1
|
Huang L, Kuang J, Yu J, Yu Q, Xu W, Liu M, Wei Y, Han S, Huang Y, Li P. Antiviral activity of epicatechin against Singapore grouper iridovirus in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110331. [PMID: 40222693 DOI: 10.1016/j.fsi.2025.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
As the main highly pathogenic pathogen of grouper, Singapore grouper iridovirus (SGIV) can give rise to significant economic losses in grouper aquaculture. Epicatechin (EC) belongs to flavonoids, which primarily derived from the traditional Chinese medicinal plants, green tea. In this study, the role of EC in SGIV infection was evaluated in vitro and in vivo. In the meantime, the mechanism of EC worked on SGIV was also explored, including the impact of EC on SGIV virus particles, the effects of EC on SGIV infection process, and the influence of EC on host immune response. The results showed that EC had concentration dependent antiviral effects against SGIV both in vitro and in vivo. EC could limit SGIV infection by interacting with SGIV virus particles, interfering with the invasion and replication process of SGIV infection. Moreover, EC was able to upregulate the expression of genes involved in interferon system (IFN, TRAF6, ISG15, IRF3, IRF7, TLR9, and myd88), downregulate the expression of TNF-α and IL1-β related to inflammation, and inhibit the cell apoptosis induced by SGIV to exert antiviral effects. Our finding revealed that EC probably is a potential excellent anti-SGIV drug with a clear antiviral mechanism, which provides a theoretical basis for the development of environmentally friendly fishing drugs for the prevention and control of SGIV.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Jihui Kuang
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Jieying Yu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Qing Yu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Weiqiang Xu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Mingzhu Liu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Yunyi Wei
- College of Food Science and Quality Engineering, Nanning University, Nanning, PR China
| | - Shuyu Han
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China; Guangxi Fisheries Technology Extension Station, Nanning, PR China
| | - Yanhua Huang
- Qinzhou Fisheries Technology Extension Station, Nanning, PR China.
| | - Pengfei Li
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China.
| |
Collapse
|
2
|
Pourhoseini Dehkordi N, Saffar B, Mokhtari A, Asadi Samani L, Amini A. Utilizing shRNA-expressing lentivectors for viral hemorrhagic septicemia virus suppression via NV gene targeting. Front Vet Sci 2025; 12:1508470. [PMID: 40256606 PMCID: PMC12006114 DOI: 10.3389/fvets.2025.1508470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Background Viral hemorrhagic septicemia virus or VHSV, is a single-stranded negative-sense RNA virus that is a member of the Rhabdoviridae family's genus Novirhabdovirus. Its major host is rainbow trout. Severe clinical symptoms and a higher mortality rate in fish populations are caused by this virus. Regretfully, there is currently no medication or vaccination available to treat it. Recently, there has been a lot of interest in developing antiviral therapies employing interfering RNA (RNAi), particularly shRNA. This study used shRNAs targeting the NV gene of VHSV to test its effectiveness in preventing VHSV proliferation in cell culture. Using the VHSV-Fil3 strain, the appropriate oligonucleotide sequence for NV gene coding was chosen for this purpose. Subsequently, shRNA molecules were designed and synthesized with the aid of shRNA design tools. The shRNAs were transfected into HEK293T cells after being cloned into the suitable vectors using the third generation of lentiviral packaging system. The CS2-2 cell line was subsequently transduced with these shRNA-expressing lentiviruses in order to challenge the VHS virus. Finally, TCID50 was employed to calculate the viral infectious titer in order to assess the effectiveness of shRNAs. Results According to the final calculations, all shRNAs exhibited antiviral activity. When compared to the control groups, the shRNAs 1, 2, and 3 considerably lowered VHSV output in the TCID50 test (nearly 99.99, 99.99, and 99.99%, respectively, compared to cells with VHSV inoculation and nearly 99.98, 99.98, and 99.97%, respectively, compared to cells with VHSV and scrambled vector inoculation). Conclusion Thus, it can be declared that RNA interference (RNAi) has the potential to be an exceptionally effective therapeutic option against viruses like VHSV.
Collapse
Affiliation(s)
| | - Behnaz Saffar
- Department of Genetics, Shahrekord University, Shahrekord, Iran
| | - Azam Mokhtari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | | | - Azam Amini
- Department of Genetics, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Banihani SA. Role of Lipoic Acid in Testosterone Production in Males. World J Mens Health 2025; 43:41-49. [PMID: 38772537 PMCID: PMC11704161 DOI: 10.5534/wjmh.230291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 05/23/2024] Open
Abstract
Testosterone extends its impact beyond sexual function, playing a crucial role in shaping overall male health, including aspects such as muscle mass, bone density, mood regulation, and energy levels. Lipoic acid, a cofactor for specific enzymes, particularly dehydrogenases involved in cellular energy production, has been studied for its impact on testosterone. This comprehensive review systematically scoured PubMed and Scopus databases using the keywords "lipoic acid" and "testosterone." It encompassed all relevant English papers published from November 1971 to the present, including full texts and abstracts, along with research elucidating the biochemical mechanisms linking lipoic acid to testosterone. In summary, lipoic acid consistently restores testosterone levels, offering promise as an intervention in testicular health, especially in cases of testicular toxicity caused by various harmful agents. Its mechanisms encompass nitric oxide enhancement, fortification of testicular antioxidants, elevation of luteinizing hormone, enhancement of steroidogenesis, and the maintenance of energy production. These mechanisms underscore the therapeutic potential of lipoic acid for testicular health.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
4
|
Huang H, Lu X, Guo J, Chen Y, Yi M, Jia K. Protective efficacy and immune responses of largemouth bass (Micropterus salmoides) immunized with an inactivated vaccine against the viral hemorrhagic septicemia virus genotype IVa. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109691. [PMID: 38871138 DOI: 10.1016/j.fsi.2024.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Viral hemorrhagic septicemia virus (VHSV) poses a significant threat to the aquaculture industry, prompting the need for effective preventive measures. Here, we developed an inactivated VHSV and revealed the molecular mechanisms underlying the host's protective response against VHSV. The vaccine was created by treating VHSV with 0.05 % formalin at 16 °C for 48 h, which was determined to be the most effective inactivation method. Compared with nonvaccinated fish, vaccinated fish exhibited a remarkable increase in survival rate (99 %) and elevated levels of serum neutralizing antibodies, indicating strong immunization. To investigate the gene changes induced by vaccination, RNA sequencing was performed on spleen samples from control and vaccinated fish 14 days after vaccination. The analysis revealed 893 differentially expressed genes (DEGs), with notable up-regulation of immune-related genes such as annexin A1a, coxsackievirus and adenovirus receptor homolog, V-set domain-containing T-cell activation inhibitor 1-like, and heat shock protein 90 alpha class A member 1 tandem duplicate 2, indicating a vigorous innate immune response. Furthermore, KEGG enrichment analysis highlighted significant enrichment of DEGs in processes related to antigen processing and presentation, necroptosis, and viral carcinogenesis. GO enrichment analysis further revealed enrichment of DEGs related to the regulation of type I interferon (IFN) production, type I IFN production, and negative regulation of viral processes. Moreover, protein-protein interaction network analysis identified central hub genes, including IRF3 and HSP90AA1.2, suggesting their crucial roles in coordinating the immune response elicited by the vaccine. These findings not only confirm the effectiveness of our vaccine formulation but also offer valuable insights into the underlying immunological mechanisms, which can be valuable for future vaccine development and disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Hao Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Jiasen Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Yihong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Sun B, Zhang Y, Chen K, Sun L. Metabolomics captures the differential metabolites in the replication pathway of snakehead vesiculovirus regulated by glutamine. DISEASES OF AQUATIC ORGANISMS 2024; 158:101-114. [PMID: 38661141 DOI: 10.3354/dao03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.
Collapse
Affiliation(s)
- Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
6
|
Chen X, Zhang W, Huang H, Yi M, Jia K. Sea perch (Lateolabrax japonicus) UBC9 augments RGNNV infection by hindering RLRs-interferon response. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109408. [PMID: 38307301 DOI: 10.1016/j.fsi.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Small ubiquitin-like modifier (SUMO) is a reversible post-translational modification that regulates various biological processes in eukaryotes. Ubiquitin-conjugating enzyme 9 (UBC9) is the sole E2-conjugating enzyme responsible for SUMOylation and plays an important role in essential cellular functions. Here, we cloned the UBC9 gene from sea perch (Lateolabrax japonicus) (LjUBC9) and investigated its role in regulating the IFN response during red-spotted grouper nervous necrosis virus (RGNNV) infection. The LjUBC9 gene consisted of 477 base pairs and encoded a polypeptide of 158 amino acids with an active site cysteine residue and a UBCc domain. Phylogenetic analysis showed that LjUBC9 shared the closest evolutionary relationship with UBC9 from Paralichthys olivaceus. Tissue expression profile analysis demonstrated that LjUBC9 was significantly increased in multiple tissues of sea perch following RGNNV infection. Further experiments showed that overexpression of LjUBC9 significantly increased the mRNA and protein levels of RGNNV capsid protein in LJB cells infected with RGNNV, nevertheless knockdown of LjUBC9 had the opposite effect, suggesting that LjUBC9 exerted a pro-viral effect during RGNNV infection. More importantly, we found that the 93rd cysteine is crucial for its pro-viral effect. Additionally, dual luciferase assays revealed that LjUBC9 prominently attenuated the promoter activities of sea perch type Ⅰ interferon (IFN) in RGNNV-infected cells, and overexpression of LjUBC9 markedly suppressed the transcription of key genes associated with RLRs-IFN pathway. In summary, these findings elucidate that LjUBC9 impairs the RLRs-IFN response, resulting in enhanced RGNNV infection.
Collapse
Affiliation(s)
- Xiaoqi Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Hao Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| |
Collapse
|
7
|
Zhang W, Deng H, Liu Y, Chen S, Liu Y, Zhao Y. Ribavirin inhibits peste des petits ruminants virus proliferation in vitro. VET MED-CZECH 2023; 68:464-476. [PMID: 38303996 PMCID: PMC10828777 DOI: 10.17221/56/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/27/2023] [Indexed: 02/03/2024] Open
Abstract
Peste des petits ruminants virus (PPRV), a member of the family Paramyxoviridae, belongs to the genus Morbillivirus. It causes devastating viral diseases in small ruminants and has been rapidly spreading over various regions in Africa, the Middle East, and Asia. Although vaccination is thought to be an effective management strategy against PPR infections, the heat sensitivity of PPRV vaccines severely restricts their use in regions with hot climates. In this research, we studied the antiviral activities of ribavirin and aimed to understand the potential mechanisms of action of ribavirin in the African green monkey kidney cells (Vero cells). In brief, the adsorption, intrusion, replication, and release of PPRV, as well as the mRNA expression level of RNA-dependent RNA polymerase (RdRp), were significantly inhibited in the ribavirin-treated Vero cells compared to those in the PPRV-infected cells that were not treated with ribavirin. Additionally, ribavirin has potential as an antiviral drug against PPRV, and its antiviral activity is mediated by the Janus kinase signal transducer and activator of transcription (JAK/STAT) and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Hualong Deng
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Yanfen Liu
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Shaohong Chen
- Department of Bioengineering, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P.R. China
| | - You Liu
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Yuntao Zhao
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, P.R. China
| |
Collapse
|
8
|
Nathan J, Shameera R, Ramachandran A. Impact of nutraceuticals on immunomodulation against viral infections-A review during COVID-19 pandemic in Indian scenario. J Biochem Mol Toxicol 2023; 37:e23320. [PMID: 36799127 DOI: 10.1002/jbt.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in early December 2019 is a censorious global emergency after World War II. Research on the coronavirus uncovered essential information that aided in the development of the vaccine, and specific coronavirus disease 2019 (COVID-19) vaccines were later developed and were approved for usage in humans. But then, mutations in the coronavirus gave rise to new variants and questioned the vaccine's efficacy against them. On the other hand, the investigation of traditional medicine was also on its path to find a novel outcome against COVID-19. On a comparative analysis between India and the United States, India had low death rate and high recovery rate than the latter. The dietary regulation of immunity may be the factor that makes the above difference. The immunity gained from the regular diet of Indian culture nourishes Indian people with essential phytochemicals that support immunity and metabolism. Dietary phytochemicals or nutraceuticals possess antioxidant, anti-inflammatory, and anticancer properties, out of which our concern will be on immune-boosting phytochemicals from our daily nutritional supplements. In several case studies, dietary substance like lemon, ginger, and spinach was reported in the recovery of COVID-19 patients. Thus in this review, we discuss coronavirus and its available variants, vaccines, and the effect of nutraceuticals against the coronavirus. Further, we denote that the immunity of the Indian population may be high because of their diet, which adds natural phytochemicals to boost their immunity and metabolism.
Collapse
Affiliation(s)
- Jhansi Nathan
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Rabiathul Shameera
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Arunkumar Ramachandran
- Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Huang H, Liao D, He B, Pu R, Cui Y, Zhou G. Deoxyshikonin inhibited rotavirus replication by regulating autophagy and oxidative stress through SIRT1/FoxO1/Rab7 axis. Microb Pathog 2023; 178:106065. [PMID: 36907361 DOI: 10.1016/j.micpath.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Rotavirus (RV) is a double-stranded RNA virus. RV prevention and treatment remain a major public health problem due to the lack of clinically specific drugs. Deoxyshikonin is a natural compound isolated from the root of Lithospermum erythrorhizon and one of the shikonin derivatives which owns remarkable therapeutic effects on multiple diseases. The purpose of this research was to inquire Deoxyshikonin's role and mechanism in RV infection. METHODS Deoxyshikonin's function in RV was estimated using Cell Counting Kit-8 analysis, cytopathic effect inhibition assay, virus titer determination, quantitative real-time PCR, enzyme linked-immunosorbent assay, Western blot, immunofluorescence, and glutathione levels detection. Also, Deoxyshikonin's mechanism in RV was appraised with Western blot, virus titer determination, and glutathione levels detection. Moreover, Deoxyshikonin's function in RV in vivo was determined using animal models, and diarrhea score analysis. RESULTS Deoxyshikonin owned anti-RV activity and repressed RV replication in Caco-2 cells. Furthermore, Deoxyshikonin reduced autophagy and oxidative stress caused by RV. Mechanistically, Deoxyshikonin induced low protein levels of SIRT1, ac-Foxo1, Rab7, VP6, low levels of RV titers, low autophagy and oxidative stress. SIRT1 overexpression abolished the effects of Deoxyshikonin on RV-treated Caco-2 cells. Meanwhile, in vivo research affirmed that Deoxyshikonin also possessed anti-RV function, and this was reflected in increased survival rate, body weight, GSH levels, and decreased diarrhea score, RV virus antigen, LC-3II/LC3-I. CONCLUSION Deoxyshikonin reduced RV replication through mediating autophagy and oxidative stress via SIRT1/FoxO1/Rab7 pathway.
Collapse
Affiliation(s)
- Haohai Huang
- Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Department of Clinical Pharmacy, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.
| | - Dan Liao
- Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of TCM Rehabilitation, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
10
|
In Vitro Viral Recovery Yields under Different Re-Suspension Buffers in Iron Flocculation to Concentrate Viral Hemorrhagic Septicemia Virus Genotype IVa in Seawater. Animals (Basel) 2023; 13:ani13050943. [PMID: 36899800 PMCID: PMC10000095 DOI: 10.3390/ani13050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Iron flocculation is widely used to concentrate viruses in water, followed by Fe-virus flocculate formation, collection, and elution. In the elution stage, an oxalic or ascorbic acid re-suspension buffer dissolved iron hydroxide. After the concentration of viral hemorrhagic septicemia virus (VHSV) in seawater (1 × 101 to 1 × 105 viral genome copies or plaque-forming unit (PFU)/mL), the recovery yield of the viral genome using quantitative real-time PCR (qRT-PCR) and viral infectivity using the plaque assay were investigated to evaluate the validity of the two re-suspension buffers to concentrate VHSV. The mean viral genome recovery yield with oxalic and ascorbic acid was 71.2 ± 12.3% and 81.4 ± 9.5%, respectively. The mean viral infective recovery yields based on the PFU were significantly different between the two buffers at 23.8 ± 22.7% (oxalic acid) and 4.4 ± 2.7% (ascorbic acid). Notably, although oxalic acid maintains viral infectivity over 60% at a viral concentration above 105 PFU/mL, the infective VHSVs were not sufficiently recovered at a low viral concentration (102 PFU/mL, <10%). To support this result, concentrated VHSV was inoculated in Epithelioma papulosum cyprini (EPC) cells to confirm cell viability, viral gene expression, and extracellular viral titer. All results demonstrated that oxalic acid buffer was superior to ascorbic acid buffer in preserving viral infectivity.
Collapse
|
11
|
Xiao J, Guo S, Shi X. Metabolic engineering of Escherichia coli for the production of (R)-α-lipoic acid. Biotechnol Lett 2023; 45:273-286. [PMID: 36586051 DOI: 10.1007/s10529-022-03341-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To increase the production of (R)-α-lipoic acid directly from octanoic acid using engineered Escherichia coli with the regeneration of S-adenosylmethionine. RESULTS The biosynthesis of (R)-α-lipoic acid (LA) in E. coli BL21(DE3) is improved by co-expression of lipoate-protein ligase A (LplA) from E. coli MG1655 and lipoate synthase (LipA) from Vibrio vulnificus. The engineered strain produces 20.99 µg l-1 of LA in shake flask cultures. The titers of LA are increased to 169.28 µg l-1 after the optimization of the medium components and fermentation conditions. We find that the [4Fe-4S] cluster is important for the activity of LipA and co-expression of iscSUA promotes the regeneration of the [4Fe-4S] cluster and leads to the highest LA titer of 589.30 µg l-1. CONCLUSION The method described here can be widely applied for the biosynthesis of (R)-α-lipoic acid and other metabolites.
Collapse
Affiliation(s)
- Jianbin Xiao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.
| | - Xian'ai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.,Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| |
Collapse
|
12
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|
14
|
Antiviral Activities of Green Tea Components against Grouper Iridovirus Infection In Vitro and In Vivo. Viruses 2022; 14:v14061227. [PMID: 35746698 PMCID: PMC9227864 DOI: 10.3390/v14061227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Singapore grouper iridovirus (SGIV) can cause extensive fish deaths. Therefore, developing treatments to combat virulent SGIV is of great economic importance to address this challenge to the grouper aquaculture industry. Green tea is an important medicinal and edible plant throughout the world. In this study, we evaluated the use of green tea components against SGIV infection. (2) Methods: The safe working concentrations of green tea components were identified by cell viability detection and light microscopy. Additionally, the antiviral activity of each green tea component against SGIV infection was determined with light microscopy, an aptamer (Q5c)-based fluorescent molecular probe, and reverse transcription quantitative PCR. (3) Results: The safe working concentrations of green tea components were green tea aqueous extract (GTAE) ≤ 100 μg/mL, green tea polyphenols (TP) ≤ 10 μg/mL, epigallocatechin-3-gallate (EGCG) ≤ 12 μg/mL, (-)-epigallocatechin (EGC) ≤ 10 μg/mL, (-)-epicatechin gallate (EGC) ≤ 5 μg/mL, and (-)-epicatechin (EC) ≤ 50 μg/mL. The relative antiviral activities of the green tea components determined in terms of MCP gene expression were TP > EGCG > GTAE > ECG > EGC > EC, with inhibition rates of 99.34%, 98.31%, 98.23%, 88.62%, 73.80%, and 44.31%, respectively. The antiviral effect of aptamer-Q5c was consistent with the results of qPCR. Also, TP had an excellent antiviral effect in vitro, wherein the mortality of fish in only the SGIV-injection group and TP + SGIV-injection group were 100% and 11.67%, respectively. (4) Conclusions: In conclusion, our results suggest that green tea components have effective antiviral properties against SGIV and may be candidate agents for the effective treatment and control of SGIV infections in grouper aquaculture.
Collapse
|
15
|
Huang L, Li M, Wei H, Yu Q, Huang S, Wang T, Liu M, Li P. Research on the indirect antiviral function of medicinal plant ingredient quercetin against grouper iridovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:372-379. [PMID: 35430348 DOI: 10.1016/j.fsi.2022.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/19/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Grouper iridovirus is a devastating pathogen that belongs to the genus Ranavirus. Based on the previous results that natural ingredient quercetin isolated from Illicium verum Hook. f. could effectively inhibit Singapore grouper iridovirus (SGIV) replication, suggesting that quercetin could serve as potential antiviral agent against grouper iridovirus. To know about whether quercetin has indirect antiviral activity against SGIV, this study made the investigation in vitro and in vivo, and the potential mechanism was also explored. Pretreating the cells with quercetin (12.5 μg/mL) significantly inhibited the replication of SGIV, similar results were also confirmed in vivo. Importantly, quercetin pretreatment could induce the expression of genes involved in type I interferon (IFN) system (IFN, STAT1, PKR, MxI and ISG15) and TLR9. It suggested that quercetin exerted the indirect antiviral activity against SGIV infection through promoting the recognition of SGIV and activating the IFN pathway to establish the antiviral status of host cell. Taken together, our results shedded light on the indirect antiviral function of natural ingredient quercetin, and clearly demonstrated that natural ingredient quercetin will be an excellent potential agent against SGIV infection in grouper aquaculture.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China
| | - Mengmeng Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Hongling Wei
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Shuaishuai Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; College of Marine Sciences, Beibu Gulf University, Qinzhou, PR China
| | - Taixia Wang
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Mingzhu Liu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China.
| | - Pengfei Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China; College of Marine Sciences, Beibu Gulf University, Qinzhou, PR China.
| |
Collapse
|