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - 昌学 吴
- 贵州医科大学医学分子生物学重点实验室,贵州 贵阳 550004Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
16
|
Gomez CR. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 2021; 43:2515-2532. [PMID: 34241808 PMCID: PMC8599533 DOI: 10.1007/s11357-021-00394-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Advanced age is associated with a decline in response to stress. This contributes to the establishment of chronic inflammation, one of the hallmarks of aging and age-related disease. Heat shock proteins (HSP) are determinants of life span, and their progressive malfunction leads to age-related pathology. To discuss the function of HSP on age-related chronic inflammation and illness. An updated review of literature and discussion of relevant work on the topic of HSP in normal aging and chronic inflammatory pathology was performed. HSP contribute to inflamm-aging. They also play a key role in age-associated pathology linked to chronic inflammation such as autoimmune disorders, neurological disease, cardiovascular disorder, and cancer. HSP may be targeted for control of their effects related to age and chronic inflammation. Research on HSP functions in age-linked chronic inflammatory disorders provides an opportunity to improve health span and delay age-related chronic disorders.
Collapse
Affiliation(s)
- Christian R Gomez
- Department of Pathology, University of Mississippi Medical Cent, er, 2500 N. State St, Jackson, MS, 39216, USA.
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Preclinical Research Unit, Center for Clinical and Translational Science, University of Mississippi, 2500 N. State St, Jackson, MS, 39216, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA.
| |
Collapse
|
17
|
Extracellular Heat Shock Proteins as Therapeutic Targets and Biomarkers in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms22179316. [PMID: 34502225 PMCID: PMC8430559 DOI: 10.3390/ijms22179316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.
Collapse
|
18
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. Int J Mol Sci 2021; 22:8896. [PMID: 34445599 PMCID: PMC8396286 DOI: 10.3390/ijms22168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Not long ago, self-reactive immune activity was considered as pathological trait. A paradigm shift has now led to the recognition of autoimmune processes as part of natural maintenance of molecular homeostasis. The immune system is assigned further roles beneath the defense against pathogenic organisms. Regarding the humoral immune system, the investigation of natural autoantibodies that are frequently found in healthy individuals has led to further hypotheses involving natural autoimmunity in other processes as the clearing of cellular debris or decrease in inflammatory processes. However, their role and origin have not been entirely clarified, but accumulating evidence links their formation to immune reactions against the gut microbiome. Antibodies targeting highly conserved proteins of the commensal microflora are suggested to show self-reactive properties, following the paradigm of the molecular mimicry. Here, we discuss recent findings, which demonstrate potential links of the commensal microflora to the immunological homeostasis and highlight the possible implications for various diseases. Furthermore, specific components of the immune system, especially antibodies, have become a focus of attention for the medical management of various diseases and provide attractive treatment options in the future. Nevertheless, the development and optimization of such macromolecules still represents a very time-consuming task, shifting the need to more medical agents with simple structural properties and low manufacturing costs. Synthesizing only the biologically active sites of antibodies has become of great interest for the pharmaceutical industry and offers a wide range of therapeutic application areas as it will be discussed in the present review article.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center, 55131 Mainz, Germany; (V.M.B.); (C.S.); (N.P.)
| |
Collapse
|
19
|
Mantej J, Bednarek M, Sitko K, Świętoń M, Tukaj S. Autoantibodies to heat shock protein 60, 70, and 90 are not altered in the anti-SARS-CoV-2 IgG-seropositive humans without or with mild symptoms. Cell Stress Chaperones 2021; 26:735-740. [PMID: 34080135 PMCID: PMC8172177 DOI: 10.1007/s12192-021-01215-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Highly conserved heat shock proteins (Hsps) are localized in the cytoplasm and cellular organelles, and act as molecular chaperones or proteases. Members of Hsp families are released into the extracellular milieu under both normal and stress conditions. It is hypothesized that the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has the potential to elicit autoimmunity due to molecular mimicry between human extracellular Hsps and immunogenic proteins of the virus. To confirm the above hypothesis, levels of circulating autoantibodies directed to the key human chaperones i.e., Hsp60, Hsp70, and Hsp90 in the anti-SARS-CoV-2 IgG-seropositive participants have been evaluated. Twenty-six healthy volunteers who got two doses of the mRNA vaccine encoding the viral spike protein, anti-SARS-CoV-2 IgG-positive participants (n = 15), and healthy naïve (anti-SARS-CoV-2 IgG-negative) volunteers (n = 51) have been included in this study. We found that the serum levels of anti-Hsp60, anti-Hsp70, and anti-Hsp90 autoantibodies of the IgG, IgM, or IgA isotype remained unchanged in either the anti-COVID-19-immunized humans or the anti-SARS-CoV-2 IgG-positive participants when compared to healthy naïve volunteers, as measured by enzyme-linked immunosorbent assay. Our results showing that the humoral immune response to SARS-CoV-2 did not include the production of anti-SARS-CoV-2 antibodies that also recognized extracellular heat shock protein 60, 70, and 90 represent a partial evaluation of the autoimmunity hypothesis stated above. Further testing for cell-based immunity will be necessary to fully evaluate this hypothesis.
Collapse
Affiliation(s)
- Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Świętoń
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
20
|
Mohkhedkar M, Venigalla SSK, Janakiraman V. Untangling COVID-19 and autoimmunity: Identification of plausible targets suggests multi organ involvement. Mol Immunol 2021; 137:105-113. [PMID: 34242919 PMCID: PMC8241658 DOI: 10.1016/j.molimm.2021.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/27/2021] [Indexed: 10/28/2022]
Abstract
Underlying mechanisms of multi-organ manifestations and exacerbated inflammation in COVID-19 are yet to be delineated. The hypothesis of SARS-CoV-2 triggering autoimmunity is gaining attention and, in the present study, we have identified 28 human proteins harbouring regions homologous to SARS-CoV-2 peptides that could possibly be acting as autoantigens in COVID-19 patients displaying autoimmune conditions. Interestingly, these conserved regions are amongst the experimentally validated B cell epitopes of SARS-CoV-2 proteins. The reported human proteins have demonstrated presence of autoantibodies against them in typical autoimmune conditions which may explain the frequent occurrence of autoimmune conditions following SARS-CoV-2 infection. Moreover, the proposed autoantigens' widespread tissue distribution is suggestive of their involvement in multi-organ manifestations via molecular mimicry. We opine that our report may aid in directing subsequent necessary antigen-specific studies, results of which would be of long-term relevance in management of extrapulmonary symptoms of COVID-19.
Collapse
Affiliation(s)
- Mugdha Mohkhedkar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Siva Sai Krishna Venigalla
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Vani Janakiraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
21
|
Luther DC, Jeon T, Goswami R, Nagaraj H, Kim D, Lee YW, Rotello VM. Protein Delivery: If Your GFP (or Other Small Protein) Is in the Cytosol, It Will Also Be in the Nucleus. Bioconjug Chem 2021; 32:891-896. [PMID: 33872490 PMCID: PMC8508718 DOI: 10.1021/acs.bioconjchem.1c00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular protein delivery is a transformative tool for biologics research and medicine. Delivery into the cytosol allows proteins to diffuse throughout the cell and access subcellular organelles. Inefficient delivery caused by endosomal entrapment is often misidentified as cytosolic delivery. This inaccuracy muddles what should be a key checkpoint in assessing delivery efficiency. Green fluorescent protein (GFP) is a robust cargo small enough to passively diffuse from the cytosol into the nucleus. Fluorescence of GFP in the nucleus is a direct readout for cytosolic access and effective delivery. Here, we highlight recent examples from the literature for the accurate assessment of cytosolic protein delivery using GFP fluorescence in the cytosol and nucleus.
Collapse
Affiliation(s)
- David C. Luther
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
- These authors contributed equally
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
- These authors contributed equally
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Dongkap Kim
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
22
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Tukaj Z, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Therapeutic Implications of Targeting Heat Shock Protein 70 by Immunization or Antibodies in Experimental Skin Inflammation. Front Immunol 2021; 12:614320. [PMID: 33708208 PMCID: PMC7940535 DOI: 10.3389/fimmu.2021.614320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (Hsp) are constitutive and stress-induced molecules which have been reported to impact innate and adaptive immune responses. Here, we evaluated the role of Hsp70 as a treatment target in the imiquimod-induced, psoriasis-like skin inflammation mouse model and related in vitro assays. We found that immunization of mice with Hsp70 resulted in decreased clinical and histological disease severity associated with expansion of T cells in favor of regulatory subtypes (CD4+FoxP3+/CD4+CD25+ cells). Similarly, anti-Hsp70 antibody treatment led to lowered disease activity associated with down-regulation of pro-inflammatory Th17 cells. A direct stimulating action of Hsp70 on regulatory T cells and its anti-proliferative effects on keratinocytes were confirmed in cell culture experiments. Our observations suggest that Hsp70 may be a promising therapeutic target in psoriasis and potentially other autoimmune dermatoses.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun 2021; 91:48-64. [PMID: 32858161 DOI: 10.1016/j.bbi.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune peripheral neuropathy and a common cause of neuromuscular paralysis. Preceding infection induces the production of anti-ganglioside (GD) antibodies attacking its own peripheral nerves. In severe proximal peripheral nerve injuries that require long-distance axon regeneration, motor functional recovery is virtually nonexistent. Damaged axons fail to regrow and reinnervate target muscles. In mice, regenerating axons must reach the target muscle within 35 days (critical period) to reform functional neuromuscular junctions and regain motor function. Successful functional recovery depends on the rate of axon regeneration and debris removal (Wallerian degeneration) after nerve injury. The innate-immune response of the peripheral nervous system to nerve injury such as timing and magnitude of cytokine production is crucial for Wallerian degeneration. In the current study, forced expression of human heat shock protein (hHsp) 27 completely reversed anti-GD-induced inhibitory effects on nerve repair assessed by animal behavioral assays, electrophysiology and histology studies, and the beneficial effect was validated in a second mouse line of hHsp27. The protective effect of hHsp27 on prolonged muscle denervation was examined by performing repeated sciatic nerve crushes to delay regenerating axons from reaching distal muscle from 37 days up to 55 days. Strikingly, hHsp27 was able to extend the critical period of motor functional recovery for up to 55 days and preserve the integrity of axons and mitochondria in distal nerves. Cytokine array analysis demonstrated that a number of key cytokines which are heavily involved in the early phase of innate-immune response of Wallerian degeneration, were found to be upregulated in the sciatic nerve lysates of hHsp27 Tg mice at 1 day postinjury. However, persistent hyperinflammatory mediator changes were found after chronic denervation in sciatic nerves of littermate mice, but remained unchanged in hHsp27 Tg mice. Taken together, the current study provides insight into the development of therapeutic strategies to enhance muscle receptiveness (reinnervation) by accelerating axon regeneration and Wallerian degeneration.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
24
|
Pusztai A, Hamar A, Horváth Á, Gulyás K, Végh E, Bodnár N, Kerekes G, Czókolyová M, Szamosi S, Bodoki L, Hodosi K, Domján A, Nagy G, Szöllősi I, Lopez LR, Matsuura E, Prohászka Z, Szántó S, Nagy Z, Shoenfeld Y, Szekanecz Z, Szűcs G. Soluble Vascular Biomarkers in Rheumatoid Arthritis and Ankylosing Spondylitis: Effects of 1-year Antitumor Necrosis Factor-α Therapy. J Rheumatol 2020; 48:821-828. [PMID: 33323530 DOI: 10.3899/jrheum.200916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) have been associated with cardiovascular disease. The treatment of arthritis by tumor necrosis factor-α (TNF-α) inhibitors may decrease the serum concentrations of vascular biomarkers. We determined circulating levels of oxidized low-density lipoprotein (oxLDL)/β2 glycoprotein I (β2-GPI) complexes, antibodies to 60 kDa heat shock protein (anti-Hsp60), soluble urokinase plasminogen activator receptor (suPAR), and B-type natriuretic peptide (BNP) fragment in sera of RA and AS patients undergoing anti-TNF treatment. METHODS Fifty-three patients with RA/AS were treated with etanercept or certolizumab pegol for 1 year. Circulating oxLDL/β2-GPI complex (AtherOx), anti-Hsp60 IgG, and BNP8-29 fragment levels were assessed by ELISA. suPAR levels were determined by suPARnostic Quick Triage test. Flow-mediated vasodilation (FMD), carotid intima-media thickness (CIMT), and arterial pulse wave velocity (PWV) were determined by ultrasound. RESULTS One-year anti-TNF treatment significantly decreased oxLDL/β2-GPI levels, as well as suPAR levels in patients with critically high suPAR levels at baseline. In RA, BNP levels were higher in seropositive vs seronegative patients. Serum levels of these vascular biomarkers variably correlated with lipids, anticitrullinated protein antibodies, rheumatoid factor, and C-reactive protein. CIMT positively correlated with BNP, and PWV with suPAR and anti-Hsp60, whereas FMD inversely associated with anti-Hsp60. In repeated measures ANOVA analysis, disease activity supported the effects of anti-TNF treatment on 12-month changes in oxLDL/β2-GPI. CIMT supported the effects of therapy on changes in anti-Hsp60 and suPAR. CONCLUSION These biomarkers may be involved in the pathogenesis of atherosclerosis underlying RA/AS. TNF inhibition variably affects the serum levels of oxLDL/β2-GPI, suPAR, and BNP.
Collapse
Affiliation(s)
- Anita Pusztai
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Hamar
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Horváth
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Gulyás
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Végh
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nóra Bodnár
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Kerekes
- G. Kerekes, MD, PhD, Intensive Care Unit, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Czókolyová
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Szamosi
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Levente Bodoki
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Hodosi
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Domján
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Nagy
- G. Nagy, MD, PhD, I. Szöllősi, Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary
| | - Ibolya Szöllősi
- G. Nagy, MD, PhD, I. Szöllősi, Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary
| | - Luis R Lopez
- L.R. Lopez, MD, PhD, Corgenix Inc., Broomfield, Colorado, USA
| | - Eiji Matsuura
- E. Matsuura, MD, PhD, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Zoltán Prohászka
- Z. Prohászka, MD, PhD, Third Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Szántó
- S. Szántó, MD, PhD, Division of Rheumatology, Department of Medicine, and Department of Sports Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Nagy
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| | - Yehuda Shoenfeld
- Y. Shoenfeld, MD, PhD, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Zoltán Szekanecz
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary;
| | - Gabriella Szűcs
- A. Pusztai, A. Hamar, MD, Á. Horváth, MD, K. Gulyás, MD, E. Végh, MD, N. Bodnár, MD, PhD, M. Czókolyová, S. Szamosi, MD, PhD, L. Bodoki, MD, PhD, K. Hodosi, A. Domján, Z. Nagy, MD, PhD, Z. Szekanecz, MD, PhD, G. Szűcs, MD, PhD, Division of Rheumatology, Department of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Sitko K. Autologous extracellular Hsp70 exerts a dual role in rheumatoid arthritis. Cell Stress Chaperones 2020; 25:1105-1110. [PMID: 32358783 PMCID: PMC7591667 DOI: 10.1007/s12192-020-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023] Open
Abstract
Extracellular heat shock proteins (Hsp) influence the adaptive immune response and may ameliorate pathogenesis of autoimmune diseases. While some preclinical observations suggest that highly conserved bacterial and/or murine Hsp70 peptides have potential utility in treatment of rheumatoid arthritis (RA) via induction of T regulatory cells (Treg), the role of extracellular inducible human Hsp70 in adaptive immune processes requires further investigation. The present study evaluated Hsp70 influence on inflammatory cytokine-mediated modulation of T cell immunophenotype in ways that influence RA onset and severity. Initial experiments in the present investigation revealed that serum levels of Hsp70 are approximately 2-fold higher in RA patients versus healthy control subjects. To explore the effect of extracellular Hsp70 on key processes underlying the adaptive immune system, the effects of a highly pure, substrate-, and endotoxin-free human Hsp70 on polarization of the T helper cell subpopulations, including CD4+IL-17+ (Th17), CD4+FoxP3+ (Treg), CD4+IFN-γ+ (Th1), and CD4+IL-4+ (Th2), were studied in naïve human peripheral blood mononuclear cell (PBMC) cultures stimulated with anti-CD3/28 mAb. Major findings included an observation that while Hsp70 treatment increased Th17 frequencies and Th17/Treg ratio, the frequency of Th1 cells and the Th1/Th2 ratio were significantly decreased in the Hsp70-treated PBMC cultures. Moreover, data shown here provides preliminary suggestion that major contributing Hsp70-mediated immunomodulation includes interleukin 6 (IL-6) influence on Th17/Treg and Th1/Th2, since expression of this inflammatory cytokine is enhanced by in vitro Hsp70 treatment. These results are nevertheless preliminary and require further investigation to validate the above model.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
26
|
Atsumi S, Katoh H, Komura D, Hashimoto I, Furuya G, Koda H, Konishi H, Suzuki R, Yamamoto A, Yuba S, Abe H, Rino Y, Oshima T, Ushiku T, Fukayama M, Seto Y, Ishikawa S. Focal adhesion ribonucleoprotein complex proteins are major humoral cancer antigens and targets in autoimmune diseases. Commun Biol 2020; 3:588. [PMID: 33067514 PMCID: PMC7567837 DOI: 10.1038/s42003-020-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/15/2020] [Indexed: 01/06/2023] Open
Abstract
Despite the accumulating evidences of the significance of humoral cancer immunity, its molecular mechanisms have largely remained elusive. Here we show that B-cell repertoire sequencing of 102 clinical gastric cancers and molecular biological analyses unexpectedly reveal that the major humoral cancer antigens are not case-specific neo-antigens but are rather commonly identified as ribonucleoproteins (RNPs) in the focal adhesion complex. These common antigens are shared as autoantigens with multiple autoimmune diseases, suggesting a direct molecular link between cancer- and auto-immunity on the focal adhesion RNP complex. This complex is partially exposed to the outside of cancer cell surfaces, which directly evokes humoral immunity and enables functional bindings of antibodies to cancer cell surfaces in physiological conditions. These findings shed light on humoral cancer immunity in that it commonly targets cellular components fundamental for cytoskeletal integrity and cell movement, pointing to a novel modality of immunotherapy using humoral immunological reactions to cancers.
Collapse
Affiliation(s)
- Shinichiro Atsumi
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Itaru Hashimoto
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Surgery, Yokohama City University, Kanagawa, Japan
| | - Genta Furuya
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hirotomo Koda
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroki Konishi
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Ryohei Suzuki
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Satsuki Yuba
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Kanagawa, Japan
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, Kanagawa, Japan.,Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Lieser RM, Yur D, Sullivan MO, Chen W. Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjug Chem 2020; 31:2272-2282. [DOI: 10.1021/acs.bioconjchem.0c00456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel M. Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| |
Collapse
|
28
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
29
|
Geng Y, Munirathinam G, Palani S, Ross JE, Wang B, Chen A, Zheng G. HMGB1-Neutralizing IgM Antibody Is a Normal Component of Blood Plasma. THE JOURNAL OF IMMUNOLOGY 2020; 205:407-413. [PMID: 32522835 DOI: 10.4049/jimmunol.2000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023]
Abstract
Extracellular high-mobility group box 1 (HMGB1) is a prototypic damage-associated molecular pattern. Although a homeostatic level of extracellular HMGB1 may be beneficial for immune defense, tissue repair, and tissue regeneration, excessive HMGB1 is linked to inflammatory diseases. This prompts an intriguing question: how does a healthy body control the level of extracellular HMGB1? In this study, in the plasma of both healthy humans and healthy mice, we have identified an anti-HMGB1 IgM autoantibody that neutralizes extracellular HMGB1 via binding specifically to a 100% conserved epitope, namely HMW4 (HMGB198-112). In mice, this anti-HMW4 IgM is produced by peritoneal B-1 cells, and concomitant triggering of their BCR and TLR4 by extracellular HMGB1 stimulates the production of anti-HMW4 IgM. The ability of extracellular HMGB1 to induce its own neutralizing Ab suggests a feedback loop limiting the level of this damage-associated molecular pattern in a healthy body.
Collapse
Affiliation(s)
- Yajun Geng
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107
| | - Sunil Palani
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107
| | - Joseph E Ross
- Department of Family and Community Medicine, University of Illinois College of Medicine Rockford, Rockford, IL 61107; and
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aoshuang Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107;
| | - Guoxing Zheng
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107;
| |
Collapse
|
30
|
Yuste-Calvo C, López-Santalla M, Zurita L, Cruz-Fernández CF, Sánchez F, Garín MI, Ponz F. Elongated Flexuous Plant Virus-Derived Nanoparticles Functionalized for Autoantibody Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1438. [PMID: 31658770 PMCID: PMC6835482 DOI: 10.3390/nano9101438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles derived from the elongated flexuous capsids of Turnip mosaic virus (TuMV) have been shown to be efficient tools for antibody sensing with a very high sensitivity if adequately functionalized with the corresponding epitopes. Taking advantage of this possibility, TuMV virus-like particles (VLPs) have been genetically derivatized with a peptide from the chaperonin Hsp60, a protein described to be involved in inflammation processes and autoimmune diseases. Antibodies against the peptide have been previously shown to have a diagnostic value in at least one autoimmune disease, multiple sclerosis. The functionalized Hsp60-VLPs showed their significant increase in sensing potency when compared to monoclonal antibody detection of the peptide in a conventional immunoassay. Additionally, the developed Hsp60-VLPs allowed the detection of autoantibodies against the Hsp60 peptide in an in vivo mouse model of dextran sodium sulfate (DSS)-induced colitis. The detection of minute amounts of the autoantibodies allowed us to perform the analysis of their evolution during the progression of the disease. The anti-Hsp60 autoantibody levels in the sera of the inflamed mice went down during the induction phase of the disease. Increased levels of the anti-HSP60 autoantibodies were detected during the resolution phase of the disease. An extension of a previously proposed model for the involvement of Hsp60 in inflammatory processes is considered, incorporating a role for Hsp60 autoantibodies. This, and related models, can now be experimentally tested thanks to the autoantibody detection hypersensitivity provided by the functionalized VLPs.
Collapse
Affiliation(s)
- Carmen Yuste-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Mercedes López-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Lucía Zurita
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - César F Cruz-Fernández
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Marina I Garín
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
31
|
Yang Q, Yang K, Li Z. MiR‐22 restrains proliferation of rheumatoid arthritis by targeting IL6R and may be concerned with the suppression of NF‐κB pathway. Kaohsiung J Med Sci 2019; 36:20-26. [PMID: 31483954 DOI: 10.1002/kjm2.12124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Qing‐Yi Yang
- Department of Joint OrthopaedicAffiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan China
| | - Kai‐Peng Yang
- Department of bone, People's Hospital of Zouping City Binzhou China
| | - Zhi‐Zhou Li
- Department of OrthopeadicsChian‐Japan Union Hospital of Jilin University Changchun China
| |
Collapse
|
32
|
Abstract
Since the pioneering discovery of heat shock proteins in Drosophila by Ferruccio Ritossa in 1960s, a long and exciting journey has been undertaken by molecular biologists and researchers worldwide. Not only lower organisms like worms, yeast, amoeba, and flies but also eukaryotes share common cellular response signals to stressful conditions that can arise from the outside but also from the inside. Moreover, extraordinary interplay between nucleus and subcellular organelles, and between different organelles, like mitochondria and the endoplasmic reticulum called mitochondria-associated endoplasmic reticulum membranes (MAMs), are involved in aging and human diseases like obesity, diabetes, inflammation, neurodegeneration, autoimmune diseases, atherosclerosis, and cancer. Actually, we know that to hit abnormal proteostasis and lipid exchanges in the endoplasmic reticulum is crucial to best guide effective therapies or discover new drugs. Indeed, restoration or impairment of endoplasmic reticulum shape and function lead to cellular homeostasis by autophagy or to final death generally by apoptosis or pyroptosis. This Special Issue collects current valuable articles or reviews on cellular stress research and each contribution opens a new window for further studies and hypothesis. I hope that readers interested in this fascinating topic may be stimulated to know more and more.
Collapse
|
33
|
Tukaj S, Kaminski M. Heat shock proteins in the therapy of autoimmune diseases: too simple to be true? Cell Stress Chaperones 2019; 24:475-479. [PMID: 31073900 PMCID: PMC6527538 DOI: 10.1007/s12192-019-01000-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/07/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Autoimmune diseases are characterized by the loss of immune tolerance to self-antigens which leads to an excessive immune responses and chronic inflammation. Although much progress has been made in revealing key players in pathophysiology of various autoimmune diseases, their therapy remains challenging and consists of conventional immunosuppressive treatments, including corticosteroids and more advanced biological therapies which are targeted at molecules involved in maintaining chronic inflammation. These therapies are focused on suppressing inflammation; nevertheless, a permanent balance between protective and pathogenic immune responses is not achieved. In addition, most of currently available therapies for autoimmune diseases induce severe side effects. Consequently, more effective and safer therapies are still required to control autoimmunity. Stress-induced cell protecting heat shock proteins (HSP) have been considered as a potential treatment targets for autoimmune diseases. HSP, predominantly intracellular components, might be released from bacteria or mammalian tissues and activate immune response. This activation may lead to either production of (auto)antibodies against HSP and/or induction of immune regulatory mechanisms, including expansion of desired T regulatory (Treg) cells. Because inadequate frequency or activity of Treg is a characteristic feature of autoimmune diseases, targeting this cell population is an important focus of immunotherapy approaches in autoimmunity.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Maciej Kaminski
- Department of Anaesthesiology and Intensive Therapy, University Clinical Centre, Gdańsk, Poland
| |
Collapse
|