1
|
Stefi AL, Vorgias KE. Valorizing Bio-Waste and Residuals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40111455 DOI: 10.1007/10_2025_278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The circular bioeconomy connects waste recycling with utilizing organic biomass waste for bioenergy, bio-based materials, and biochemical production. This integration promotes efficient resource utilization, reduced greenhouse gas emissions, and sustainable economic growth. Several technologies such as composting, anaerobic digestion, biochar production, gasification, pyrolysis, pelletization, and advanced thermal conversion technologies are utilized to manage agricultural waste efficiently. Waste-to-energy systems and food waste valorization techniques are employed to convert agro-waste into renewable energy sources such as bioethanol, biodiesel, and biogas through fermentation, transesterification, and anaerobic digestion. These biofuels offer renewable alternatives to fossil fuels, reducing greenhouse gas emissions and dependence on non-renewable resources. Rice husk, a globally abundant agricultural waste, can be utilized for energy production through technologies like direct combustion and fast pyrolysis. Biobutanol, synthesized from acetone-butanol-ethanol fermentation of agricultural residues like orange peel, presents a promising fuel option. Agricultural waste can also serve as feedstock for bio-based chemicals like organic acids, solvents, and polymers, reducing reliance on petroleum-based chemicals. Agro-waste materials like grass, garlic peel, and rice bran have shown potential for dye adsorption in wastewater treatment applications. Moreover, agricultural waste can be repurposed as animal feed, contributing to waste reduction and providing sustainable nutrition for livestock. Plant seeds and green biomass offer sustainable protein sources, while residues like straw and sawdust can be used for mushroom cultivation. Agro-waste biopolymers like starch and cellulose can be transformed into biodegradable plastics and biocomposites, offering eco-friendly alternatives. Additionally, agro-waste materials like straw, rice husks, and bamboo can be processed into construction materials, reducing environmental impact in building projects. Extracts from plant residues and fruit pomace can be utilized in pharmaceuticals, nutraceuticals, and cosmetics. Valorizing agro-waste for food, feed, fibers, and fuel offers opportunities to minimize waste and maximize resource efficiency, resulting in high-value products.
Collapse
Affiliation(s)
- Aikaterina L Stefi
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos E Vorgias
- Section of Biochemistry and Molecular Biology, Department of Biology, Faculty of Sciences, RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Jayaraj JJ. Extraction of biodiesel from vegetable waste hydrolysates and evaluation of its engine performance and emission characteristics. 3 Biotech 2023; 13:188. [PMID: 37193323 PMCID: PMC10182914 DOI: 10.1007/s13205-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Recently, microbial oil has become one of the promising next-generation feedstocks for producing biodiesel. While microbial oil can be extracted from different sources, there is only limited work on microbial production from fruits and vegetables. In this work, biodiesel was extracted through a two-step process: microbial conversion of vegetable waste into microbial oil using Lipomyces starkeyi, followed by transesterification of microbial oil into biodiesel. The lipid accumulation, composition of microbial oil, and the fuel properties of biodiesel were evaluated. The microbial oil consisted mainly of C16:0, C18:0 and C18:1, which were close to the properties of palm oil. The fuel properties of biodiesel comply with the EN14214:2012 standard. Thus, the vegetable waste can be a good biodiesel feedstock. Three blends (MOB10, MOB20 and MOB30 with 10, 20, and 30% of biodiesel) were tested for engine performance and emission characteristics in a 3.5 kW VCR research engine. At full load, MOB20 reduced the pollutant emissions of CO and HC by 47.8% and 33.2% with the penalty of increased NOx by 3.9%, while BTE reduced by 0.8% with the increased BSFC by 5.2%. Thus, the addition of vegetable waste biodiesel blends reduced the emissions of CO and HC significantly with slight reduction of brake thermal efficiency.
Collapse
Affiliation(s)
- Jeya Jeevahan Jayaraj
- School of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu India
| |
Collapse
|
3
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
4
|
Cardoso Alves S, Díaz-Ruiz E, Lisboa B, Sharma M, Mussatto SI, Thakur VK, Kalaskar DM, Gupta VK, Chandel AK. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food Res Int 2023; 166:112596. [PMID: 36914347 DOI: 10.1016/j.foodres.2023.112596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
In the modern world, animal and plant protein may not meet the sustainability criteria due to their high need for arable land and potable water consumption, among other practices. Considering the growing population and food shortage, finding alternative protein sources for human consumption is an urgent issue that needs to be solved, especially in developing countries. In this context, microbial bioconversion of valuable materials in nutritious microbial cells represent a sustainable alternative to the food chain. Microbial protein, also known as single-cell protein (SCP), consist of algae biomass, fungi or bacteria that are currently used as food source for both humans and animals. Besides contributing as a sustainable source of protein to feed the world, producing SCP, is important to reduce waste disposal problems and production costs meeting the sustainable development goals. However, for microbial protein as feed or food to become an important and sustainable alternative, addressing the challenges of raising awareness and achieving wider public regulatory acceptance is real and must be addressed with care and convenience. In this work, we critically reviewed the potential technologies for microbial protein production, its benefits, safety, and limitations associated with its uses, and perspectives for broader large-scale implementation. We argue that the information documented in this manuscript will assist in developing microbial meat as a major protein source for the vegan world.
Collapse
Affiliation(s)
- Samara Cardoso Alves
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil
| | - Erick Díaz-Ruiz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil
| | - Bruna Lisboa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut- Condorcet, 7800 ATH, Belgium
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Deepak M Kalaskar
- UCL Institute of orthopedics and Musculoskeletal Sciences (IOMS), Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital-NHS Trust, Stanmore, Middlesex HA7 4LP, UK.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil.
| |
Collapse
|
5
|
Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes (Basel) 2023. [DOI: 10.3390/pr11030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rapid growth of the global population and changes in lifestyle have led to a significant increase in food waste from various industrial, agricultural, and household sources. Nearly one-third of the food produced annually is wasted, resulting in severe resource depletion. Food waste contains rich organic matter, which, if not managed properly, can pose a serious threat to the environment and human health, making the proper disposal of food waste an urgent global issue. However, various types of food waste, such as waste from fruit, vegetables, grains, and other food production and processing, contain important bioactive compounds, such as polyphenols, dietary fiber, proteins, lipids, vitamins, organic acids, and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market. These bioactive compounds offer the potential to convert food waste into value-added products, and fields including nutritional foods, bioplastics, bioenergy, biosurfactants, biofertilizers, and single cell proteins have welcomed food waste as a novel source. This review reveals the latest insights into the various sources of food waste and the potential of utilizing bioactive compounds to convert it into value-added products, thus enhancing people’s confidence in better utilizing and managing food waste.
Collapse
|
6
|
Kumar Sarangi P, Subudhi S, Bhatia L, Saha K, Mudgil D, Prasad Shadangi K, Srivastava RK, Pattnaik B, Arya RK. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8526-8539. [PMID: 35554831 DOI: 10.1007/s11356-022-20669-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2022] [Indexed: 05/27/2023]
Abstract
The major global concern on energy is focused on conventional fossil resources. The burning of fossil fuels is an origin of greenhouse gas emissions resulting in the utmost threat to the environment and subsequently which leads to global climate changes. As far as sustainability is concerned, fuels and materials derived from organic or plant wastes overcome this downside establishing the solution to the fossil resource crisis. In this context, exploration of agricultural residue appears to be a suitable alternative of non-renewable resources to support the environmental feasibility and meet the high energy crisis. The use of agricultural waste as a feedstock for the biorefinery approach emerges to be an eco-friendly process for the production of biofuel and value-added chemicals, intensifying energy security. Therefore, a prospective choice of this renewable biomass for the synthesis of green fuel and other green biochemicals comes up with a favorable outcome in terms of cost-effectiveness and sustainability. Exploiting different agricultural biomass and exploring various biomass conversion techniques, biorefinery generates bioenergy in a strategic way which eventually fits in a circular bioeconomy. Sources and production of agricultural waste are critically explained in this paper, which provides a path for further value addition by various technologies. Biorefinery solutions, along with a life cycle assessment of agricultural waste biomass toward a wide array of value-added products aiding the bioeconomy, are summarized in this paper.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India
| | - Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Latika Bhatia
- Department of Microbiology & Bioinformatics, Atal Bihari Vajpayee University, Bilaspur, Chhattisgarh, India
| | - Koel Saha
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Divya Mudgil
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushiknonda, Visakhapatnam, 530045, A.P, India.
| | - Bhabjit Pattnaik
- Department of Botany, Christ College, Cuttack, 753008, Odisha, India
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar NIT, Jalandhar, India
| |
Collapse
|
7
|
Raj T, Chandrasekhar K, Morya R, Kumar Pandey A, Jung JH, Kumar D, Singhania RR, Kim SH. Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 360:127512. [PMID: 35760245 DOI: 10.1016/j.biortech.2022.127512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Organic waste has increased as the global population and economy have grown exponentially. Food waste (FW) is posing a severe environmental issue because of mismanaged disposal techniques, which frequently result in the squandering of carbohydrate-rich feedstocks. In an advanced valorization strategy, organic material in FW can be used as a viable carbon source for microbial digestion and hence for the generation of value-added compounds. In comparison to traditional feedstocks, a modest pretreatment of the FW stream utilizing chemical, biochemical, or thermochemical techniques can extract bulk of sugars for microbial digestion. Pretreatment produces a large number of toxins and inhibitors that affect bacterial fuel and chemical conversion processes. Thus, the current review scrutinizes the FW structure, pretreatment methods (e.g., physical, chemical, physicochemical, and biological), and various strategies for detoxification before microbial fermentation into renewable chemical production. Technological and commercial challenges and future perspectives for FW integrated biorefineries have also been outlined.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India
| | - Raj Morya
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ju-Hyeong Jung
- Eco Lab Center, SK ecoplant Co. Ltd., Seoul 03143, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Khaksar G, Sirijan M, Suntichaikamolkul N, Sirikantaramas S. Metabolomics for Agricultural Waste Valorization: Shifting Toward a Sustainable Bioeconomy. FRONTIERS IN PLANT SCIENCE 2022; 13:938480. [PMID: 35832216 PMCID: PMC9273160 DOI: 10.3389/fpls.2022.938480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Agriculture has been considered as a fundamental industry for human survival since ancient times. Local and traditional agriculture are based on circular sustainability models, which produce practically no waste. However, owing to population growth and current market demands, modern agriculture is based on linear and large-scale production systems, generating tons of organic agricultural waste (OAW), such as rejected or inedible plant tissues (shells, peels, stalks, etc.). Generally, this waste accumulates in landfills and creates negative environmental impacts. The plant kingdom is rich in metabolic diversity, harboring over 200,000 structurally distinct metabolites that are naturally present in plants. Hence, OAW is considered to be a rich source of bioactive compounds, including phenolic compounds and secondary metabolites that exert a wide range of health benefits. Accordingly, OAW can be used as extraction material for the discovery and recovery of novel functional compounds that can be reinserted into the production system. This approach would alleviate the undesired environmental impacts of OAW accumulation in landfills, while providing added value to food, pharmaceutical, cosmetic, and nutraceutical products and introducing a circular economic model in the modern agricultural industry. In this regard, metabolomics-based approaches have gained increasing interest in the agri-food sector for a variety of applications, including the rediscovery of bioactive compounds, owing to advances in analytical instrumentation and data analytics platforms. This mini review summarizes the major aspects regarding the identification of novel bioactive compounds from agricultural waste, focusing on metabolomics as the main tool.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkon Sirijan
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Nithiwat Suntichaikamolkul
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Ali SS, Al-Tohamy R, Mohamed TM, Mahmoud YAG, Ruiz HA, Sun L, Sun J. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:35. [PMID: 35379342 PMCID: PMC8981686 DOI: 10.1186/s13068-022-02131-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
Biodiesel is a renewable fuel that can be produced from a range of organic and renewable feedstock including fresh or vegetable oils, animal fats, and oilseed plants. In recent years, the lignin-based aromatic wastes, such as various aromatic waste polymers from agriculture, or organic dye wastewater from textile industry, have attracted much attention in academia, which can be uniquely selected as a potential renewable feedstock for biodiesel product converted by yeast cell factory technology. This current investigation indicated that the highest percentage of lipid accumulation can be achieved as high as 47.25% by an oleaginous yeast strain, Meyerozyma caribbica SSA1654, isolated from a wood-feeding termite gut system, where its synthetic oil conversion ability can reach up to 0.08 (g/l/h) and the fatty acid composition in yeast cells represents over 95% of total fatty acids that are similar to that of vegetable oils. Clearly, the use of oleaginous yeasts, isolated from wood-feeding termites, for synthesizing lipids from aromatics is a clean, efficient, and competitive path to achieve "a sustainable development" towards biodiesel production. However, the lacking of potent oleaginous yeasts to transform lipids from various aromatics, and an unknown metabolic regulation mechanism presented in the natural oleaginous yeast cells are the fundamental challenge we have to face for a potential cell factory development. Under this scope, this review has proposed a novel concept and approach strategy in utilization of oleaginous yeasts as the cell factory to convert aromatic wastes to lipids as the substrate for biodiesel transformation. Therefore, screening robust oleaginous yeast strain(s) from wood-feeding termite gut system with a set of the desirable specific tolerance characteristics is essential. In addition, to reconstruct a desirable metabolic pathway/network to maximize the lipid transformation and accumulation rate from the aromatic wastes with the applications of various "omics" technologies or a synthetic biology approach, where the work agenda will also include to analyze the genome characteristics, to develop a new base mutation gene editing technology, as well as to clarify the influence of the insertion position of aromatic compounds and other biosynthetic pathways in the industrial chassis genome on the expressional level and genome stability. With these unique designs running with a set of the advanced biotech approaches, a novel metabolic pathway using robust oleaginous yeast developed as a cell factory concept can be potentially constructed, integrated and optimized, suggesting that the hypothesis we proposed in utilizing aromatic wastes as a feedstock towards biodiesel product is technically promising and potentially applicable in the near future.
Collapse
Affiliation(s)
- Sameh S. Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila Mexico
| | - Lushan Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
11
|
Microbial Lipid Production from High Concentration of Volatile Fatty Acids via Trichosporon cutaneum for Biodiesel Preparation. Appl Biochem Biotechnol 2022; 194:2968-2979. [PMID: 35316474 DOI: 10.1007/s12010-022-03903-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Direct bioconversion of high concentration of volatile fatty acids (VFAs) into microbial lipid is challenging due to the aggravated cytotoxicity of VFAs at high loadings. Herein, a robust oleaginous yeast Trichosporon cutaneum was screened for lipogenesis from high concentration of VFAs using a regular batch culture. Biomass and lipid content of 8.9 g/L and 49.1%, respectively, were attained from 50 g/L acetic acid with 90.9% of which assimilated within 10 days. The blend of VFAs (50 g/L), with mass ratio of acetic, propionic, and butyric acids of 6:3:1, was found superior to acetic acid for lipogenesis. Biomass and lipid titer increased by 16.9% and 18.2%, respectively, with the three VFAs completely consumed within 8 days. Butyric acid was assimilated simultaneously with acetic acid at the beginning of the culture. Heptadecanoic acid (C17:0) and heptadecenoic acid (C17:1) were produced when propionic acid co-existed with acetic and butyric acids. The estimation of biodiesel properties indicated that lipid prepared from VFA blend showed superiority to acetic acid for high-quality biodiesel production. This study strongly supported that T. cutaneum permitted high concentration of VFA mixture for lipid production.
Collapse
|
12
|
Singh A, Singh A. Microbial Degradation and Value Addition to Food and Agriculture Waste. Curr Microbiol 2022; 79:119. [PMID: 35235053 DOI: 10.1007/s00284-022-02809-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
Food and agriculture waste (FAW) is a serious problem that is increasing globally. Wastage of raw materials or processed food due to various man-made activities is huge. This solid waste which is either being discarded by humans in their daily activities or an obligatory residue of agricultural processes is severely harming our environment. This becomes a major concern in densely populated agri-based countries, like India, China, and the USA. It is strongly debated that such issues need to be addressed very emphatically for sustainable development of ourselves and our surroundings. Lots of economic benefits can be obtained by reducing the food loss or converting the agricultural waste into useful products and these advantages can be in the form of better food security, reduced production cost, biodegradable products, and environment sustainability with cleaner options to reduce the ever-increasing global problem of garbage and waste management. Proper management of these substances can considerably lessen the risks to individual health. Reprocessing of waste is of great advantage as FAW has many components which may form an available resource to be converted to another useful product. Several approaches have been made for converting food waste into fruitful products. Bioconversion being the most prominent approach is helping us in a major way to overcome the problem of FAW. Microorganisms are at the forefront of this and have been extensively explored for their bioconversion potential. The present work focuses on the current state of food and agriculture waste and their valorization approaches. Through extensive literature review, we have highlighted and discussed the potential of microorganisms in bioconversion of waste, major types of functional ingredients derived during the process, and potential constraints in implementation of such state-of-the-art technology at industrial scale. The review also gives a brief technical overview of the conversion of waste products into energy generation and biofuels.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Near Malhaur Railway Station, Lucknow, 226028, India.
| | - Avishka Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Near Malhaur Railway Station, Lucknow, 226028, India
| |
Collapse
|
13
|
Zainuddin MF, Kar Fai C, Mohamed MS, Abdul Rahman N’A, Halim M. Production of single cell oil by Yarrowia lipolytica JCM 2320 using detoxified desiccated coconut residue hydrolysate. PeerJ 2022; 10:e12833. [PMID: 35251776 PMCID: PMC8896024 DOI: 10.7717/peerj.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Nowadays, the replacement of petro-diesel with biodiesel has raised the concern among the community for the utilization of improper feedstocks and the cost involved. However, these issues can be solved by producing single cell oil (SCO) from lignocellulosic biomass hydrolysates by oleaginous microorganisms. This study introduced Yarrowia lipolytica JCM 2320 with a desiccated coconut residue (DCR) hydrolysate (obtained from the 2% dilute sulphuric acid pretreatment) as a carbon source in generating SCO. However, common inhibitors formed during acid pretreatment of biomass such as five-hydroxymethylfurfural (HMF), furfural, acetic acid and levulinic acid resulting from the sugar degradations may have detrimental effects towards the fermentation process. To visualize the effect of inhibitors on Y. lipolytica, an inhibitory study was conducted by adding 0.5-5.0 g/L of potential inhibitors to the YPD (yeast, peptone and D-glucose) medium. It was found that the presence of furfural at 0.5 g/L would increase the lag phase, which beyond that was detrimental to Y. lipolytica. Furthermore, increasing the five-hydroxymethylfurfural (HMF) concentration would increase the lag phase of Y. lipolytica, whereas, for acetic acid and levulinic acid, it showed a negligible effect. Detoxification was hence conducted to remove the potential inhibitors from the DCR hydrolysate prior its utilization in the fermentation. To examine the possibility of using adsorption resins for the detoxification of DCR hydrolysate, five different resins were tested (Amberlite® XAD-4, Amberlite® XAD-7, Amberlite® IR 120, Amberlite® IRA 96 and Amberlite® IRA 402) with five different concentrations of 1%, 3%, 5%, 10% and 15% (w/v), respectively. At resin concentration of 10%, Amberlite® XAD-4 recorded the highest SCO yield, 2.90 ± 0.02 g/L, whereas the control and the conventional overliming detoxification method, recorded only 1.29 ± 0.01 g/L and 1.27 ± 0.02 g/L SCO accumulation, respectively. Moreover, the fatty acid profile of the oil produced was rich in oleic acid (33.60%), linoleic acid (9.90%), and palmitic acid (14.90%), which indicates the potential as a good biodiesel raw material.
Collapse
Affiliation(s)
- Muhammad Fakhri Zainuddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chong Kar Fai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Bioprocessing and Biomanufacturing Research Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor ’Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Bioprocessing and Biomanufacturing Research Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Bioprocessing and Biomanufacturing Research Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N. Insights on sustainable approaches for production and applications of value added products. CHEMOSPHERE 2022; 286:131623. [PMID: 34346348 DOI: 10.1016/j.chemosphere.2021.131623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Neetu Sharma
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sajeev Soni
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India.
| |
Collapse
|
15
|
|
16
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
17
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|
18
|
Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol. ENERGIES 2021. [DOI: 10.3390/en14061685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this study was to optimize biomass and docosahexaenoic acid (DHA) production by Schizochytrium sp. grown on waste glycerol as an organic carbon source. Parameters having a significant effect on biomass and DHA yields were screened using the fractional Plackett–Burman design and the response surface methodology (RSM). Schizochytrium sp. growth was most significantly influenced by crude glycerin concentration in the growth medium (150 g/dm3), process temperature (27 °C), oxygen in the bioreactor (49.99% v/v), and the concentration of peptone as a source of nitrogen (9.99 g/dm3). The process parameter values identified as optimal for producing high DHA concentrations in the biomass were as follows: glycerin concentration 149.99 g/dm3, temperature 26 °C, oxygen concentration 30% (v/v), and peptone concentration 2.21 g/dm3. The dry cell weight (DCW) obtained under actual laboratory conditions was 66.69 ± 0.66 g/dm3, i.e., 1.27% lower than the predicted value. The DHA concentration obtained in the actual culture was at 17.25 ± 0.33 g/dm3, which was 3.03% lower than the predicted value. The results obtained suggest that a two-step culture system should be employed, with the first phase focused on high production of Schizochytrium sp. biomass, and the second focused on increasing DHA concentration in the cells.
Collapse
|
19
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Microbial lipids from organic wastes: Outlook and challenges. BIORESOURCE TECHNOLOGY 2021; 323:124612. [PMID: 33418352 DOI: 10.1016/j.biortech.2020.124612] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Microbial lipids have recently drawn a lot of attention as renewable sources for biochemicals production. Strong research efforts have been addressed to efficiently use organic wastes as carbon source for microbial lipids, which would definitively increase the profitability of the production process and boost a bio-based economy. This review compiles interesting traits of oleaginous microorganisms and highlights current trends on microbial- and process-oriented approaches to maximize microbial oil production from inexpensive substrates like lignocellulosic sugars, volatile fatty acids and glycerol. Furthermore, downstream processes such as cell harvesting or lipid extraction, that are decisive for the cost-effectiveness of the process, are discussed. To underpin microbial oils within the so demanded circular economy, associated challenges, recent advances and possible industrial applications that are also identified in this review.
Collapse
Affiliation(s)
- E Tomás-Pejó
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain.
| | - S Morales-Palomo
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| | - C González-Fernández
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| |
Collapse
|
20
|
Shukla V, Phulara SC. Impact of culture condition modulation on the high-yield, high-specificity and cost-effective production of terpenoids from microbial sources: A review. Appl Environ Microbiol 2021; 87:AEM.02369-20. [PMID: 33257314 PMCID: PMC7851692 DOI: 10.1128/aem.02369-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent years have seen a remarkable increase in the non-natural production of terpenoids from microbial route. This is due to the advancements in synthetic biology tools and techniques, which have overcome the challenges associated with the non-native production of terpenoids from microbial hosts. Although, microbes in their native form have ability to grow in wide range of physicochemical parameters such as, pH, temperature, agitation, aeration etc; however, after genetic modifications, culture conditions need to be optimized in order to achieve improved titers of desired terpenoids from engineered microbes. The physicochemical parameters together with medium supplements, such as, inducer, carbon and nitrogen source, and cofactor supply not only play an important role in high-yield production of target terpenoids from engineered host, but also reduce the accumulation of undesired metabolites in fermentation medium, thus facilitate product recovery. Further, for the economic production of terpenoids, the biomass derived sugars can be utilized together with the optimized culture conditions. In the present mini-review, we have highlighted the impact of culture conditions modulation on the high-yield and high-specificity production of terpenoids from engineered microbes. Lastly, utilization of economic feedstock has also been discussed for the cost-effective and sustainable production of terpenoids.
Collapse
Affiliation(s)
- Vibha Shukla
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Suresh Chandra Phulara
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, Andhra Pradesh, India
| |
Collapse
|
21
|
Patel A, Sarkar O, Rova U, Christakopoulos P, Matsakas L. Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review. BIORESOURCE TECHNOLOGY 2021; 321:124457. [PMID: 33316701 DOI: 10.1016/j.biortech.2020.124457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
To meet environmental sustainability goals, microbial oils have been suggested as an alternative to petroleum-based products. At present, microbial fermentation for oil production relies on pure sugar-based feedstocks. However, these feedstocks are expensive and are in limited supply. Volatile fatty acids, which are generated as intermediates during anaerobic digestion of organic waste have emerged as a renewable feedstock that has the potential to replace conventional sugar sources for microbial oil production. They comprise short-chain (C2 to C6) organic acids and are employed as building blocks in the chemical industry. The present review discusses the use of oleaginous microorganisms for the production of biofuels and added-value products starting from volatile fatty acids as feedstocks. The review describes the metabolic pathways enabling lipogenesis from volatile fatty acids, and focuses on strategies to enhance lipid accumulation in oleaginous microorganisms by tuning the ratios of volatile fatty acids generated via anaerobic fermentation.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
22
|
Hashem AH, Suleiman WB, Abu-Elrish GM, El-Sheikh HH. Consolidated Bioprocessing of Sugarcane Bagasse to Microbial Oil by Newly Isolated Oleaginous Fungus: Mortierella wolfii. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05076-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Diamantopoulou P, Stoforos NG, Xenopoulos E, Sarris D, Psarianos D, Philippoussis A, Papanikolaou S. Lipid production by Cryptococcus curvatus growing on commercial xylose and subsequent valorization of fermentation waste-waters for the production of edible and medicinal mushrooms. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Diwan B, Gupta P. A Deuteromycete Isolate Geotrichum candidum as Oleaginous Cell Factory for Medium-Chain Fatty Acid-Rich Oils. Curr Microbiol 2020; 77:3738-3749. [PMID: 32778944 DOI: 10.1007/s00284-020-02155-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Single cell oils (SCO) are oils derived from microorganisms which have potential to hyperaccumulate intracellular lipids (called oleaginous) under some essential nutrient (nitrogen, phosphorous or sometimes sulphur) starvation and an excess of carbon. The present work investigates the influence of these key parameters (for triggering oleaginicity), i.e. carbon (C) and nitrogen (N) on oleaginous behaviour of an oleaginous isolate, with the objective of improving the lipid content and obtaining oils of applicative interest. Eleven yeasts were isolated from rotten fruits and a unique yeast from rotten apple was screened on the basis of its ~ 20% (of dry mass) lipid content (LC), trademark of oleaginicity under nitrogen-stressed culture conditions. Subsequent investigation on influence of C, N and w/w ratio of carbon source concentration (Cs) to nitrogen source concentration (Ns) was conducted on this isolate. The isolate was identified as a Deuteromycete-Geotrichum candidum. 4.8 g/l was found to be minimum N concentration and glucose as suitable C source for optimum balance between biomass and lipid content. The highest LC of 73.6% (172.5% higher compared to 27% LC at Cs/Ns 80/4.8) was obtained at Cs/Ns 150/4.8 with a lipid coefficient of 8.7 (g lipid/100 g substrate). While remarkably higher production economy (lipid coefficient of 28.45) was noted at Cs/Ns 100/4.8 with significant LC of 54.4% (~ 100% higher than at Cs/Ns 80/4.8). The derived oils were predominantly rich in medium-chain fatty acids (MCFA)-caprylic acid, rare in plant oils. G. candidum is a previously referred oleaginous species; however, for the first time this study illustrates its detailed oleaginous behaviour and lipid compositional characteristics with varying nutritional parameters. The work is a progressive contribution towards current and upcoming researches in field of SCOs. Compositional characteristics of derived oils, make it an important candidate for potential medical and nutritional applications in future.
Collapse
Affiliation(s)
- Batul Diwan
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| |
Collapse
|
25
|
Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters. Processes (Basel) 2020. [DOI: 10.3390/pr8070819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further cultured in media where process waters were partially replaced by the phenol-containing olive mill wastewaters (OMWs). In flasks with S0 ≈ 100 g/L and OMWs added yielding to initial phenolic compounds concentration (PCC0) between 0.0 g/L (blank experiment) and 2.0 g/L, C. curvatus presented maximum total dry cell weight—TDCWmax ≈ 27 g/L, in all cases. The more the PCC0 increased, the fewer lipids were produced. In OMW-enriched media with PCC0 ≈ 1.2 g/L, TDCW = 20.9 g/L containing ≈ 40% w/w of lipids was recorded. In L. starkeyi cultures, when PCC0 ≈ 2.0 g/L, TDCW ≈ 25 g/L was synthesized, whereas lipids in TDCW = 24–28% w/w, similar to the experiments without OMWs, were recorded. Non-negligible dephenolization and species-dependent decolorization of the wastewater occurred. A batch-bioreactor trial by C. curvatus only with xylose (S0 ≈ 110 g/L) was performed and TDCW = 35.1 g/L (lipids in TDCW = 44.3% w/w) was produced. Yeast total lipids were composed of oleic and palmitic and to lesser extent linoleic and stearic acids. C. curvatus lipids were mainly composed of nonpolar fractions (i.e., triacylglycerols).
Collapse
|
26
|
VOLATILE FATTY ACIDS FROM ORGANIC WASTES AS NOVEL LOW-COST CARBON SOURCE FOR Yarrowia lipolytica. N Biotechnol 2020; 56:123-129. [DOI: 10.1016/j.nbt.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/26/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
|
27
|
Diamantopoulou P, Filippousi R, Antoniou D, Varfi E, Xenopoulos E, Sarris D, Papanikolaou S. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol Lett 2020; 367:5818764. [DOI: 10.1093/femsle/fnaa063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
A total of 11 yeast strains of Yarrowia lipolytica, Metschnikowia sp., Rhodotorula sp. and Rhodosporidium toruloides were grown under nitrogen-limited conditions with crude glycerol employed as substrate in shake flasks, presenting interesting dry cell weight (DCW) production. Three of these strains belonging to Metschnikowia sp. accumulated significant quantities of endopolysaccharides (i.e. the strain V.V.-D4 produced 11.0 g/L of endopolysaccharides, with polysaccharides in DCW ≈ 63% w/w). A total of six Y. lipolytica strains produced either citric acid or mannitol. Most of the screened yeasts presented somehow elevated lipid and polysaccharides in DCW values at the early steps of growth despite nitrogen appearance in the fermentation medium. Lipid in DCW values decreased as growth proceeded. R. toruloides DSM 4444 cultivated on media presenting higher glycerol concentrations presented interesting lipid-accumulating capacities (maximum lipid = 12.5 g/L, maximum lipid in DCW = 43.0–46.0% w/w, conversion yield on glycerol = 0.16 g/g). Replacement of crude glycerol by xylose resulted in somehow decreased lipid accumulation. In xylose/glycerol mixtures, xylose was more rapidly assimilated from glycerol. R. toruloides total lipids were mainly composed of triacylglycerols. Total cellular fatty acid composition on xylose presented some differences compared with that on glycerol. Cellular lipids contained mainly oleic and palmitic acid.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
| | - Rosanina Filippousi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitrios Antoniou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evaggelia Varfi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evangelos Xenopoulos
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitris Sarris
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| |
Collapse
|
28
|
Parkhey P, Ram AK, Diwan B, Eswari JS, Gupta P. Artificial neural network and response surface methodology: a comparative analysis for optimizing rice straw pretreatment and saccharification. Prep Biochem Biotechnol 2020; 50:768-780. [PMID: 32196400 DOI: 10.1080/10826068.2020.1737816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study demonstrates a comparative analysis between the artificial neural network (ANN) and response surface methodology (RSM) as optimization tools for pretreatment and enzymatic hydrolysis of lignocellulosic rice straw. The efficacy for both the processes, that is, pretreatment and enzymatic hydrolysis was evaluated using correlation coefficient (R2) & mean squared error (MSE). The values of R2 obtained by ANN after training, validation, and testing were 1, 0.9005, and 0.997 for pretreatment and 0.962, 0.923, and 0.9941 for enzymatic saccharification, respectively. On the other hand, the R2 values obtained with RSM were 0.9965 for cellulose recovery and 0.9994 for saccharification efficiency. Thus, ANN and RSM together successfully identify the substantial process conditions for rice straw pretreatment and enzymatic saccharification. The percentage of error for ANN and RSM were 0.009 and 0.01 for cellulose recovery and for 0.004 and 0.005 for saccharification efficiency, respectively, which showed the authority of ANN in exemplifying the non-linear behavior of the system.
Collapse
Affiliation(s)
- Piyush Parkhey
- Department of Biotechnology, National Institute of Technology, Raipur, India.,Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - Aadil Keshaw Ram
- Department of Biotechnology, National Institute of Technology, Raipur, India.,Department of Biotechnology, Centre for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Batul Diwan
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - J Satya Eswari
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
29
|
Sharma P, Gaur VK, Kim SH, Pandey A. Microbial strategies for bio-transforming food waste into resources. BIORESOURCE TECHNOLOGY 2020; 299:122580. [PMID: 31877479 DOI: 10.1016/j.biortech.2019.122580] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 05/27/2023]
Abstract
With the changing life-style and rapid urbanization of global population, there is increased generation of food waste from various industrial, agricultural, and household sources. According to Food and Agriculture Organization (FAO), almost one-third of the total food produced annually is wasted. This poses serious concern as not only there is loss of rich resources; their disposal in environment causes concern too. Food waste is rich in organic, thus traditional approaches of land-filling and incineration could cause severe environmental and human health hazard by generating toxic gases. Thus, employing biological methods for the treatment of such waste offers a sustainable way for valorization. This review comprehensively discusses state-of-art knowledge about various sources of food waste generation, their utilization, and valorization by exploiting microorganisms. The use of microorganisms either aerobically or anaerobically could be a sustainable and eco-friendly solution for food waste management by generating biofuels, electrical energy, biosurfactants, bioplastics, biofertilizers, etc.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Frontier Research Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Llamas M, Magdalena JA, González-Fernández C, Tomás-Pejó E. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation. Biotechnol Bioeng 2019; 117:238-250. [PMID: 31544974 DOI: 10.1002/bit.27180] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Microbial oils are proposed as a suitable alternative to petroleum-based chemistry in terms of environmental preservation. These oils have traditionally been studied using sugar-based feedstock, which implies high costs, substrate limitation, and high contamination risks. In this sense, low-cost carbon sources such as volatile fatty acids (VFAs) are envisaged as promising building blocks for lipid biosynthesis to produce oil-based bioproducts. VFAs can be generated from a wide variety of organic wastes through anaerobic digestion and further converted into lipids by oleaginous yeasts (OYs) in a fermentation process. These microorganisms can accumulate in the form of lipid bodies, lipids of up to 60% wt/wt of their biomass. In this context, OY is a promising biotechnological tool for biofuel and bioproduct generation using low-cost VFA media as substrates. This review covers recent advances in microbial oil production from VFAs. Production of VFAs via anaerobic digestion processes and the involved metabolic pathways are reviewed. The main challenges as well as recent approaches for lipid overproduction are also discussed.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| | | | | | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| |
Collapse
|
31
|
Chang CC, Li R. Agricultural waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1150-1167. [PMID: 31433884 DOI: 10.1002/wer.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The management of agricultural waste has become very important because the inappropriate disposal yields negative effects on the environment. The resource recovery from agricultural waste which converts waste into available resources can reduce the waste and new resource consumption. This review summarizes the 2018 researches of over three hundred scholar papers from several aspects: agricultural waste, and, waste chemical characterization, agricultural waste material, adsorption, waste energy, composting, waste biogas, agricultural waste management, and others.
Collapse
Affiliation(s)
- Chein-Chi Chang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| | - Rundong Li
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
| |
Collapse
|
32
|
Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World J Microbiol Biotechnol 2019; 35:63. [PMID: 30923965 DOI: 10.1007/s11274-019-2631-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
The last years a constantly rising number of publications have appeared in the literature in relation to the production of oils and fats deriving from microbial sources (the "single cell oils"-SCOs). SCOs can be used as precursors for the synthesis of lipid-based biofuels or employed as substitutes of expensive oils rarely found in the plant or animal kingdom. In the present review-article, aspects concerning SCOs (economics, biochemistry, substrates, technology, scale-up), with emphasis on the potential of Mortierella isabellina were presented. Fats and hydrophilic substrates have been used as carbon sources for cultivating Zygomycetes. Among them, wild-type M. isabellina strains have been reported as excellent SCO-producers, with conversion yields on sugar consumed and lipid in DCW values reported comparable to the maximum ones achieved for genetically engineered SCO-producing strains. Lipids produced on glucose contain γ-linolenic acid (GLA), a polyunsaturated fatty acid (PUFA) of high dietary and pharmaceutical importance, though in low concentrations. Nevertheless, due to their abundance in oleic acid, these lipids are perfect precursors for the synthesis of 2nd generation biodiesel, while GLA can be recovered and directed to other usages. Genetic engineering focusing on over-expression of Δ6 and Δ12 desaturases and of C16 elongase may improve the fatty acid composition (viz. increasing the concentration of GLA or other nutritionally important PUFAs) of these lipids.
Collapse
|
33
|
Diwan B, Gupta P. Broth recycling in high carbon demanding single cell oil fermentation increased the product to effluent generation ratio. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
35
|
Diwan B, Gupta P. Comprehending the influence of critical cultivation parameters on the oleaginous behaviour of potent rotten fruit yeast isolates. J Appl Microbiol 2018; 125:490-505. [DOI: 10.1111/jam.13904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- B. Diwan
- Department of Biotechnology National Institute of Technology Raipur Chhattisgarh India
| | - P. Gupta
- Department of Biotechnology National Institute of Technology Raipur Chhattisgarh India
| |
Collapse
|
36
|
Gaur N, Narasimhulu K, Y P. Biochemical and kinetic characterization of laccase and manganese peroxidase from novel Klebsiella pneumoniae strains and their application in bioethanol production. RSC Adv 2018; 8:15044-15055. [PMID: 35541315 PMCID: PMC9080042 DOI: 10.1039/c8ra01204k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022] Open
Abstract
Laccase (lac) and manganese peroxidase (MnP) enzymes from the novel Klebsiella pneumoniae isolates, grown on lignin basic media (LBM) were purified by 80% ammonium sulphate fractionation, dialysis and DEAE-sepharose column chromatography. The optimum temperatures for laccase production were 60 °C, 50 °C and 50 °C and for MnP production were 50 °C, 70 °C and 60 °C from NITW715076_2, NITW715076_1 and NITW715076 isolates, respectively. The optimal pH for production was found to be 5 for production of both the enzymes from all the isolates. 2.8-3.5 fold enzyme purification was achieved retaining around 60-70% of the initial activity. SDS-PAGE revealed the molecular mass of laccase and MnP to be 66 kDa and 48 kDa, respectively. The substrate ABTS and MnSO4 exhibited more specificity towards NITW715075_2 derived laccase and MnP (lac: K m = 0.38 mM, V max = 71.42 U ml-1; MnP: K m = 0.17 mM, V max = 106.38 U ml-1) compared to NITW715076_1 (lac: K m = 3.97 mM, V max = 148.8 U ml-1; MnP: K m = 0.90 mM, V max = 114.67 U ml-1) and NITW715076 (lac: K m = 0.46 mM, V max = 23.42 U ml-1; MnP: K m = 0.19 mM, V max = 108.10 U ml-1) derived. l-Cysteine and sodium azide imposed a strong inhibitory effect on the activities of both the enzymes. EDTA inhibited laccase and MnP activity at higher concentration. SDS strongly inhibited activity while for MnP it showed less inhibitory effect. The enzymes were employed for ethanol production from rice and wheat bran biomass which showed 39.29% improved production compared to control. After evaluating the applicability of these enzymes it can be suggested that the ligninolytic enzyme of Klebsiella pneumoniae isolates could be effectively employed in enhanced ethanol production and could be explored for other putative applications.
Collapse
Affiliation(s)
- Nisha Gaur
- Department of Biotechnology, National Institute of Technology Warangal 506004 Telangana India
| | - Korrapati Narasimhulu
- Department of Biotechnology, National Institute of Technology Warangal 506004 Telangana India
| | - Pydisetty Y
- Department of Chemical Engineering, National Institute of Technology Warangal 506004 Telangana India
| |
Collapse
|