1
|
Fujisawa Y, Sano S, Murai Y, Sakaguchi K, Masunaga Y, Kinjo K, Tanikawa W, Ikeda M, Oyama I, Ogata T. Production of 11-ketotestosterone in childhood adrenal tumors with virilization or peripheral precocious puberty: Dominant expression of 11β-hydroxysteroid dehydrogenase type 2. J Steroid Biochem Mol Biol 2025; 251:106747. [PMID: 40180228 DOI: 10.1016/j.jsbmb.2025.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
11-Oxygenated androgens are important components of the androgen pool in humans. Among them, 11-ketotestosterone (11-KT), a potent 11-oxygenated androgen primarily produced in peripheral tissues outside the adrenal glands, has garnered research interest for its crucial role in several diseases associated with androgen excess. This study aimed to investigate the biosynthesis of 11-oxygenated androgens, particularly 11-KT, in childhood adrenocortical tumors (ACTs) presenting with symptoms of androgen excess. This retrospective study included three patients, aged 6 months, 2 years, and 12 years, presenting with symptoms of androgen excess due to childhood ACTs. Multiple androgen metabolites were simultaneously measured using pre- or postoperative serum samples, tumors, and tumor-attached adrenal glands obtained from patients using liquid chromatography-tandem mass spectrometry. The expression of genes involved in androgen synthesis was analyzed using DNA microarray analysis. Serum androgen levels were elevated prior to tumor removal and decreased to within or near reference ranges after tumor removal. Notably, serum 11-KT levels were markedly elevated compared to reference ranges, similar to testosterone (T), and 11-KT was abundant within the tumor tissues. Unique gene expression patterns were observed across the three cases of childhood ACTs, including marked HSD11B2, attenuated HSD11B1, and elevated HSD17B3 expression levels, which are involved in 11-KT biosynthesis. This study confirms the direct production of 11-KT in childhood ACTs; gene expression patterns observed in these cases favored 11-KT biosynthesis, providing insight into their potential role in androgen excess.
Collapse
Affiliation(s)
- Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Shinichiro Sano
- Department of Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Yuki Murai
- Department of Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Kimiyoshi Sakaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenichi Kinjo
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Wataru Tanikawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Maiko Ikeda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ibuki Oyama
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| |
Collapse
|
2
|
Yu S, Gan C, Li W, Zhang Q, Cai Y, Xu J, Huang R, Yao S, Cheng L, Cheng H. Depression decreases immunity and PD-L1 inhibitor efficacy via the hypothalamic-pituitary-adrenal (HPA) axis in triple-negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167581. [PMID: 39579799 DOI: 10.1016/j.bbadis.2024.167581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Depression weakens antitumor immunity, yet the underlying mechanisms linking depression and tumor growth remain unclear. This study examines the influence of depression on the hypothalamic-pituitary-adrenal (HPA) axis, immunological function, and effectiveness of immunotherapy in triple-negative breast cancer (TNBC) patients. METHODS A mouse model of comorbid TNBC and depression was established via chronic restraint stress (CRS) and 4T1 tumor transplantation. A programmed cell death ligand 1 (PD-L1) inhibitor was used to manage mice with TNBC, and the ability of metyrapone to reverse the immune system changes induced by HPA axis activation in depression was evaluated. Mouse peripheral blood was used to measure HPA axis activity, immune cell numbers and cytokine levels. RESULTS Depression activates the HPA axis, leading to increased levels of glucocorticoids. Depression led to an increase in the B-cell number and a reduction in the CD4+ T-cell and CD8+ T-cell numbers, without a statistically significant difference in the regulatory T (Treg) cell number. Furthermore, depression increased the levels of the cytokines interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, and tumor necrosis factor (TNF)-α while decreasing the levels of IL-2 and IL-10. Similar results were observed in the context of PD-L1 inhibitor therapy. The depressed mice presented an increased tumor burden and a poor response to the PD-L1 inhibitor. The application of metyrapone during PD-L1 inhibitor treatment resulted in partial restoration of these depression-related alterations. CONCLUSIONS Depression reduces the effectiveness of PD-L1 inhibitors by altering the number of immune cells and the levels of cytokines through activation of the HPA axis. TRANSLATIONAL RELEVANCE Depression is common in breast cancer patients and is associated with reduced antitumor immunity. There is limited knowledge regarding the specific mechanisms through which depression impairs antitumor immunity. Immunotherapy, which promotes the restoration of antitumor immunity, represents a promising treatment strategy for TNBC patients. However, the efficacy of immunotherapy can be compromised by depressive symptoms and the administration of glucocorticoids during treatment. It is still uncertain whether increasing glucocorticoid levels can reduce the efficacy of immunotherapy in patients with depression. The potential benefits of combining immunotherapy with glucocorticoid inhibitors compared with immunotherapy alone need to be evaluated for TNBC patients with concurrent depressive symptoms. Therefore, further clarification of the specific mechanisms by which depression impairs antitumor immunity is needed to inform future optimization of immunotherapy strategies.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450000, China; Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Chen Gan
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Qianqian Zhang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yinlian Cai
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Senbang Yao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Ling Cheng
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui, China; Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, Guangdong, People's Republic of China.
| | - Huaidong Cheng
- Shenzhen Clinical Medical School of Southern Medical University, China; Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, Guangdong, China.
| |
Collapse
|
3
|
Khadka S, Druffner SR, Duncan BC, Busada JT. Glucocorticoid regulation of cancer development and progression. Front Endocrinol (Lausanne) 2023; 14:1161768. [PMID: 37143725 PMCID: PMC10151568 DOI: 10.3389/fendo.2023.1161768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Glucocorticoids are steroid hormones that regulate a host of cellular and physiological functions. However, they are arguably best known for their potent anti-inflammatory properties. Chronic inflammation is well-known to promote the development and progression of numerous types of cancer, and emerging evidence suggests that glucocorticoid regulation of inflammation affects cancer development. However, the timing, intensity, and duration of glucocorticoid signaling have important but often contradictory effects on cancer development. Moreover, glucocorticoids are widely used in parallel with radiation and chemotherapy to control pain, dyspnea, and swelling, but their use may compromise anti-tumor immunity. This review will explore the effects of glucocorticoids on cancer development and progression with particular focus on pro and anti-tumor immunity.
Collapse
|
4
|
Jamialahmadi O, Salehabadi E, Hashemi-Najafabadi S, Motamedian E, Bagheri F, Mancina RM, Romeo S. Cellular Genome-Scale Metabolic Modeling Identifies New Potential Drug Targets Against Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:671-682. [PMID: 36508280 DOI: 10.1089/omi.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale metabolic modeling (GEM) is one of the key approaches to unpack cancer metabolism and for discovery of new drug targets. In this study, we report the Transcriptional Regulated Flux Balance Analysis-CORE (TRFBA-), an algorithm for GEM using key growth-correlated reactions using hepatocellular carcinoma (HCC), an important global health burden, as a case study. We generated a HepG2 cell-specific GEM by integrating this cell line transcriptomic data with a generic human metabolic model to forecast potential drug targets for HCC. A total of 108 essential genes for growth were predicted by the TRFBA-CORE. These genes were enriched for metabolic pathways involved in cholesterol, sterol, and steroid biosynthesis. Furthermore, we silenced a predicted essential gene, 11-beta dehydrogenase hydroxysteroid type 2 (HSD11B2), in HepG2 cells resulting in a reduction in cell viability. To further identify novel potential drug targets in HCC, we examined the effect of nine drugs targeting the essential genes, and observed that most drugs inhibited the growth of HepG2 cells. Some of these drugs in this model performed better than Sorafenib, the first-line therapeutic against HCC. A HepG2 cell-specific GEM highlights sterol metabolism to be essential for cell growth. HSD11B2 downregulation results in lower cell growth. Most of the compounds, selected by drug repurposing approach, show a significant inhibitory effect on cell growth in a wide range of concentrations. These findings offer new molecular leads for drug discovery for hepatic cancer while also illustrating the importance of GEM and drug repurposing in cancer therapeutics innovation.
Collapse
Affiliation(s)
- Oveis Jamialahmadi
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Salehabadi
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Rosellina Margherita Mancina
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
de Freitas FA, Levy D, Zarrouk A, Lizard G, Bydlowski SP. Impact of Oxysterols on Cell Death, Proliferation, and Differentiation Induction: Current Status. Cells 2021; 10:cells10092301. [PMID: 34571949 PMCID: PMC8468221 DOI: 10.3390/cells10092301] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Oxysterols are oxidized derivatives of cholesterol produced by enzymatic activity or non-enzymatic pathways (auto-oxidation). The oxidation processes lead to the synthesis of about 60 different oxysterols. Several oxysterols have physiological, pathophysiological, and pharmacological activities. The effects of oxysterols on cell death processes, especially apoptosis, autophagy, necrosis, and oxiapoptophagy, as well as their action on cell proliferation, are reviewed here. These effects, also observed in several cancer cell lines, could potentially be useful in cancer treatment. The effects of oxysterols on cell differentiation are also described. Among them, the properties of stimulating the osteogenic differentiation of mesenchymal stem cells while inhibiting adipogenic differentiation may be useful in regenerative medicine.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
| | - Amira Zarrouk
- Faculty of Medicine, University of Monastir, LR12ES05, Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Monastir, Tunisia & Faculty of Medicine, University of Sousse, Sousse 5000, Tunisia;
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA, University of Bourgogne Franche-Comté, Institut National de la Santé et de la Recherche Médicale—Inserm, 7270 Dijon, France;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil (D.L.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
6
|
Laforest S, Pelletier M, Denver N, Poirier B, Nguyen S, Walker BR, Durocher F, Homer NZM, Diorio C, Andrew R, Tchernof A. Estrogens and Glucocorticoids in Mammary Adipose Tissue: Relationships with Body Mass Index and Breast Cancer Features. J Clin Endocrinol Metab 2020; 105:5680713. [PMID: 31853538 PMCID: PMC7065843 DOI: 10.1210/clinem/dgz268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Adipose tissue is an important site for extragonadal steroid hormone biosynthesis through the expression and activity of P450 aromatase, 11β-hydroxysteroid dehydrogenase (HSD) 1, and 17β-HSDs. The contribution of steroid hormones produced by adjacent adipose tissue for the progression and survival of breast tumors is unknown. OBJECTIVE To quantify estrogens (estradiol, estrone) and glucocorticoids (cortisol, cortisone) in breast adipose tissue from both healthy and diseased women and their relationships with adiposity indices and breast cancer prognostic markers. DESIGN AND SETTING Breast adipose tissue was collected at time of surgery. PATIENTS Pre- and postmenopausal women undergoing partial mastectomy for treatment of breast cancer (n = 17) or reduction mammoplasty (n = 6) were studied. INTERVENTIONS Relative estrogen and glucocorticoid amounts were determined by liquid chromatography tandem mass spectrometry. RESULTS The targeted steroids were reliably detected and quantified in mammary adipose tissues. Women with ER+/PR+ tumor had higher relative estradiol amount than women with ER-/PR- tumor (P < .05). The ratio of estradiol-to-estrone was higher in lean women than in women with a body mass index (BMI) ≥ 25 kg/m2 (P < .05). Mixed-model analyses showed that estradiol, cortisone, and cortisol were negatively associated with tumor size (P < .05). Relationships between glucocorticoids and tumor size remained significant after adjustment for BMI. The cortisol-to-cortisone ratio was negatively associated with tumor stage (P < .05) independently of BMI. CONCLUSIONS We reliably quantified estrogens and glucocorticoids in breast adipose tissue from healthy women and women suffering from breast cancer. Our findings suggest that smaller breast tumors are associated with higher relative amounts of estradiol and cortisol in adipose tissue.
Collapse
Affiliation(s)
- Sofia Laforest
- CHU de Québec-Université Laval Research Center (Endocrinology and Nephrology division), School of Nutrition, Faculty of Agriculture and Food Sciences, Université Laval, Québec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, Edinburgh, UK
| | - Mélissa Pelletier
- CHU de Québec-Université Laval Research Center (Endocrinology and Nephrology division), School of Nutrition, Faculty of Agriculture and Food Sciences, Université Laval, Québec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Nina Denver
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, Edinburgh, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Brigitte Poirier
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
- Centre des maladies du sein Deschênes-Fabia, Hôpital Saint-Sacrement, Québec, Canada
| | - Sébastien Nguyen
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Brian R Walker
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Francine Durocher
- CHU de Québec-Université Laval Research Center (Endocrinology and Nephrology division), Université Laval Cancer Research Center and Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, Edinburgh, UK
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Caroline Diorio
- Centre des maladies du sein Deschênes-Fabia, Hôpital Saint-Sacrement, Québec, Canada
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, Edinburgh, UK
- University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - André Tchernof
- CHU de Québec-Université Laval Research Center (Endocrinology and Nephrology division), School of Nutrition, Faculty of Agriculture and Food Sciences, Université Laval, Québec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
- Correspondence and Reprint Requests: André Tchernof, PhD, Institut universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Ste-Foy, Y4212, Québec, QC, Canada G1V 4G5. E-mail:
| |
Collapse
|
7
|
Li T, Zhang W, Lin SX. Steroid enzyme and receptor expression and regulations in breast tumor samples - A statistical evaluation of public data. J Steroid Biochem Mol Biol 2020; 196:105494. [PMID: 31610224 DOI: 10.1016/j.jsbmb.2019.105494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
In spite of the significant progress of estrogen-dependent breast cancer (BC) treatment, aromatase inhibitor resistance is a major problem limiting the clinical benefit of this frontier endocrine-therapy. The aim of this study was to determine the differential expression of steroid-converting enzymes between tumor and adjacent normal tissues, as well as their correlation in modulating intratumoral steroid-hormone levels in post-menopausal estrogen-dependent BC. RNA sequencing dataset (n = 1097) of The-Cancer-Genome-Atlas (Breast Invasive Carcinoma) retrieved through the data portal of Genomic Data Commons was used for differential expressions and expression correlation analyses by Mann-Whitney U and Spearman's rank test, respectively. The results showed significant up-regulation of 17β-HSD7 (2.50-fold, p < 0.0001) in BC, supporting its effect in sex-hormone control. Besides, suppression of 11β-HSD1 expression (-8.29-fold, p < 0.0001) and elevation of 11β-HSD2 expression (2.04-fold, p < 0.0001) provide a low glucocorticoid environment diminishing BC anti-proliferation. Furthermore, 3α-HSDs were down-regulated (-1.59-fold, p < 0.01; -8.18-fold, p < 0.0001; -33.96-fold, p < 0.0001; -31.85-fold, p < 0.0001 for type 1-4, respectively), while 5α-reductases were up-regulated (1.41-fold, p < 0.0001; 2.85-fold, p < 0.0001; 1.70-fold, p < 0.0001 for type 1-3, respectively) in BC, reducing cell proliferation suppressers 4-pregnenes, increasing cell proliferation stimulators 5α-pregnanes. Expression analysis indicates significant correlations between 11β-HSD1 with 3α-HSD4 (r = 0.605, p < 0.0001) and 3α-HSD3 (r = 0.537, p < 0.0001). Significant expression correlations between 3α-HSDs were also observed. Our results systematically present the regulation of steroid-converting enzymes and their roles in modulating the intratumoral steroid-hormone levels in BC with a vivid 3D-schema, supporting novel therapy targeting the reductive 17β-HSD7 and proposing a new combined therapy targeting 11β-HSD2 and 17β-HSD7.
Collapse
MESH Headings
- 17-Hydroxysteroid Dehydrogenases/genetics
- 17-Hydroxysteroid Dehydrogenases/metabolism
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cohort Studies
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Databases, Factual/statistics & numerical data
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gonadal Steroid Hormones/genetics
- Gonadal Steroid Hormones/metabolism
- Humans
- Public Sector/statistics & numerical data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Wenfa Zhang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada.
| |
Collapse
|
8
|
McNamara KM, Kannai A, Sasano H. Possible roles for glucocorticoid signalling in breast cancer. Mol Cell Endocrinol 2018; 466:38-50. [PMID: 28687451 DOI: 10.1016/j.mce.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022]
Abstract
Our understanding of breast cancer biology, and our ability to manipulate breast cancers have grown exponentially in the last 20 years. Much of that expansion has focused on the roles of steroids in driving these neoplasms. Initially this research focused on estrogens and progesterone receptors, and more recently on androgen actions in breast cancers. This review aims to make the case for glucocorticoids as the next essential steroid subclass that contributes significantly to our understanding of steroidogenic regulation of these neoplasms. Glucocorticoids have the potential to play multiple roles in the regulation of breast cancers including their control of cellular differentiation, apoptosis and proliferation. Beyond this they also act as a master integrator of organ homeostats in relation to such as circadian rhythms and stress responses. Therefore a better understanding of glucocorticoids and breast cancer could help to explain some of the epidemiological links between circadian disruption and/or stress and breast cancer development. Finally glucocorticoids are currently used during chemotherapeutic treatment in breast cancer therapy and yet results of various studies suggest that this may have an adverse impact on treatment success. This review aims to summarise the current evidence for glucocorticoids as actors in breast cancer and then suggest future essential approaches in order to determine the roles of glucocorticoids in this disease.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan.
| | - Ayako Kannai
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Africander D, Storbeck KH. Steroid metabolism in breast cancer: Where are we and what are we missing? Mol Cell Endocrinol 2018; 466:86-97. [PMID: 28527781 DOI: 10.1016/j.mce.2017.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
It is well-known that breast cancer is hormone-dependent and that steroid hormones exert their mitogenic effects by binding to estrogen, progesterone and androgen receptors. Vital to our understanding and treatment of this malignancy, is the local metabolism of steroid hormones in breast cancer tissue. This review summarises our current knowledge on steroid producing pathways in the adrenal, ovary and breast, while focussing on the availability of specific circulating hormone precursors and steroidogenic enzymes involved in the local synthesis and metabolism of steroid hormones in the breast. Consequently, we highlight alternate pathways that may be instrumental in the etiology of breast cancer.
Collapse
Affiliation(s)
- Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
10
|
Azher S, Azami O, Amato C, McCullough M, Celentano A, Cirillo N. The Non-Conventional Effects of Glucocorticoids in Cancer. J Cell Physiol 2016; 231:2368-73. [PMID: 27115293 DOI: 10.1002/jcp.25408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022]
Abstract
Synthetic corticosteroids are widely used for the treatment of a variety of diseases, including pre-malignant and malignant conditions. In striking contrast, recent evidence suggests that corticosteroids can bear tumor-promoting effects in solid tumors of epithelial origin. We have recently shown that epithelial tissues, including the mucosa of the oral cavity and the skin, are able to modulate the local concentration of active corticosteroids and to produce steroids de novo. This has important clinical and physiopathological implications, because tissue-specific regulation of glucocorticoids plays a key role in the overall effect of these molecules. In the present review of the current English literature, performed using MEDLINE/PubMed/Ovid databases, we collected published evidence to demonstrate that corticosteroids induce effects that are more complex and controversial than previously acknowledged. Published studies clearly demonstrate that this class of molecules influences pathophysiological processes that are strictly related to malignancy, providing the rationale for further investigation. J. Cell. Physiol. 231: 2368-2373, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simra Azher
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
| | - Omid Azami
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
| | - Caterina Amato
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
- Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| | - Antonio Celentano
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
- Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
11
|
McNamara KM, Sasano H. Beyond the C18 frontier: Androgen and glucocorticoid metabolism in breast cancer tissues: The role of non-typical steroid hormones in breast cancer development and progression. Steroids 2015; 103:115-22. [PMID: 26057662 DOI: 10.1016/j.steroids.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/11/2022]
Abstract
Breast cancer's hormonal dependence is well known and has been so for a long time. However in the last two decades great advances have been made in understanding the local metabolism of steroids within tissue. In the form of aromatase inhibition this is already one of the mainstays of breast cancer therapy. This review aims to summarise briefly what is known in terms of the metabolism of C18 steroids but perhaps more importantly to touch on the new developments regarding the importance of the metabolism of androgens and glucocorticoids in breast tissue. It is our hope that this review should provide the reader with a "birds eye view" of the current state of knowledge regarding localised steroid metabolism in the breast.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
12
|
Perks CM, Holly JMP. Hormonal mechanisms underlying the relationship between obesity and breast cancer. Endocrinol Metab Clin North Am 2011; 40:485-507, vii. [PMID: 21889716 DOI: 10.1016/j.ecl.2011.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Given the worldwide epidemic of obesity, it is inevitably an increasingly common comorbidity for women who develop breast cancer; therefore, it is critical to understand its impact on this disease. This review focuses on the influence of obesity on breast cancer development and progression and describes the hormonal factors that may underlie the observations, with particular emphasis on the roles of estrogen, insulin/insulin-like growth factor axis, and adipokines.
Collapse
Affiliation(s)
- Claire M Perks
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK.
| | | |
Collapse
|