1
|
Fernández-Alías A, Marcos C, Pérez-Ruzafa A. Larger scyphozoan species dwelling in temperate, shallow waters show higher blooming potential. MARINE POLLUTION BULLETIN 2021; 173:113100. [PMID: 34741926 DOI: 10.1016/j.marpolbul.2021.113100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
142 scientific publications have been reviewed on the characteristics of the scyphozoans with respect to their ability to develop blooms and the most significant environmental characteristics that determine them. Special attention was paid to depth, temperature, salinity, chlorophyll concentration, and the habitat of the 39 registered blooming genera. After the review, we find that over the past decades, the number of scyphozoan blooming-species is higher than previously recorded, increasing from circa 14% to 25% of the class. Species that inhabit depths less than 27.1 m are prone to produce blooms, particularly in semienclosed areas with low rates of water renewal and high thermal amplitudes. Temperature appears as the main environmental factor controlling blooms, but food availability is essential to sustain the proliferations. Interspecies variability in the response to environmental factors observed in this work suggest that bloom predictive models should be constructed species-habitat-specific.
Collapse
Affiliation(s)
- Alfredo Fernández-Alías
- Department of Ecology and Hydrology and Regional Campus of International Excellence "Mare Nostrum", University of Murcia, 30100, Spain.
| | - Concepción Marcos
- Department of Ecology and Hydrology and Regional Campus of International Excellence "Mare Nostrum", University of Murcia, 30100, Spain.
| | - Angel Pérez-Ruzafa
- Department of Ecology and Hydrology and Regional Campus of International Excellence "Mare Nostrum", University of Murcia, 30100, Spain.
| |
Collapse
|
2
|
Boero F. The future ocean we want. ADVANCES IN MARINE BIOLOGY 2021; 90:51-63. [PMID: 34728054 DOI: 10.1016/bs.amb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Backcasting involves the design of a desirable future that is not simply predicted with forecasts being, instead, proactively aimed at with effective action. So far, all initiatives towards sustainability failed, probably due to lack of investments in the acquisition of knowledge on the structure and the function of natural systems (i.e. biodiversity and ecosystem functioning), and to the reliance on models and estimates based on incomplete data.
Collapse
Affiliation(s)
- Ferdinando Boero
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; CNR-IAS, Genoa, Italy.
| |
Collapse
|
3
|
Who’s Next? Non-Indigenous Cnidarian and Ctenophoran Species Approaching to the Italian Waters. WATER 2021. [DOI: 10.3390/w13081062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aims of the present paper were to review the knowledge about the Mediterranean non-indigenous species of the taxa Cnidaria and Ctenophora (CC NIS), to screen the risk of 98 species for their potential invasiveness in the Mediterranean Sea and their approach to the Italian waters. Of these, 38% are well established in the basin, 4% are known for their invasiveness, 44% are casual, 11% have a taxonomic status unresolved, and 3% are included in the category ”cryptogenic”. The biodiversity CC NIS of the Mediterranean Sea has changed considerably in the last two decades and 27 out of 98 Mediterranean CC NIS are present in the Italian waters. Fifteen CC NIS, some equipped with high invasive potential, should be regarded as good candidates to become future immigrants of the Italian waters. Anticipatory NIS forecast based on biogeographical and ecological analyses may provide a useful tool for targeted management of the CC NIS issue and for the assessment of the second descriptor of Good Environmental Status. On the other hand, conservation and management of marine ecosystem should be based on the conservation of the essential environmental conditions for the functioning of these ecosystems instead of the contamination or eradication of alien species.
Collapse
|
4
|
Savva I, Chartosia N, Antoniou C, Kleitou P, Georgiou A, Stern N, Hadjioannou L, Jimenez C, Andreou V, Hall-Spencer JM, Kletou D. They are here to stay: the biology and ecology of lionfish (Pterois miles) in the Mediterranean Sea. JOURNAL OF FISH BIOLOGY 2020; 97:148-162. [PMID: 32249927 DOI: 10.1111/jfb.14340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The lionfish, Pterois miles, is one of the most recent Lessepsian immigrants into the Mediterranean Sea, and it poses a serious threat to marine ecosystems in the region. This study assesses the basic biology and ecology of lionfish in the Mediterranean, examining morphometrics, reproduction and diet as well as population structure and distribution. The population density of lionfish has increased dramatically in Cyprus since the first sighting in late 2012; by 2018 aggregations of up to 70 lionfish were found on rocky grounds with complex reefs and artificial reefs in depths of 0-50 m. Lionfish in Cyprus become mature within a year, and adults are capable of spawning year-round, with peak spawning in summer when the sea-surface temperature reaches 28.4°C. The Cypriot lionfish grow faster and bigger than in their native range, and females are more common than males. Lionfish are generalist predators in these waters, as also found in their native range, consuming a range of teleost and crustacean prey, some of which are of high economic value (e.g., Spicara smaris and Sparisoma cretense) or have an important role in local trophic webs (e.g., Chromis chromis). Overall, the reproductive patterns, the presence of juveniles and adults throughout the year, the rapid growth rates and the generalist diet indicate that lionfish are thriving and are now already well established in the region and could potentially become the serious nuisance that they are in their temperate and tropical western Atlantic-invasive range.
Collapse
Affiliation(s)
- Ioannis Savva
- Marine & Environmental Research (MER) Lab, Limassol, Cyprus
| | - Niki Chartosia
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Periklis Kleitou
- Marine & Environmental Research (MER) Lab, Limassol, Cyprus
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Andreas Georgiou
- Enalia Physis Environmental Research Centre, Nicosia, Cyprus
- KIOS Research and Innovation Centre of Excellence, University of Cyprus, Nicosia, Cyprus
| | - Nir Stern
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | - Carlos Jimenez
- Enalia Physis Environmental Research Centre, Nicosia, Cyprus
| | - Vasilis Andreou
- Enalia Physis Environmental Research Centre, Nicosia, Cyprus
| | | | | |
Collapse
|
5
|
Macroalgal activity against fungal urinary tract infections: in vitro screening and evaluation study. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-019-00856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Bianchi CN, Azzola A, Bertolino M, Betti F, Bo M, Cattaneo-Vietti R, Cocito S, Montefalcone M, Morri C, Oprandi A, Peirano A, Bavestrello G. Consequences of the marine climate and ecosystem shift of the 1980-90s on the Ligurian Sea biodiversity (NW Mediterranean). EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1687765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- C. N. Bianchi
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - A. Azzola
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - M. Bertolino
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - F. Betti
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - M. Bo
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - R. Cattaneo-Vietti
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - S. Cocito
- ENEA (Italian Agency for New Technologies, Energy and Sustainable Economic Development), Marine Environment Research Centre, La Spezia, Italy
| | - M. Montefalcone
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - C. Morri
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - A. Oprandi
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - A. Peirano
- ENEA (Italian Agency for New Technologies, Energy and Sustainable Economic Development), Marine Environment Research Centre, La Spezia, Italy
| | - G. Bavestrello
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| |
Collapse
|
7
|
Mari L, Melià P, Fraschetti S, Gatto M, Casagrandi R. Spatial patterns and temporal variability of seagrass connectivity in the Mediterranean Sea. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Lorenzo Mari
- Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milano Italy
| | - Paco Melià
- Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milano Italy
| | - Simona Fraschetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali Università del Salento Lecce Italy
| | - Marino Gatto
- Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milano Italy
| | - Renato Casagrandi
- Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milano Italy
| |
Collapse
|
8
|
Ingrosso G, Abbiati M, Badalamenti F, Bavestrello G, Belmonte G, Cannas R, Benedetti-Cecchi L, Bertolino M, Bevilacqua S, Bianchi CN, Bo M, Boscari E, Cardone F, Cattaneo-Vietti R, Cau A, Cerrano C, Chemello R, Chimienti G, Congiu L, Corriero G, Costantini F, De Leo F, Donnarumma L, Falace A, Fraschetti S, Giangrande A, Gravina MF, Guarnieri G, Mastrototaro F, Milazzo M, Morri C, Musco L, Pezzolesi L, Piraino S, Prada F, Ponti M, Rindi F, Russo GF, Sandulli R, Villamor A, Zane L, Boero F. Mediterranean Bioconstructions Along the Italian Coast. ADVANCES IN MARINE BIOLOGY 2018; 79:61-136. [PMID: 30012277 DOI: 10.1016/bs.amb.2018.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning.
Collapse
Affiliation(s)
- Gianmarco Ingrosso
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy.
| | - Marco Abbiati
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Beni Culturali (DBC), University of Bologna, Ravenna, Italy; Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Bologna, Italy
| | - Fabio Badalamenti
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero (CNR-IAMC), Marine Ecology Laboratory, Castellammare del Golfo, Italy
| | - Giorgio Bavestrello
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DiSTAV), University of Genova, Genova, Italy
| | - Genuario Belmonte
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Rita Cannas
- Dipartimento di Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Lisandro Benedetti-Cecchi
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Marco Bertolino
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DiSTAV), University of Genova, Genova, Italy
| | - Stanislao Bevilacqua
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Carlo Nike Bianchi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DiSTAV), University of Genova, Genova, Italy
| | - Marzia Bo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DiSTAV), University of Genova, Genova, Italy
| | - Elisa Boscari
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Padova, Padova, Italy
| | - Frine Cardone
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Bari, Bari, Italy
| | - Riccardo Cattaneo-Vietti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Cau
- Dipartimento di Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Carlo Cerrano
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Renato Chemello
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Giovanni Chimienti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Bari, Bari, Italy
| | - Leonardo Congiu
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Padova, Padova, Italy
| | - Giuseppe Corriero
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Bari, Bari, Italy
| | - Federica Costantini
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Ravenna, Italy
| | - Francesco De Leo
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Luigia Donnarumma
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze e Tecnologie, Parthenope University of Naples, Naples, Italy
| | - Annalisa Falace
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy
| | - Simonetta Fraschetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Adriana Giangrande
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Maria Flavia Gravina
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, Tor Vergata University of Rome, Rome, Italy
| | - Giuseppe Guarnieri
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Francesco Mastrototaro
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Bari, Bari, Italy
| | - Marco Milazzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Carla Morri
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DiSTAV), University of Genova, Genova, Italy
| | - Luigi Musco
- Stazione Zoologica Anton Dohrn, Integrative Marine Ecology Department, Napoli, Italy
| | - Laura Pezzolesi
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy; Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Ravenna, Italy
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Fiorella Prada
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero (CNR-IAMC), Marine Ecology Laboratory, Castellammare del Golfo, Italy
| | - Massimo Ponti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Ravenna, Italy
| | - Fabio Rindi
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Giovanni Fulvio Russo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze e Tecnologie, Parthenope University of Naples, Naples, Italy
| | - Roberto Sandulli
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Scienze e Tecnologie, Parthenope University of Naples, Naples, Italy
| | - Adriana Villamor
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Ravenna, Italy
| | - Lorenzo Zane
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Dipartimento di Biologia, University of Padova, Padova, Italy
| | - Ferdinando Boero
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy; Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Genova, Italy
| |
Collapse
|
9
|
Cattaneo-Vietti R. Structural changes in Mediterranean marine communities: lessons from the Ligurian Sea. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0670-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Framing Continental Shelf Waves in the southern Adriatic Sea, a further flushing factor beyond dense water cascading. Sci Rep 2018; 8:660. [PMID: 29330496 PMCID: PMC5766507 DOI: 10.1038/s41598-017-18853-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/05/2017] [Indexed: 11/08/2022] Open
Abstract
Continental Shelf Waves (CSWs) are oscillatory phenomena migrating along the continental margins, controlled by the interplay of rotation and bathymetric gradients. Here we combine observational data from five moored current meters and high-resolution hydrodynamic model fields for describing the generation and propagation of CSWs along the Southern Adriatic Margin (SAM, eastern Mediterranean Sea), where the possibility of their occurrence has been theoretically hypothesised but not experimentally observed up to now. Results show that in spring 2012 a train of CSWs with 35-87 km wavelength and 2-4 day period was generated on the northern sectors of the SAM and propagated southwards along its western slope. Along their path, CSWs modify their apparent frequency and oscillation mode as an effect of the background current and scattering caused by changes in the continental margin morphology. This signal appears as a persistent feature triggered by the inflow of a dense water vein formed in the northern Adriatic Sea, propagating upwelling and downwelling patterns along broad sectors of the continental slope. CSWs thus appear as an additional remote-controlled mechanism for cross-shelf exchange of water, sediment and nutrients in the SAM, besides the well-acknowledged dense water downflow along preferential pathways driven by local topographic constraints.
Collapse
|
11
|
Pascual M, Rives B, Schunter C, Macpherson E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS One 2017; 12:e0176419. [PMID: 28489878 PMCID: PMC5425013 DOI: 10.1371/journal.pone.0176419] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Marine species can demonstrate strong genetic differentiation and population structure despite the hypothesis of open seas and high connectivity. Some suggested drivers causing the genetic breaks are oceanographic barriers and the species' biology. We assessed the relevance of seven major oceanographic fronts on species connectivity while considering their dispersal capacity and life strategy. METHODS We systematically reviewed the scientific articles reporting population genetic differentiation along the Mediterranean Sea and across the Atlantic-Mediterranean transition. We retained those considering at least one sampling locality at each side of an oceanographic front, and at least two localities with no-front between them to correctly assess the effect of the front. To estimate the impact of life history characteristics affecting connectivity we considered the planktonic larval duration (PLD) and adult life strategy. RESULTS Oceanographic barriers in the Mediterranean Sea seem to reduce gene flow globally; however, this effect is not homogeneous considering the life history traits of the species. The effect of the oceanographic fronts reduces gene flow in highly mobile species with PLD larger than 2-4 weeks. Benthic sessile species and/or with short PLD (< 2 weeks) have more significant genetic breaks between localities than species with higher motility; however, genetic differentiation occurs independently of the presence of a front. CONCLUSION Genetic connectivity is important for populations to recover from anthropogenic or natural impacts. We show that species with low mobility, mostly habitat-formers, have high genetic differentiation but low gene flow reduction mediated by the front, therefore, considering the importance of these species, we emphasize the vulnerability of the Mediterranean ecosystems and the necessity of protection strategies based on the whole ecosystem.
Collapse
Affiliation(s)
- Marta Pascual
- Dept Genetics, Microbiology and Statistics/IrBio, Universitat de Barcelona, Diagonal 643, Barcelona, Spain
- * E-mail:
| | - Borja Rives
- Dept Genetics, Microbiology and Statistics/IrBio, Universitat de Barcelona, Diagonal 643, Barcelona, Spain
| | - Celia Schunter
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences & Engineering and Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Enrique Macpherson
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Car. Acc. Cala St. Francesc 14, Blanes, Girona, Spain
| |
Collapse
|
12
|
Population genomics of an endemic Mediterranean fish: differentiation by fine scale dispersal and adaptation. Sci Rep 2017; 7:43417. [PMID: 28262802 PMCID: PMC5338269 DOI: 10.1038/srep43417] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/24/2017] [Indexed: 12/04/2022] Open
Abstract
The assessment of the genetic structuring of biodiversity is crucial for management and conservation. For species with large effective population sizes a low number of markers may fail to identify population structure. A solution of this shortcoming can be high-throughput sequencing that allows genotyping thousands of markers on a genome-wide approach while facilitating the detection of genetic structuring shaped by selection. We used Genotyping-by-Sequencing (GBS) on 176 individuals of the endemic East Atlantic peacock wrasse (Symphodus tinca), from 6 locations in the Adriatic and Ionian seas. We obtained a total of 4,155 polymorphic SNPs and we observed two strong barriers to gene flow. The first one differentiated Tremiti Islands, in the northwest, from all the other locations while the second one separated east and south-west localities. Outlier SNPs potentially under positive selection and neutral SNPs both showed similar patterns of structuring, although finer scale differentiation was unveiled with outlier loci. Our results reflect the complexity of population genetic structure and demonstrate that both habitat fragmentation and positive selection are on play. This complexity should be considered in biodiversity assessments of different taxa, including non-model yet ecologically relevant organisms.
Collapse
|
13
|
Bianchelli S, Buschi E, Danovaro R, Pusceddu A. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna. Sci Rep 2016; 6:34544. [PMID: 27708343 PMCID: PMC5052579 DOI: 10.1038/srep34544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/14/2016] [Indexed: 11/26/2022] Open
Abstract
In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.
Collapse
Affiliation(s)
- Silvia Bianchelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emanuela Buschi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Danovaro
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| |
Collapse
|
14
|
Notarbartolo di Sciara G. Marine Mammals in the Mediterranean Sea: An Overview. ADVANCES IN MARINE BIOLOGY 2016; 75:1-36. [PMID: 27770981 DOI: 10.1016/bs.amb.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite being a small part of the world's oceans, the Mediterranean Sea hosts a diverse marine mammal fauna, with a total of 28 different species known to occur, or to have occurred, in the region. Species currently recognised as regular in the Mediterranean-the Mediterranean monk seal (Monachus monachus) and 11 cetaceans (fin whale, Balaenoptera physalus; sperm whale, Physeter macrocephalus; Cuvier's beaked whale, Ziphius cavirostris; short-beaked common dolphin, Delphinus delphis; long-finned pilot whale, Globicephala melas; Risso's dolphin, Grampus griseus; killer whale, Orcinus orca; striped dolphin, Stenella coeruleoalba; rough-toothed dolphin, Steno bredanensis; common bottlenose dolphin, Tursiops truncatus; harbour porpoise, Phocoena phocoena relicta) have adapted well to the region's environmental conditions, but their coexistence with humans is problematic. All the regular species are represented in the Mediterranean by populations genetically distinct from their North Atlantic relatives. Seventeen other species (three pinnipeds and 14 cetaceans) occur or have occurred in the Mediterranean as vagrants from adjacent regions. Impacts on the conservation status of marine mammals in the region deriving from a variety of threats include: (a) mortality caused by deliberate killing (to a large extent resulting from fisheries interactions), naval sonar, ship strikes, epizootics, fisheries bycatch, chemical pollution and ingestion of solid debris; (b) short-term redistribution caused by naval sonar, seismic surveys, vessel disturbance and vessel noise; and (c) long-term redistribution caused by fishery-induced food depletion, coastal development and possibly climate change. Accordingly, seven of the 12 marine mammals regular in the Mediterranean region are listed as Threatened on IUCN's Red List; regrettably, three are Data Deficient and two remain unassessed.
Collapse
|
15
|
Pascual M, Palero F, García-Merchán VH, Macpherson E, Robainas-Barcia A, Mestres F, Roda T, Abelló P. Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci Rep 2016; 6:29892. [PMID: 27431989 PMCID: PMC4949458 DOI: 10.1038/srep29892] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/23/2016] [Indexed: 11/09/2022] Open
Abstract
Spatial genetic studies often require sampling broadly separated areas, difficult to access simultaneously. Although comparing localities surveyed at different time periods might result in spurious genetic differentiation, there is a general believe on the stability of genetic structure through time, particularly if sampled localities are isolated or very distant. By analysing spatial and temporal genetic differentiation of the portunid crab Liocarcinus depurator we assessed the contribution of historical and contemporary processes on population connectivity patterns across three main oceanographic discontinuities along the Atlantic-Mediterranean transition: Gibraltar Strait, Almeria-Oran Front and Ibiza Channel. A partial fragment of the cytochrome oxidase I gene was sequenced in 366 individuals collected from localities at both sides of each discontinuity during three time periods. Although localities showed genetic fluctuations through time, a significant gradient was detected along the coast for all sampling periods. Significant inter-annual differences identified within the Alicante area, north of the Almeria-Oran Front, were associated with shifts in the relative contribution of Atlantic and Mediterranean water masses. The persistence of a clinal pattern in the Atlantic-Mediterranean transition area together with local fluctuations suggests a complex balance of dispersal and selection.
Collapse
Affiliation(s)
- Marta Pascual
- Dept. Genètica, Microbiologia i Estadística and IRBio, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Ferran Palero
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain
| | | | - Enrique Macpherson
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain
| | - Aymée Robainas-Barcia
- Dept. Genètica, Microbiologia i Estadística and IRBio, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Francesc Mestres
- Dept. Genètica, Microbiologia i Estadística and IRBio, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Tania Roda
- Dept. Genètica, Microbiologia i Estadística and IRBio, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Pere Abelló
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Looking for hotspots of marine metacommunity connectivity: a methodological framework. Sci Rep 2016; 6:23705. [PMID: 27029563 PMCID: PMC4814777 DOI: 10.1038/srep23705] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Seascape connectivity critically affects the spatiotemporal dynamics of marine metacommunities. Understanding how connectivity patterns emerge from physically and biologically-mediated interactions is therefore crucial to conserve marine ecosystem functions and biodiversity. Here, we develop a set of biophysical models to explore connectivity in assemblages of species belonging to a typical Mediterranean community (Posidonia oceanica meadows) and characterized by different dispersing traits. We propose a novel methodological framework to synthesize species-specific results into a set of community connectivity metrics and show that spatiotemporal variation in magnitude and direction of the connections, as well as interspecific differences in dispersing traits, are key factors structuring community connectivity. We eventually demonstrate how these metrics can be used to characterize the functional role of each marine area in determining patterns of community connectivity at the basin level and to support marine conservation planning.
Collapse
|
17
|
Della Penna A, De Monte S, Kestenare E, Guinet C, d’Ovidio F. Quasi-planktonic behavior of foraging top marine predators. Sci Rep 2015; 5:18063. [PMID: 26666350 PMCID: PMC4678296 DOI: 10.1038/srep18063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/09/2015] [Indexed: 11/09/2022] Open
Abstract
Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.
Collapse
Affiliation(s)
- Alice Della Penna
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7159, LOCEAN-IPSL CNRS/UPMC/IRD/MNHN, F-75005, Paris, France
- Univ Paris Diderot Cité, 5 Rue Thomas Mann, 75013 Paris, France
- CSIRO-UTAS Quantitative Marine Science Program, IMAS, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - Silvia De Monte
- Ecole Normale Supérieure, Institut de Biologie de l’ENS (IBENS), UMR CNRS 8197 and INSERM U1024, 46 rue d’Ulm, F-75005 Paris, France
| | - Elodie Kestenare
- Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse III (OMP) and IRD, Toulouse, France
| | - Christophe Guinet
- Centre d’Etudes Biologiques de Chizé, 79360 Villiers-en-Bois, France
| | - Francesco d’Ovidio
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7159, LOCEAN-IPSL CNRS/UPMC/IRD/MNHN, F-75005, Paris, France
| |
Collapse
|