1
|
Abedini F, Amjadi O, Ahangari G. Repurposing serotonergic drugs for gastric cancer: induction of apoptosis in vitro. Mol Biol Rep 2025; 52:373. [PMID: 40202572 DOI: 10.1007/s11033-025-10474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Gastric cancer is a highly heterogeneous and aggressive disease with limited treatment options, necessitating innovative therapeutic strategies. Drug repurposing, a cost-effective approach, offers opportunities to identify new applications for existing medications. This study systematically investigated the apoptotic effects of serotonergic drugs on MKN-45 gastric cancer cells, providing a novel perspective on serotonin signaling in cancer therapy. METHODS AND RESULTS MKN-45 cells were treated with concentrations of Tropisetron, Imipramine, Ketanserin, Citalopram, and Cyproheptadine. The IC50 values were determined using an MTT assay, while acridine orange/ethidium bromide staining and Annexin V/PI flow cytometry assessed apoptotic activity. Gene expression related to serotonin receptors (HTR2A, HTR2B, HTR3A), Serotonin transporter (SLC6A4), apoptosis (Bcl-2, Bax), and proliferation (PCNA) was evaluated via real-time PCR. Tropisetron, Imipramine, Ketanserin, and Cyproheptadine demonstrated statistically significant apoptotic induction compared to untreated cells. These treatments significantly reduced anti-apoptotic Bcl-2 and PCNA, proliferation marker, expression, while pro-apoptotic Bax expression was markedly elevated (p < 0.05). CONCLUSIONS This study highlights the potential of Tropisetron, Imipramine, Ketanserin, and Cyproheptadine as repurposed drugs for gastric cancer therapy, with Tropisetron and Imipramine showing particularly promising apoptotic effects. These findings pave the way for further preclinical and clinical investigations, offering a foundation for personalized therapeutic strategies in gastric cancer management.
Collapse
Affiliation(s)
- Fatemeh Abedini
- Neuroimmunopsychooncogenetic Group, Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 1497716316, Tehran, Iran
| | - Omolbanin Amjadi
- Neuroimmunopsychooncogenetic Group, Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 1497716316, Tehran, Iran
| | - Ghasem Ahangari
- Neuroimmunopsychooncogenetic Group, Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 1497716316, Tehran, Iran.
| |
Collapse
|
2
|
Eggertsen TG, Travers JG, Hardy EJ, Wolf MJ, McKinsey TA, Saucerman JJ. Logic-based machine learning predicts how escitalopram attenuates cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2025; 122:e2420499122. [PMID: 40035765 PMCID: PMC11912418 DOI: 10.1073/pnas.2420499122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/14/2025] [Indexed: 03/06/2025] Open
Abstract
Cardiomyocyte hypertrophy is a key clinical predictor of heart failure. High-throughput and AI-driven screens have the potential to identify drugs and downstream pathways that modulate cardiomyocyte hypertrophy. Here, we developed LogiRx, a logic-based mechanistic machine learning method that predicts drug-induced pathways. We applied LogiRx to discover how drugs discovered in a previous compound screen attenuate cardiomyocyte hypertrophy. We experimentally validated LogiRx predictions in neonatal cardiomyocytes, adult mice, and two patient databases. Using LogiRx, we predicted antihypertrophic pathways for seven drugs currently used to treat noncardiac disease. We experimentally validated that escitalopram (Lexapro) and mifepristone inhibit hypertrophy of cultured cardiomyocytes in two contexts. The LogiRx model predicted that escitalopram prevents hypertrophy through an "off-target" serotonin receptor/PI3Kγ pathway, mechanistically validated using additional investigational drugs. Further, escitalopram reduced cardiomyocyte hypertrophy in a mouse model of hypertrophy and fibrosis. Finally, mining of both FDA and University of Virginia databases showed that patients with depression on escitalopram have a lower incidence of cardiac hypertrophy than those prescribed other serotonin reuptake inhibitors that do not target the serotonin receptor. Mechanistic machine learning by LogiRx discovers drug pathways that perturb cell states, which may enable repurposing of escitalopram and other drugs to limit cardiac remodeling through off-target pathways.
Collapse
Affiliation(s)
- Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA22908
| | - Joshua G. Travers
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045-2507
| | - Elizabeth J. Hardy
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045-2507
| | - Matthew J. Wolf
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA22908
| | - Timothy A. McKinsey
- Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045-2507
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA22908
| |
Collapse
|
3
|
Wang J, Huang Y, Wang Z, Liu J, Liu Z, Yang J, He Z. The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease. Biomedicines 2025; 13:397. [PMID: 40002810 PMCID: PMC11853667 DOI: 10.3390/biomedicines13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Heart disease, including myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathy, remains a leading cause of mortality worldwide. The mammalian target of rapamycin (mTOR) is a centrally regulated kinase that governs key cellular processes, including growth, proliferation, metabolism, and survival. Notably, mTOR plays a pivotal role in cardiovascular health and disease, particularly in the onset and progression of cardiac conditions. In this review, we discuss mTOR's structure and function as well as the regulatory mechanisms of its associated signaling pathways. We focus on the molecular mechanisms by which mTOR signaling regulates cardiac diseases and the potential of mTOR inhibitors and related regulatory drugs in preventing these conditions. We conclude that the mTOR signaling pathway is a promising therapeutic target for heart disease.
Collapse
Affiliation(s)
- Jieyu Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Yuxuan Huang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhaoxia Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Jing Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhijian Liu
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Zuping He
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
4
|
Chen X, Zhuo C, Yang L, Zhang Q, Chao L. Network pharmacology and molecular docking to explore mechanisms of clozapine-induced cardiac arrest. J Psychiatry Neurosci 2025; 50:E1-E10. [PMID: 39753306 PMCID: PMC11684924 DOI: 10.1503/jpn.240065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Clozapine is superior to all other antipsychotics in treating schizophrenia in terms of its curative efficacy; however, this drug is prescribed only as a last resort in the treatment of schizophrenia, given its potential to induce cardiac arrest. The mechanism of clozapine-induced cardiac arrest remains unclear, so we aimed to elucidate the potential mechanisms of clozapine-induced cardiac arrest using network pharmacology and molecular docking. METHODS We identified and analyzed the overlap between potential cardiac arrest-related target genes and clozapine target genes. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We then constructed a protein-protein interaction (PPI) network and screened the core targets. We used molecular docking to evaluate the binding energy between clozapine and core targets. RESULTS We identified a total of 2405 target genes related to cardiac arrest and 107 target genes for clozapine. Among these, we found 41 overlapping target genes. The main enriched GO biological processes included the upregulation of the mitogen-activated protein kinase (MAPK) cascade and the adenylate cyclase-activating adrenergic receptor signalling pathway. The KEGG enrichment analysis showed that the neuroactive ligand-receptor interaction and the forkhead box O (FoxO) signalling pathway seemed to be the key signalling pathways involved in clozapine-induced cardiac arrest. The 7 core targets identified in the established PPI network were G-protein-coupled receptor kinase 2, 5-hydroxytryptamine 2A receptor, dopamine D2 receptor, glycogen synthase kinase 3β, cyclin-dependent kinase 2, CREB-binding protein, and signal transducer and activator of transcription 3. The molecular docking results indicated a high affinity between clozapine and all of these core targets. LIMITATIONS The relatively small scope of the predictive and modelling methods, which predominantly comprised network pharmacology and molecular docking strategies, is a limitation of this study. CONCLUSION Network pharmacology and molecular docking approaches unveiled target genes for clozapine and potential mechanisms by which it may cause cardiac arrest, including the MAPK cascade, neuroactive ligand-receptor interactions, and the FoxO signalling pathway.
Collapse
Affiliation(s)
- Ximing Chen
- From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Chuanjun Zhuo
- From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Lei Yang
- From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Qiuyu Zhang
- From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Li Chao
- From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
5
|
Glover S, Illyuk J, Hill C, McGuinness B, McKnight AJ, Hunter RF. A systematic review of associations between the environment, DNA methylation, and cognition. ENVIRONMENTAL EPIGENETICS 2024; 11:dvae027. [PMID: 39882510 PMCID: PMC11776599 DOI: 10.1093/eep/dvae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
The increasing prevalence of neurodegenerative diseases poses a significant public health challenge, prompting a growing focus on addressing modifiable risk factors of disease (e.g. physical inactivity, mental illness, and air pollution). The environment is a significant contributor of risk factors which are known to impact the brain and contribute to disease risk (e.g. air pollution, noise pollution, green and blue spaces). Epigenetics can offer insights into how various environmental exposures impact the body to contribute to cognitive outcomes. In this systematic review, we examined studies which have associated an environmental exposure to a type of epigenetic modification, DNA methylation, and a cognitive outcome. We searched four databases with keywords "environmental exposures," "epigenetics," and "cognition." We yielded 6886 studies that we screened by title/abstract followed by full text. We included 14 studies which focused on four categories of environmental exposure: air pollution (n = 3), proximity to roads (n = 1), heavy metals (n = 6), and pesticides (n = 4). Overall, n = 10/14 studies provided evidence that DNA methylation is statistically significant in the association between the environment and a cognitive outcome. Furthermore, we identified that n = 5/14 studies performed a type of biological pathway analysis to determine the presence of biological pathways between their environmental exposure and cognitive outcome. Our findings underscore the need for methodological improvements and considerations in future studies, including investigation of other environmental exposures considering tissue-specificity of methylation profiles and stratifying analysis by sex, ethnicity and socioeconomic determinants of disease. This review demonstrates that further investigation is warranted, the findings of which may be of use in the development of preventative measures and risk management strategies for neurodegenerative disease.
Collapse
Affiliation(s)
- Sophie Glover
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Jacob Illyuk
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Claire Hill
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Bernadette McGuinness
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Amy Jayne McKnight
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Ruth F Hunter
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| |
Collapse
|
6
|
Garmany R, Dasari S, Bos JM, Kim ET, Gluscevic M, Martinez KA, Tester DJ, Dos Remedios C, Maleszewski JJ, Dearani JA, Ommen SR, Geske JB, Giudicessi JR, Ackerman MJ. A multi-omics atlas of sex-specific differences in obstructive hypertrophic cardiomyopathy. J Mol Cell Cardiol 2024; 196:26-34. [PMID: 39255898 DOI: 10.1016/j.yjmcc.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common genetic heart disease. Women with HCM tend to have a later onset but more severe disease course. However, the underlying pathobiological mechanisms for these differences remain unknown. METHODS Myectomy samples from 97 patients (53 males/44 females) with symptomatic obstructive HCM and 23 control cardiac tissues were included in this study. RNA-sequencing was performed on all samples. Mass spectrometry-based proteomics and phosphoproteomics was performed on a representative subset of samples. RESULTS The transcriptome, proteome, and phosphoproteome was similar between sexes and did not separate on PCA plotting. Overall, there were 482 differentially expressed genes (DEGs) between control females and control males while there were only 53 DEGs between HCM females and HCM males. There were 1983 DEGs between HCM females and control females compared to 1064 DEGs between HCM males and control males. Additionally, there was increased transcriptional downregulation of hypertrophy pathways in HCM females and in HCM males. HCM females had 119 differentially expressed proteins compared to control females while HCM males only had 27 compared to control males. Finally, the phosphoproteome showed females had 341 differentially phosphorylated proteins (DPPs) compared to controls while males only had 184. Interestingly, there was hypophosphorylation and inactivation of hypertrophy pathways in females but hyperphosphorylation and activation in males. CONCLUSION There are subtle, but biologically relevant differences in the multi-omics profile of HCM. This study provides the most comprehensive atlas of sex-specific differences in the transcriptome, proteome, and phosphoproteome present at the time of surgical myectomy for obstructive HCM.
Collapse
Affiliation(s)
- Ramin Garmany
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, USA; Department of Molecular Pharmacology & Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences/Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Evelyn T Kim
- Mayo Clinic Mentorship Program, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Molecular Pharmacology & Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Katherine A Martinez
- Department of Molecular Pharmacology & Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Cristobal Dos Remedios
- Mechanobiology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Joseph A Dearani
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steve R Ommen
- Department of Cardiovascular Medicine; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey B Geske
- Department of Cardiovascular Medicine; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - John R Giudicessi
- Department of Molecular Pharmacology & Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Debashish Biswal, Songbiao Li. Transcription Factors in Cardiac Remodeling: Latest Advances. CYTOL GENET+ 2024; 58:234-245. [DOI: 10.3103/s0095452724030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/25/2024] [Accepted: 05/18/2024] [Indexed: 01/03/2025]
|
8
|
Yarmohammadi F, Wallace Hayes A, Karimi G. Molecular mechanisms involved in doxorubicin-induced cardiotoxicity: A bibliometrics analysis by VOSviewer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1971-1984. [PMID: 37812241 DOI: 10.1007/s00210-023-02773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Doxorubicin is a potent chemotherapeutic agent that can cause cardiotoxicity. Many documents (more than 14,000) have been published in the area of doxorubicin-induced cardiotoxicity (DIC) since 1970. A comprehensive bibliographic analysis of author keywords was used to describe better and understand the molecular mechanisms involved in DIC. The objective was to consider the state of the author keywords of research on the molecular mechanisms involved in DIC based on a bibliometrics study of articles published over the past fifty years. A bibliometrics analysis was conducted using VOSviewer with data collected from the Web of Science Core Collection database of over 14,000 documents (from 1970 to July 19, 2023). Using scientific publications retrieved about DIC, author keywords were assessed at the scientific field level. The current study showed that the annual number of DIC-related publications has increased over the past 50 years. The Journal of Clinical Oncology is the leading journal in this field. The top cited DIC document was published in 2004. The top keywords with high frequency were "doxorubicin," "cardiotoxicity," and "adriamycin." According to the results of this study, the most common mechanisms involved in DIC were as follows oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis. The highest occurrences of regulators-related author keywords were "AKT," "Sirt1," and "AMPK." Based on the findings, oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis were hot research mechanisms of DIC from 1970 to July 19, 2023.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Garmany R, Dasari S, Bos JM, Kim ET, Martinez KA, Tester DJ, Dos Remedios C, Maleszewski JJ, Dearani JA, Ommen SR, Geske JB, Giudicessi JR, Ackerman MJ. A Multi-Omics Atlas of Sex-Specific Differences in Obstructive Hypertrophic Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581621. [PMID: 38464071 PMCID: PMC10925216 DOI: 10.1101/2024.02.22.581621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is a common genetic heart disease. Women with HCM tend to have a later onset but more severe disease course. However, the underlying pathobiological mechanisms for these differences remain unknown. Methods Myectomy samples from 97 patients (53 males/44 females) with symptomatic obstructive HCM and 23 control cardiac tissues were included in this study. RNA-sequencing was performed on all samples. Mass spectrometry-based proteomics and phosphoproteomics was performed on a representative subset of samples. Results The transcriptome, proteome, and phosphoproteome was similar between sexes and did not separate on PCA plotting. Overall, there were 482 differentially expressed genes (DEGs) between control females and control males while there were only 53 DEGs between HCM females and HCM males. There were 1963 DEGs between HCM females and control females compared to 1064 DEGs between HCM males and control males. Additionally, there was increased transcriptional downregulation of hypertrophy pathways in HCM females and in HCM males. HCM females had 119 differentially expressed proteins compared to control females while HCM males only had 27 compared to control males. Finally, the phosphoproteome showed females had 341 differentially phosphorylated proteins (DPPs) compared to controls while males only had 184. Interestingly, there was hypophosphorylation and inactivation of hypertrophy pathways in females but hyperphosphorylation and activation in males. Conclusion There are subtle, but biologically relevant differences in the multi-omics profile of HCM. This study provides the most comprehensive atlas of sex-specific differences in the transcriptome, proteome, and phosphoproteome present at the time of surgical myectomy for obstructive HCM.
Collapse
|
10
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
11
|
Yuan L, Ji HG, Yan XJ, Liu M, Ding YH, Chen XH. Dioscin ameliorates doxorubicin-induced heart failure via inhibiting autophagy and apoptosis by controlling the PDK1-mediated Akt/mTOR signaling pathway. Kaohsiung J Med Sci 2023; 39:1022-1029. [PMID: 37578093 DOI: 10.1002/kjm2.12740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Heart failure (HF) is a disease with high mortality and morbidity rate. Autophagy is critically implicated in HF progression. The current research was designed to investigate the function of Dioscin on oxidative stress, autophagy, and apoptosis in HF. In this study, doxorubicin (Dox) was employed to induce HF model and HL-1 cell damage model. Echocardiography implied that Dioscin could dramatically relieve heart function in vivo. Western blotting determined that Dioscin treatment reversed the promotive effect of autophagy caused by Dox through modulating levels of key autophagy-associated molecules, including Atg5 and Beclin1. Dioscin also impaired apoptosis by regulating apoptosis-related protein, including Bcl-2 and cleaved caspase-3 following Dox treatment in vivo and in vitro. Furthermore, the impacts of Dioscin were mediated by upregulation of PDK1-mediated Akt/mTOR signaling. The mTOR inhibitor (rapamycin) could counteract the therapeutic impact of Dioscin in vitro. Taken together, Dioscin could relieve cardiac function through blocking apoptosis and autophagy by activating the PDK1-elicited Akt/mTOR pathway.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Hai-Gang Ji
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiao-Jing Yan
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Meng Liu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yu-Han Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiao-Hu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Knittel J, Itani N, Schreckenberg R, Heger J, Rohrbach S, Schulz R, Schlüter KD. Monoamine Oxidase A Contributes to Serotonin-But Not Norepinephrine-Dependent Damage of Rat Ventricular Myocytes. Biomolecules 2023; 13:1013. [PMID: 37371593 DOI: 10.3390/biom13061013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin effects on cardiac hypertrophy, senescence, and failure are dependent either on activation of specific receptors or serotonin uptake and serotonin degradation by monoamine oxidases (MAOs). Receptor-dependent effects are specific for serotonin, but MAO-dependent effects are nonspecific as MAOs also metabolize other substrates such as catecholamines. Our study evaluates the role of MAO-A in serotonin- and norepinephrine-dependent cell damage. Experiments were performed in vivo to study the regulation of MAOA and MAOB expression and in vitro on isolated cultured adult rat ventricular cardiomyocytes (cultured for 24 h) to study the function of MAO-A. MAOA but not MAOB expression increased in maladaptive hypertrophic stages. Serotonin and norepinephrine induced morphologic cell damage (loss of rod-shaped cell structure). However, MAO-A inhibition suppressed serotonin-dependent but not norepinephrine-dependent damages. Serotonin but not norepinephrine caused a reduction in cell shortening in nondamaged cells. Serotonin induced mitochondria-dependent oxidative stress. In vivo, MAOA was induced during aging and hypertension but the expression of the corresponding serotonin uptake receptor (SLC6A4) was reduced and enzymes that reduce either oxidative stress (CAT) or accumulation of 5-hydroxyindolacetaldehyde (ALDH2) were induced. In summary, the data show that MAO-A potentially affects cardiomyocytes' function but that serotonin is not necessarily the native substrate.
Collapse
Affiliation(s)
- Jonas Knittel
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Nadja Itani
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Jacqueline Heger
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | | |
Collapse
|
13
|
Myocardial ischemia-reperfusion injury is probably due to the excessive production of mitochondrial ROS caused by the activation of 5-HT degradation system mediated by PAF receptor. Mol Immunol 2023; 155:27-43. [PMID: 36682136 DOI: 10.1016/j.molimm.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/17/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
AIM Previously, we revealed a crucial role of 5-HT degradation system (5DS), consisting of 5-HT2A receptor (5-HT2AR), 5-HT synthases and monoamine oxidase A (MAO-A), in ischemia-reperfusion (IR)-caused organ injury. Whereas, platelet activating factor receptor (PAFR) also mediates myocardial ischemia-reperfusion injury (MIRI). Here, we try to clarify the relationship between 5DS and PAFR in mediating MIRI. METHODS H9c2 cell injury and rat MIRI were caused by hypoxia/reoxygenation (H/R) or PAF, and by ligating the left anterior descending coronary artery then untying, respectively. 5-HT2AR and PAFR antagonists [sarpogrelate hydrochloride (SH) and BN52021], MAO-A, AKT, mTOR and 5-HT synthase inhibitors (clorgyline, perifosine, rapamycin and carbidopa), and gene-silencing PKCε were used in experiments RESULTS: The mitochondrial ROS production, respiratory chain damage, inflammation, apoptosis and myocardial infarction were significantly prevented by BN52021, SH and clorgyline in H/R and PAF-treated cells and in IR myocardium. BN52021 also significantly suppressed the upregulation of PAFR, 5-HT2AR, 5-HT synthases and MAO-A expression (mRNA and protein), and Gαq and PKCε (in plasmalemma) expression induced by H/R, PAF or IR; the effects of SH were similar to that of BN52021 except for no affecting the expression of PAFR and 5-HT2AR. Gene-silencing PKCε suppressed H/R and PAF-induced upregulation of 5-HT synthases and MAO-A expression in cells; perifosine and rapamycin had not such effects; however, clorgyline suppressed H/R and PAF-induced phosphorylation of AKT and mTOR. CONCLUSION MIRI is probably due to PAFR-mediated 5-HT2AR activation, which further activates PKCε-mediated 5-HT synthesis and degradation, leading to mitochondrial ROS production.
Collapse
|
14
|
Peng Y, Jingming R, Shaowen C, Feng H, Pengli Z. The protective effect of Apelin-13 against cardiac hypertrophy through activating the PI3K-AKT-mTOR signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:183-189. [PMID: 36742144 PMCID: PMC9869881 DOI: 10.22038/ijbms.2022.65160.14356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/26/2022] [Indexed: 02/07/2023]
Abstract
Objectives To determine the protective effect of Apelin-13 on cardiac hypertrophy through activating the PI3K-AKT-mTOR signaling pathway. Materials and Methods The phenylephrine-induced cardiomyocyte hypertrophy model was established in H9C2 cells in vitro. Electroporation transfection technology was utilized to prepare and screen the H9C2 cells inducing low expression of the angiotensin type one receptor-related protein (Si-APJ). H9C2 and Si-APJ cells were divided independently into five groups: the control group, the PE group, the PE+Apelin group, the PE+Rapa group, and the PE+Apelin+Rapa group. RT-PCR was performed to analyze the mRNA expression levels of myosin heavy chain 7 (MYH7). Expression of the PI3K/AKT/mTOR pathway proteins and MYH7 was investigated by western blot. Results The expression of PI3K/AKT/mTOR phosphorylated proteins was significantly higher in the PE group compared with the PE+Apelin group in H9C2 cells (P<0.05). Conversely, in Si-APJ H9C2 cells, the expression of PI3K/AKT/mTOR phosphorylated proteins was decreased (P<0.05). In H9C2 cells, the expression of MYH7 protein was increased in the PE group compared with the control group (P<0.05). In the same cell line, the expression of MYH7 in the PE+Apelin group was decreased significantly compared with the PE group (P<0.05). In Si-APJ H9C2 cells, compared with the control group, the expression of MYH7 in the PE group still increased significantly (P<0.05). In contrast, in the same cell line, there was no statistically significant difference in MYH7 expression between the PE+Apelin, PE+Rapa, and PE+Apelin+Rapa groups compared to the PE group (P>0.05). Conclusion Apelin-13 reduces PE-induced cardiac hypertrophy by activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu Peng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Cardiovascular Medicine, Fujian Provincial Hospital South Branch (Fujian Provincial Jinshan Hospital), Fuzhou 350028, Fujian, China,These authors contributed eqully to this work
| | - Ruan Jingming
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Cardiovascular Medicine, Fujian Provincial Hospital South Branch (Fujian Provincial Jinshan Hospital), Fuzhou 350028, Fujian, China,Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China,These authors contributed eqully to this work
| | - Chen Shaowen
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Huang Feng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China,Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China,Corresponding authors: Huang Feng. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China. . Zhu Pengli. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China.
| | - Zhu Pengli
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China,Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China,Corresponding authors: Huang Feng. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China. . Zhu Pengli. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
15
|
Wang Y, Song J, Wang X, Qian Q, Wang H. Study on the toxic-mechanism of triclosan chronic exposure to zebrafish (Danio rerio) based on gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156936. [PMID: 35772538 DOI: 10.1016/j.scitotenv.2022.156936] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS), as a broad-spectrum bactericide, is extensively used in the fine chemical and textile industries. It is recognized as a new type of environmental endocrine disruptor with frequent detection and environmental pollution. However, the toxicity mechanism regarding neurodevelopment and neurobehavior remains unclear. This study is intended to explore the underlying toxic mechanism of TCS based on gut-brain axis. TCS-chronic exposure affected the development of zebrafish, induced feminization, obesity physical signs and abnormal organ index and caused neurobehavioral abnormalities by inhibiting both neurotransmitter acetylcholinesterase and dopamine activity, promoting brain neuron apoptosis and accelerating diencephalic lesions. Meanwhile, TCS-chronic exposure led to gut microbiota dysbiosis and decreased diversity, such as increased pathogenic bacteria and decreased probiotics in adult zebrafish gut, which caused many pathological damages, including partial shedding and ablation of intestinal villi, inflammatory infiltration, thinning of intestinal wall, and increased goblet cell in villus. Based on the communication between intestinal peripheral nerves and CNS, the above histopathological injuries and disorders were well underpinned and illustrated by the changes of biomarkers and the expression of related marker genes in the gut-brain axis. Additionally, short-chain fatty acids (SCFA), as the regulators of intestinal sympathetic nerve activation, are also secreting products of intestinal microflora and play a crucial role in regulating the balance of intestinal flora and protecting intestinal homeostasis. SCFA in low doses can effectively alleviate and rescue the toxic effects under TCS exposure, which evidenced that TCS exerted systemic toxic effects on the gut-brain axis by influencing the composition and diversity of gut flora in zebrafish, and fully demonstrated the interaction effect between intestine and brain. Hence, these findings contribute to the understanding, prevention, and diagnosis of endocrine disrupting diseases caused by environmental pollutants from the perspective of the gut-brain axis, and strengthening the early warning, management and control of TCS pollution.
Collapse
Affiliation(s)
- Yang Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
16
|
Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK signaling pathway. Acta Pharmacol Sin 2022; 43:588-601. [PMID: 33967278 PMCID: PMC8888632 DOI: 10.1038/s41401-021-00678-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiac hypertrophy is a common adaptive response to a variety of stimuli, but prolonged hypertrophy leads to heart failure. Hence, discovery of agents treating cardiac hypertrophy is urgently needed. In the present study, we investigated the effects of QF84139, a newly synthesized pyrazine derivative, on cardiac hypertrophy and the underlying mechanisms. In neonatal rat cardiomyocytes (NRCMs), pretreatment with QF84139 (1-10 μM) concentration-dependently inhibited phenylephrine-induced hypertrophic responses characterized by fetal genes reactivation, increased ANP protein level and enlarged cardiomyocytes. In adult male mice, administration of QF84139 (5-90 mg·kg-1·d-1, i.p., for 2 weeks) dose-dependently reversed transverse aortic constriction (TAC)-induced cardiac hypertrophy displayed by cardiomyocyte size, left ventricular mass, heart weights, and reactivation of fetal genes. We further revealed that QF84139 selectively activated the AMPK signaling pathway without affecting the phosphorylation of CaMKIIδ, ERK1/2, AKT, PKCε, and P38 kinases in phenylephrine-treated NRCMs and in the hearts of TAC-treated mice. In NRCMs, QF84139 did not show additive effects with metformin on the AMPK activation, whereas the anti-hypertrophic effect of QF84139 was abolished by an AMPK inhibitor Compound C or knockdown of AMPKα2. In AMPKα2-deficient mice, the anti-hypertrophic effect of QF84139 was also vanished. These results demonstrate that QF84139 attenuates the PE- and TAC-induced cardiac hypertrophy via activating the AMPK signaling. This structurally novel compound would be a promising lead compound for developing effective agents for the treatment of cardiac hypertrophy.
Collapse
|
17
|
Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta. Biomedicines 2022; 10:biomedicines10020467. [PMID: 35203678 PMCID: PMC8962258 DOI: 10.3390/biomedicines10020467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The serotonin receptor 2A gene (HTR2A) is a strong candidate for the fetal programming of future behavior and metabolism. Maternal obesity and gestational diabetes mellitus (GDM) have been associated with an increased risk of metabolic and psychological problems in offspring. We tested the hypothesis that maternal metabolic status affects methylation of HTR2A in the placenta. The prospective study included 199 pairs of mothers and healthy full-term newborns. Genomic DNA was extracted from feto-placental samples and analyzed for genotypes of two polymorphisms (rs6311, rs6306) and methylation of four cytosine residues (−1665, −1439, −1421, −1224) in the HTR2A promoter region. Placental HTR2A promoter methylation was higher in male than female placentas and depended on both rs6311 and rs6306 genotypes. A higher maternal pre-gestational body mass index (pBMI) and, to a lesser extent, diagnosis of GDM were associated with reduced HTR2A promoter methylation in female but not male placentas. Higher pBMI was associated with reduced methylation both directly and indirectly through increased GDM incidence. Tobacco use during pregnancy was associated with reduced HTR2A promoter methylation in male but not female placentas. The obtained results suggest that HTR2A is a sexually dimorphic epigenetic target of intrauterine exposures. The findings may contribute to a better understanding of the early developmental origins of neurobehavioral and metabolic disorders associated with altered HTR2A function.
Collapse
|
18
|
Yuan M, Zhao B, Jia H, Zhang C, Zuo X. Sinomenine ameliorates cardiac hypertrophy by activating Nrf2/ARE signaling pathway. Bioengineered 2021; 12:12778-12788. [PMID: 34895050 PMCID: PMC8810090 DOI: 10.1080/21655979.2021.2000195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiac hypertrophy (CH) is a result of the physiological adaptation of the heart to coronary heart disease, hypertension, and other cardiovascular diseases. Sinomenine is extracted from Caulis Sinomenii. This study aimed to explore the specific mechanism of the action of sinomenine in cardiac hypertrophy (CH) via Nrf2/ARE signaling pathway in vivo and in vitro. To establish a model of CH, H9C2 cells were treated with angiotensin II (Ang II) and intraperitoneally injected with isoproterenol. Then the cells were treated with 50 and 100 μM sinomenine. TUNEL, HE, rhodamine-labeled phalloidin, and immunohistochemical staining were performed. Flow cytometry was used to measure apoptosis rates. mRNA expression of ANP, BNP, and β-MHC was determined by qRT-PCR. Furthermore, western blotting was performed to analyze protein expression. After sinomenine treatment, the surface area and apoptosis rates were decreased. Furthermore, the mRNA expression of ANP, BNP, and β-MHC, levels of reactive oxygen species and malondialdehyde, and protein expression of Caspase3 and Bax were down-regulated, and the protein expression of Bcl-2 was upregulated. Sinomenine activates the Nrf2/ARE signaling pathway, and inhibition of this signaling pathway reversed the effects of sinomenine. In animal experiments, sinomenine decreased the heart weight and left ventricular weight indices, as well as the expression of ANP, BNP, and β-MHC. Furthermore, sinomenine reduced the apoptosis rate and relieved CH-related oxidative stress by activating the Nrf2/ARE signaling pathway. Together, these findings reveal that sinomenine is a potential candidate drug for CH treatment and further research is required to generalize the result in human subjects.
Collapse
Affiliation(s)
- ManLi Yuan
- Department of Ultrasound Medicine, PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Bei Zhao
- Department of Cardiovascular Medicine, PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Huaping Jia
- Department of Ultrasound Medicine, PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Can Zhang
- Department of Ultrasound Medicine, PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Xiaowen Zuo
- Department of Ultrasound Medicine, PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| |
Collapse
|
19
|
Cui Y, Hou R, Lv X, Wang F, Yu Z, Cui Y. Identification of Immune-Cell-Related Prognostic Biomarkers of Esophageal Squamous Cell Carcinoma Based on Tumor Microenvironment. Front Oncol 2021; 11:771749. [PMID: 34760708 PMCID: PMC8573319 DOI: 10.3389/fonc.2021.771749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers in the world. The 5-year survival rate of ESCC is <30%. However, few biomarkers can accurately predict the prognosis of patients with ESCC. We aimed to identify potential survival-associated biomarkers for ESCC to improve its poor prognosis. Methods ImmuneAI analysis was first used to access the immune cell abundance of ESCC. Then, ESTIMATE analysis was performed to explore the tumor microenvironment (TME), and differential analysis was used for the selection of immune-related differentially expressed genes (DEGs). Weighted gene coexpression network analysis (WGCNA) was used for selecting the candidate DEGs. Least absolute shrinkage and selection operator (LASSO) Cox regression was used to build the immune-cell-associated prognostic model (ICPM). Kaplan–Meier curve of survival analysis was performed to evaluate the efficacy of the ICPM. Results Based on the ESTIMATE and ImmuneAI analysis, we obtained 24 immune cells’ abundance. Next, we identified six coexpression module that was associated with the abundance. Then, LASSO regression models were constructed by selecting the genes in the module that is most relevant to immune cells. Two test dataset was used to testify the model, and we finally, obtained a seven-genes survival model that performed an excellent prognostic efficacy. Conclusion In the current study, we filtered seven key genes that may be potential prognostic biomarkers of ESCC, and they may be used as new factors to improve the prognosis of cancer.
Collapse
Affiliation(s)
- Yiyao Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Ruiqin Hou
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, China
| | - Xiaoshuo Lv
- Department of Thoracic Surgery, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Feng Wang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Zhaoyan Yu
- Department of Otorhinolaryngology, Shandong Public Health Clinical Center, Jinan, China
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Wang Y, Liao H, Wang Y, Zhou J, Wang F, Xie Y, Zhao K, Gao W. KLK11 promotes the activation of mTOR and protein synthesis to facilitate cardiac hypertrophy. BMC Cardiovasc Disord 2021; 21:266. [PMID: 34059001 PMCID: PMC8167988 DOI: 10.1186/s12872-021-02053-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. METHODS Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. RESULTS The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. CONCLUSIONS Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Liao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yueheng Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jinlin Zhou
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingxin Xie
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhao
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weinian Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Liao H, Gao W, Ma J, Xue H, Wang Y, Huang D, Yan F, Ye Y. GPR39 promotes cardiac hypertrophy by regulating the AMPK-mTOR pathway and protein synthesis. Cell Biol Int 2021; 45:1211-1219. [PMID: 33554444 DOI: 10.1002/cbin.11566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Abstract
Hypertrophic growth of the cardiomyocytes is one of the core mechanisms underlying cardiac hypertrophy. However, the mechanism underlying cardiac hypertrophy remains not fully understood. Here we provided evidence that G protein-coupled receptor 39 (GPR39) promotes cardiac hypertrophy via inhibiting AMP-activated protein kinase (AMPK) signaling. GRP39 expression is overexpressed in hypertrophic hearts of humans and transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice. In neonatal cardiomyocytes, adenovirus-mediated overexpression of GPR39 promoted angiotensin II-induced cardiac hypertrophy, while GPR39 knockdown repressed hypertrophic response. Adeno-associated virus 9-mediated knockdown of GPR39 suppressed TAC-induced decline in fraction shortening and ejection fraction, increase in heart weight and cardiomyocyte size, as well as overexpression of hypertrophic fetal genes. A mechanism study demonstrated that GPR39 repressed the activation of AMPK to activate the mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase β-1 (S6K1), subsequently promoted de novo protein synthesis. Inhibition of mTOR with rapamycin blocked the effects of GPR39 overexpression on protein synthesis and repressed cardiac hypertrophy. Collectively, our findings demonstrated that GPR39 promoted cardiac hypertrophy via regulating the AMPK-mTOR-S6K1 signaling pathway, and GRP39 can be targeted for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hongjuan Liao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weinian Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongyuan Xue
- Department of Ultrasound, Hebei Medical University & Hebei General Hospital, Shijiazhuang, China
| | - Yi Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dai Huang
- Department of Ultrasound, Hebei Medical University & Hebei General Hospital, Shijiazhuang, China
| | - Fang Yan
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuquan Ye
- Department of Ultrasound, Hebei Medical University & Hebei General Hospital, Shijiazhuang, China.,Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|