1
|
Autoantibodies to PAX5, PTCH1, and GNA11 as Serological Biomarkers in the Detection of Hepatocellular Carcinoma in Hispanic Americans. Int J Mol Sci 2023; 24:ijms24043721. [PMID: 36835134 PMCID: PMC9959316 DOI: 10.3390/ijms24043721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Studies have demonstrated that autoantibodies to tumor-associated antigens (TAAs) may be used as efficient biomarkers with low-cost and highly sensitive characteristics. In this study, an enzyme-linked immunosorbent assay (ELISA) was conducted to analyze autoantibodies to paired box protein Pax-5 (PAX5), protein patched homolog 1 (PTCH1), and guanine nucleotide-binding protein subunit alpha-11 (GNA11) in sera from Hispanic Americans including hepatocellular carcinoma (HCC) patients, patients with liver cirrhosis (LC), patients with chronic hepatitis (CH), as well as normal controls. Meanwhile, 33 serial sera from eight HCC patients before and after diagnosis were used to explore the potential of these three autoantibodies as early biomarkers. In addition, an independent non-Hispanic cohort was used to evaluate the specificity of these three autoantibodies. In the Hispanic cohort, at the 95.0% specificity for healthy controls, 52.0%, 44.0%, and 44.0% of HCC patients showed significantly elevated levels of autoantibodies to PAX5, PTCH1, and GNA11, respectively. Among patients with LC, the frequencies for autoantibodies to PAX5, PTCH1, and GNA11 were 32.1%, 35.7%, and 25.0%, respectively. The area under the ROC curves (AUCs) of autoantibodies to PAX5, PTCH1, and GNA11 for identifying HCC from healthy controls were 0.908, 0.924, and 0.913, respectively. When these three autoantibodies were combined as a panel, the sensitivity could be improved to 68%. The prevalence of PAX5, PTCH1, and GNA11 autoantibodies has already occurred in 62.5%, 62.5%, or 75.0% of patients before clinical diagnosis, respectively. In the non-Hispanic cohort, autoantibodies to PTCH1 showed no significant difference; however, autoantibodies to PAX5, PTCH1, and GNA11 showed potential value as biomarkers for early detection of HCC in the Hispanic population and they may monitor the transition of patients with high-risk (LC, CH) to HCC. Using a panel of the three anti-TAA autoantibodies may enhance the detection of HCC.
Collapse
|
2
|
Vogt B, Chokri I. Characterization of Sonic Hedgehog/Gli1 Signal Expression in Human Ureter Either Un-Stented or Fitted with Double-Pigtail Stent or a Thread. Res Rep Urol 2021; 13:529-533. [PMID: 34345615 PMCID: PMC8324979 DOI: 10.2147/rru.s324192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction The Sonic Hedgehog/Gli1 signal is involved in smooth muscle activity. An experiment showed that the double-pigtail stent caused ureteral inflammation and decreased Gli1 expression in smooth muscle cells. The innovative pigtail-suture stent (JFil® or MiniJFil®) with a thin 0.3F suture thread significantly decreased stent-related symptoms. Fortuitously, a dilation of the ureter containing the sutures was discovered, and a previous study confirmed that the sutures caused less ureteral inflammation than the double-pigtail stent. However, the mechanisms involved in the ureteral dilation are still unknown. In this study, we assessed ureteral Gli1 expression in the human ureter when it was un-stunted or when fitted with a double-pigtail stent or a suture thread. Material and Methods After consent and inclusion of patients in the protocol, nine segments of ureters were collected during cystectomy procedures for bladder cancers. There was no selection or exclusion, and patients with large tumors were included. Gli1 expression was assessed on the histological section to control the reflection of an active hedgehog signal. The expression of Gli1 in smooth muscle cells of the stented ureter was subjectively compared to un-stented ureter. Results A decrease in the intensity of Gli1 expression of smooth muscle cells was observed in all cases of ureter fitted with a double-pigtail stent. For the un-stunted ureters and the ureters fitted with the thin 0.3F suture thread, Gli1 staining of smooth muscle cells was heterogeneous, and the small number of cases did not allow us to conclude. Conclusion Apart from the cases of ureters fitted with the double-pigtail stent, Gli1 expression of smooth muscle was heterogeneous. The Shh/Gli1 pathway may not be involved in ureteral dilation by the thread. A broader exploration of molecular mechanisms could make it possible to obtain the mechanisms involved in the dilation of the ureter by the thread.
Collapse
Affiliation(s)
- Benoît Vogt
- Department of Urology, Polyclinique de Blois, La Chaussée Saint-Victor, 41260, France
| | - Ilham Chokri
- Laboratory of Anatomocytopathology, Laboratoire Léonard de Vinci, Chambray-lès-Tours, 37170, France
| |
Collapse
|
3
|
Chang YH, Tam HL, Lu MC, Huang HS. Gemcitabine-induced Gli-dependent activation of hedgehog pathway resists to the treatment of urothelial carcinoma cells. PLoS One 2021; 16:e0254011. [PMID: 34237099 PMCID: PMC8266077 DOI: 10.1371/journal.pone.0254011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/17/2021] [Indexed: 01/20/2023] Open
Abstract
Patients with urothelial carcinoma (UC) experience gemcitabine resistance is a critical issue. The role of hedgehog pathway in the problem was explored. The expressions of phospho-AKTser473, phospho-GSK3βser9 and Gli2 were up-regulated in gemcitabine-resistant NTUB1 (NGR) cells. Without hedgehog ligands, Gli proteins can be phosphorylated by GSK3β kinase to inhibit their downstream regulations. Furthermore, the GSK3β kinase can be phosphorylated by AKT at its Ser9 residue to become an inactive kinase. Therefore, overexpression of AKT1, Flag-GSKS9D (constitutively inactive form) or active Gli2 (GLI2ΔN) in NTUB1 cells could activate Gli2 pathway to enhance migration/invasion ability and increase gemcitabine resistance, respectively. Conversely, overexpression of Flag-GSKS9A (constitutively active form) or knockdown of Gli2 could suppress Gli2 pathway, and then reduce gemcitabine resistance in NGR cells. Therefore, we suggest gemcitabine-activated AKT/GSK3β pathway can elicit Gli2 activity, which leads to enhanced migration/invasion ability and resistance to gemcitabine therapy in UC patients. The non-canonical hedgehog pathway should be evaluated in the therapy to benefit UC patients.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hoi-Lam Tam
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chien Lu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
5
|
Choi JY, Lee YS, Shim DM, Seo SW. PTCH1 regulates anchorage-independent growth and bone invasion of non-small cell lung cancer cells. Bone 2021; 144:115829. [PMID: 33359005 DOI: 10.1016/j.bone.2020.115829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
Acquisition of metastatic potential by cancer cells is related to cancer stemness and anchorage-independent growth. The onset and progression of cancer are known to involve Hedgehog (HH) signaling that is activated by the binding of HH to the Patched 1 (PTCH1) receptor. However, the functions and mechanisms of action of PTCH1 in the context of bone metastasis remain to be elucidated. In this study, lentivirally-delivered shRNA was used to deplete PTCH1 levels, which resulted in the inhibition of spherical colony formation by the human non-small cell lung cancer (NSCLC) cell line; this suggested that PTCH1 promotes anchorage-independent growth. Concordantly, knockdown of PTCH1 resulted in significantly reduced migration and invasion of NSCLC cells; this was accompanied by the downregulation of MMP7 and SOX2. PTCH1 knockdown resulted in decreased bone destruction and osteoclastogenesis in a mouse bone metastasis model. These results indicate that PTCH1 may be an important regulator of bone invasion, and strongly suggest that knockdown of PTCH1 may decrease the anchorage-independent growth and metastatic potential of NSCLC.
Collapse
Affiliation(s)
- Ji-Yoon Choi
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea
| | - Yun Sun Lee
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea
| | - Da Mi Shim
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea
| | - Sung Wook Seo
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, 5 #50, Ilwon-dong, Gangnam-gu, 135-710, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Lymphatic metastasis of bladder cancer: Molecular mechanisms, diagnosis and targeted therapy. Cancer Lett 2021; 505:13-23. [PMID: 33610730 DOI: 10.1016/j.canlet.2021.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
Bladder cancer is the most common and lethal cancer of the urinary system. Lymphatic metastasis is the primary and main metastatic type of bladder cancer, leading to an extremely poor prognosis in patients. Therefore, a better understanding of molecular mechanisms may provide potential targets for the diagnosis and treatment of lymphatic metastasis in bladder cancer. Herein, we summarize the current knowledge of molecular mechanisms of the lymphatic metastasis in bladder cancer, including lymphangiogenesis and its regulators, noncoding RNAs, and microenvironment-associated molecules. Novel radiomics and genomics approaches have substantially improved the preoperative diagnostic accuracy of lymph node metastasis in patients with bladder cancer. Newly discovered targets may lead to promising therapeutic strategies for clinical intervention in lymphatic metastasis of bladder cancer. More basic and translational studies need to be conducted to further clarify the molecular mechanisms, and identify predictive markers and therapeutic targets of lymphatic metastasis for bladder cancer patients.
Collapse
|
7
|
IL-24 Inhibits Lung Cancer Growth by Suppressing GLI1 and Inducing DNA Damage. Cancers (Basel) 2019; 11:cancers11121879. [PMID: 31783569 PMCID: PMC6966580 DOI: 10.3390/cancers11121879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/18/2023] Open
Abstract
Aberrant expression of GLI1 is responsible for aggressive tumor behavior and survival due to its effects on the DNA damage response (DDR). We investigated whether interleukin (IL)-24, a tumor suppressor, inhibits GLI1 and the associated DDR pathway in human NSCLCs. IL-24 treatment reduces mRNA and protein expression of GLI1 in lung tumor cells, but not in normal cells. GLI1 reporter assay and mRNA studies demonstrated that IL-24 regulates GLI1 at the post-transcriptional level by favoring mRNA degradation. Associated with GLI1 inhibition was marked suppression of the ATM-mediated DDR pathway resulting in increased DNA damage, as evidenced by γ-H2AX foci and Comet assay. Furthermore, attenuation of GLI1-associated DDR by IL-24 increased caspase-3 and PARP activity, resulting in cancer cell apoptosis. GLI1 inhibition and overexpression confirmed that IL-24-mediated anti-tumor effects involved the GLI-dependent pathway. Finally, we observed that IL-24-mediated alteration in GLI1 is independent of the canonical hedgehog-signaling pathway. Our study provides evidence that IL-24 treatment induces DNA damage, and reduces GLI1 expression and offers an opportunity for testing IL-24-based therapy for inhibiting GLI1 in lung cancer.
Collapse
|
8
|
Wu ZS, Ding W, Cai J, Bashir G, Li YQ, Wu S. Communication Of Cancer Cells And Lymphatic Vessels In Cancer: Focus On Bladder Cancer. Onco Targets Ther 2019; 12:8161-8177. [PMID: 31632067 PMCID: PMC6781639 DOI: 10.2147/ott.s219111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer is one of the most commonly diagnosed cancers worldwide and causes the highest lifetime treatment costs per patient. Bladder cancer is most likely to metastasize through lymphatic ducts, and once the lymph nodes are involved, the prognosis is poorly and finitely improved by current modalities. The underlying metastatic mechanism for bladder cancer is thus becoming a research focus to date. To identify relevant published data, an online search of the PubMed/Medline archives was performed to locate original articles and review articles regarding lymphangiogenesis and lymphatic metastasis in urinary bladder cancer (UBC), and was limited to articles in English published between 1998 and 2018. A further search of the clinical trials.gov search engine was conducted to identify both trials with results available and those with results not yet available. Herein, we summarized the unique mechanisms and biomarkers involved in the malignant progression of bladder cancer as well as their emerging roles in therapeutics, and that current data suggests that lymphangiogenesis and lymph node invasion are important prognostic factors for UBC. The growing knowledge about their roles in bladder cancers provides the basis for novel therapeutic strategies. In addition, more basic and clinical research needs to be conducted in order to identify further accurate predictive molecules and relevant mechanisms.
Collapse
Affiliation(s)
- Zhang-song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Wa Ding
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Jiajia Cai
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| | - Ghassan Bashir
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Yu-qing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| |
Collapse
|
9
|
Lim S, Lim SM, Kim MJ, Park SY, Kim JH. Sonic Hedgehog Pathway as the Prognostic Marker in Patients with Extensive Stage Small Cell Lung Cancer. Yonsei Med J 2019; 60:898-904. [PMID: 31538424 PMCID: PMC6753348 DOI: 10.3349/ymj.2019.60.10.898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Sonic hedgehog (Shh) signaling pathway is known to play a crucial role in carcinogenesis in various malignancies, including lung cancer regarding tumorigenesis, angiogenesis, and cellular differentiation. The aim of this study was to investigate the value of components of Shh pathway as a prognostic marker in extensive stage small cell lung cancer (ES-SCLC) patients. MATERIALS AND METHODS We retrospectively analyzed data of 36 patients who were diagnosed with ES-SCLC between 2008 and 2012 at a single center. We performed immuo-histochemistry for glioma-associated oncogene homolog zinc finger protein 1 (Gli1), patched, Shh, and Ptch-mediated repression of smoothened (Smo) proteins using formalin-fixed, paraffin-embedded tissue derived from primary tumors. We then conducted survival analysis to evaluate the prognostic impact of these markers. RESULTS All 36 patients received platinum-based doublet chemotherapy. The median progression free survival and median overall survival were 6.9 months [95% confidence interval (CI), 6.5-7.3] and 11.7 months (95% CI, 9.1-14.3), respectively. The overall response rate was 84%. Of the 36 tissue specimens examined, over-expression of Gli1, Patched, Shh, and Smo was found in 12 (33.3%), five (13.9%), five (13.9%), and six (16.7%) cases, respectively. We found that high expression of Shh was associated with worse progression free survival (6.3 vs. 7.6 months, p=0.005) and overall survival (9.2 vs. 12.0 months, p=0.039) by both univariate and multivariate analyses, whereas other markers were not related to patient prognosis. CONCLUSION A high proportion of small cell lung cancer tumors express proteins related to Shh pathway, and over-expression of Shh is correlated with poor prognosis.
Collapse
Affiliation(s)
- Seungtaek Lim
- Department of Hemato-Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
- Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | | | - Shin Young Park
- Department of Pathology, Daejeon Son Hospital, Daejeon, Korea
| | - Joo Hang Kim
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| |
Collapse
|
10
|
Kotulak-Chrzaszcz A, Klacz J, Matuszewski M, Kmiec Z, Wierzbicki PM. Expression of the Sonic Hedgehog pathway components in clear cell renal cell carcinoma. Oncol Lett 2019; 18:5801-5810. [PMID: 31788053 PMCID: PMC6865145 DOI: 10.3892/ol.2019.10919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and the most aggressive histopathological subtype of kidney cancer, with patients exhibiting high mortality rates for metastatic tumors. The Sonic Hedgehog (SHH) pathway serves a crucial role in embryonic development. The abnormal activity of SHH signaling is observed in a broad range of malignancies. However, its role in ccRCC is still undetermined. The aim of the present study was to assess the expression of the SHH pathway genes in ccRCC. Neoplastic and morphologically unchanged kidney tissues were obtained during radical nephrectomy from 37 patients with ccRCC. The SHH, PTCH1, SMO and GLI1 mRNA levels were assessed using the reverse transcription-quantitative PCR. Western blot analysis was used to assess the full-length and C-terminal SHH protein level. The mRNA levels of SHH, SMO and GLI1 were approximately 2-, 2,5- and 7-fold higher in ccRCC tissue compared with control kidney tissue, respectively. Correlational analysis between the mRNA levels of SHH pathway genes and patients' clinicopathological factors revealed decreased and increased mRNA levels of PTCH1 and SMO respectively, in tumor samples derived from older patients (age >62). Furthermore, the level of C-terminal SHH protein in ccRCC samples was significantly lower in a group of males compared with females. No correlation was exhibited between molecular data and patient survival. Western blot analysis indicated a ~3-fold higher level of SHH full-length protein, and a 4-fold lower level of the C-terminal SHH protein domain, in ccRCC tumor tissues compared with normal kidney samples. The current study indicated an involvement of the SHH pathway in ccRCC development.
Collapse
Affiliation(s)
- Anna Kotulak-Chrzaszcz
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| | - Jakub Klacz
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80402, Poland
| | - Marcin Matuszewski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80402, Poland
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| | - Piotr M Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| |
Collapse
|
11
|
Kitagawa K, Shigemura K, Sung SY, Chen KC, Huang CC, Chiang YT, Liu MC, Huang TW, Yamamichi F, Shirakawa T, Fujisawa M. Possible correlation of sonic hedgehog signaling with epithelial-mesenchymal transition in muscle-invasive bladder cancer progression. J Cancer Res Clin Oncol 2019; 145:2261-2271. [PMID: 31367836 DOI: 10.1007/s00432-019-02987-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/24/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate the role of sonic hedgehog (Shh) signaling and epithelial-mesenchymal transition (EMT) in bladder cancer progression and invasion. METHODS We cultured three bladder cancer cell lines, muscle-invasive T24 and 5637, and non-muscle-invasive KK47, in the presence of a recombinant-Shh (r-Shh) protein or cyclopamine, a Shh signaling inhibitor, to investigate proliferation and expression of EMT markers. Wound-healing assays and transwell assay were performed to evaluate cell invasion and migration. Mice were then inoculated with bladder cancer cells and treated with cyclopamine. Mouse tumor samples were stained for Shh signaling and EMT markers. RESULTS R-Shh protein enhanced cell proliferation, whereas cyclopamine significantly suppressed cell proliferation, especially in invasive cancer (5637 and T24) (p < 0.05). R-Shh protein promoted EMT, suppressed E-cadherin and enhanced N-cadherin and vimentin and Gli1, an Shh downstream molecule, while cyclopamine blocked EMT, especially in 5637 and T24. Cyclopamine also inhibited cell invasion and migration in vitro. In the animal study, intraperitoneal injection of cyclopamine significantly suppressed tumor growth in 5637 and T24 in mice (p = 0.01 and p = 0.004, respectively) and slightly suppressing KK47 tumor growth (p = 0.298). Significant cyclopamine-induced suppression of Gli1 in 5637 and T24 mouse tumors (both p = 0.03) was seen, suggesting that muscle-invasive bladder cancer may be more dependent on Shh signaling than non-muscle-invasive bladder cancer. CONCLUSIONS Shh signaling and EMT were especially enhanced in muscle-invasive bladder cancer progression and invasion, and suppressed by the inhibition of Shh signaling.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan.
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Kuan-Chou Chen
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, 291, Zhongzheng Rd, Zhonghe District, Taipei, 23561, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, College of Medicine, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Yi-Te Chiang
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, 291, Zhongzheng Rd, Zhonghe District, Taipei, 23561, Taiwan
| | - Ming-Che Liu
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, 291, Zhongzheng Rd, Zhonghe District, Taipei, 23561, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Fukashi Yamamichi
- Department of Urology, Hyogo Prefectural Amagasaki Hospital (Current name: Hyogo Prefectural Amagasaki General Medical Center), 2-17-77, Higashi-Namba-cho, Amagasaki, 660-8550, Japan
| | - Toshiro Shirakawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
12
|
Raven PA, Lysakowski S, Tan Z, D'Costa NM, Moskalev I, Frees S, Struss W, Matsui Y, Narita S, Buttyan R, Chavez-Munoz C, So AI. Inhibition of GLI2 with antisense-oligonucleotides: A potential therapy for the treatment of bladder cancer. J Cell Physiol 2019; 234:20634-20647. [PMID: 31012113 DOI: 10.1002/jcp.28669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
The sonic hedgehog (SHH) signaling pathway plays an integral role in the maintenance and progression of bladder cancer (BCa) and SHH inhibition may be an efficacious strategy for BCa treatment. We assessed an in-house human BCa tissue microarray and found that the SHH transcription factors, GLI1 and GLI2, were increased in disease progression. A panel of BCa cell lines show that two invasive lines, UM-UC-3 and 253J-BV, both express these transcription factors but UM-UC-3 produces more SHH ligand and is less responsive in viability to pathway stimulation by recombinant human SHH or smoothened agonist, and less responsive to inhibitors including the smoothened inhibitors cyclopamine and SANT-1. In contrast, 253J-BV was highly responsive to these manipulations. We utilized a GLI1 and GLI2 antisense oligonucleotide (ASO) to bypass pathway mechanics and target the transcription factors directly. UM-UC-3 decreased in viability due to both ASOs but 253J-BV was only affected by GLI2 ASO. We utilized the murine intravesical orthotopic human BCa (mio-hBC) model for the establishment of noninvasive BCa and treated tumors with GLI2 ASO. Tumor size, growth rate, and GLI2 messenger RNA and protein expression were decreased. These results suggest that GLI2 ASO may be a promising new targeted therapy for BCa.
Collapse
Affiliation(s)
- Peter A Raven
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Summer Lysakowski
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Zheng Tan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ninadh M D'Costa
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Igor Moskalev
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Sebastian Frees
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada.,Department of Urology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Werner Struss
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Yoshiyuki Matsui
- Division of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Narita
- Department of Urology and Hemodialysis/Apheresis, Akita University School of Medicine, Akita, Japan
| | - Ralph Buttyan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Claudia Chavez-Munoz
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Alan I So
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Nedjadi T, Salem N, Khayyat D, Al-Sayyad A, Al-Ammari A, Al-Maghrabi J. Sonic Hedgehog Expression is Associated with Lymph Node Invasion in Urothelial Bladder Cancer. Pathol Oncol Res 2018; 25:1067-1073. [PMID: 30361899 PMCID: PMC6614154 DOI: 10.1007/s12253-018-0477-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
Bladder cancer (BC) is a deadly disease characterized by high recurrence rates and frequent progression to an aggressive phenotype. Dysregulation of various signaling pathways have been implicated in BC tumorigenesis, however, the clinical relevance of sonic hedgehog pathway (Shh) remains under investigated. The aim of the current study was to analyze the prognostic value of Shh expression in patients with bladder carcinoma. Immunohistochemical expression of Shh was performed using tissue microarray with 128 specimens from bladder cancer patients. Kaplan-meier survival was analysed and correlation between Shh protein expression and patients' clinicopathological parameters wasexamined using Fisher's exact test. The immuno-staining results revealed that Shh protein exhibits cytoplasmic localization and is expressed in 49% of the analyzed bladder cancer cohort. Our data indicated that high Shh expression significantly correlated with increased lymph node metastasis (p = 0.02), however no association was reported between Shh expression and other clinicopatholigical parameters. High expression of sonic hedgehog was associated with lymph node invasion which may indicate that Shh might play an important role in progression and metastasis of bladder cancer.
Collapse
Affiliation(s)
- Taoufik Nedjadi
- King Abdullah International Medical Research Centre,, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Jeddah, Kingdom of Saudi Arabia.
| | - Nada Salem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dareen Khayyat
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Al-Sayyad
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Al-Ammari
- Department of Urology, King Faisal Specialist Hospital & Research Center, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Zhang R, Huang SY, Ka-Wai Li K, Li YH, Hsu WH, Zhang GJ, Chang CJ, Yang JY. Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through β-TrCP-mediated proteasome degradation. Oncotarget 2018; 8:49869-49881. [PMID: 28562331 PMCID: PMC5564814 DOI: 10.18632/oncotarget.17769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Overexpression of the GLI1 gene has frequently been found in various cancer types, particularly in brain tumors, in which aberrant GLI1 induction promotes cancer cell growth. Therefore, identifying the molecular players controlling GLI1 expression is of clinical importance. Previously, we reported that AMPK directly phosphorylated and destabilized GLI1, resulting in the suppression of the Hedgehog signaling pathway. The current study not only demonstrates that AMPK inhibits GLI1 nuclear localization, but further reveals that β-TrCP plays an essential role in AMPK-induced GLI1 degradation. We found that activation of AMPK promotes the interaction between β-TrCP and GLI1, and induces β-TrCP-mediated GLI1-ubiquitination and degradation. Inhibiting AMPK activity results in the dissociation of the β-TrCP and GLI1 interaction, and diminishes β-TrCP-mediated-GLI1 ubiquitination and degradation. On GLI1, substitution of AMPK phosphorylation sites to aspartic acid (GLI13E) results in stronger binding affinity of GLI1 with β-TrCP, accompanied by enhanced GLI1 ubiquitination and later degradation. In contrast, the GLI1 alanine mutant (GLI13A) shows weaker binding with β-TrCP, which is accompanied by reduced β-TrCP-mediated ubiquitination and degradation. Together, these results demonstrate that AMPK regulates GLI1 interaction with β-TrCP by phosphorylating GLI1 and thus both post-translational modifications by AMPK and β-TrCP ultimately impact GLI1 degradation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Sherri Y Huang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Kay Ka-Wai Li
- /F of Cancer Centre, Prince of Wales Hospital, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yen-Hsing Li
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Wei-Hsuan Hsu
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Guang Jun Zhang
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Chun-Ju Chang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
15
|
Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, Gismondi A, Santoni G. Capsaicin triggers autophagic cell survival which drives epithelial mesenchymal transition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget 2018; 7:50180-50194. [PMID: 27367032 PMCID: PMC5226576 DOI: 10.18632/oncotarget.10326] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer (BC) is a common urologic tumor characterized by high risk of recurrence and mortality. Capsaicin (CPS), used as an intravesical drug for overactive bladder, was demonstrated to induce cell death in different cancer cells including BC cells. Here we found that treatment of high-grade BC cells with high dose of CPS triggers autophagy. Infact, the CPS treatment alters the redox homeostasis by inducing production of radicals, mitochondrial depolarization, alterations of ADP/ATP ratio and activation of AMPK pathway stimulating the autophagic process in BC cells. The inhibition of autophagy, by using the specific inhibitor bafilomycin A or Beclin 1 knock-down, enhanced the CPS-induced cell death, demonstrating that CPS-induced autophagy acts as a pro-survival process in BC cells. By using PCR arrays and FACS analysis, we found that the CPS-treated BC cells displayed typical mesenchymal features of the epithelial mesenchymal transition (EMT) as elongated shape and over-expression of vimentin, α5 and β1 integrin subunits, integrin-like kinase and the anti-apoptotic Bcl-2 proteins. Moreover, we demonstrated that CPS treatment stimulates upregulation of Dhh/Ptch2/Zeb2 members of the Hedgehog signaling pathway, increases CD24, VEGFA and TIMP1 and decreases CD44 and ALCAM mRNA expression levels. By PTCH2 knock-down we found that the Hedgehog signaling pathway is involved in the CPS-induced autophagy and EMT phenotype. Finally, we also showed that the CPS-resistant EMT-positive BC cells displayed an increased drug-resistance to the cytotoxic effects of mitomycin C, gemcitabine and doxorubicine drugs commonly used in BC therapy.
Collapse
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Claudio Cardinali
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Matteo Santoni
- Department of Medical Oncology, Polytechnic University of Marche, Ancona, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
16
|
Zhang F, Ren CC, Liu L, Chen YN, Yang L, Zhang XA, Wang XM, Yu FJ. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway. J Cell Biochem 2017; 119:3829-3842. [PMID: 28941302 DOI: 10.1002/jcb.26414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The study aimed to investigate the mechanism by which the sonic Hedgehog (SHH) gene silencing acts upon epithelial-mesenchymal transition (EMT), proliferation, invasion, and migration of cervical cancer (CC) cells via the Hedgehog signaling pathway. RT-qPCR and Western blotting were all employed to detect the SHH mRNA and protein expressions. HeLa and CasKi cells were cultured and subsequently divided into the blank, negative control (NC), and SHH-RNAi groups. A cell counting kit-8 (CCK-8) assay was utilized for cell proliferation. Cell migration and invasion ability were evaluated through scratching test and Transwell assay. The mRNA and protein expressions of the Hedgehog signaling pathway-related factors were detected using RT-qPCR and Western blotting, respectively. After tumor xenograft in nude mice, tumor growth was subsequently observed. SHH mRNA and protein expressions were greater in the SHH-RNAi group than in the blank and NC groups. Compared with the blank group and NC groups, the SHH-RNAi group displayed inhibited levels of proliferation, migration, invasion abilities, as well as a decreased in the Hh signaling pathway-related factors, as well as a reduction in the mRNA and protein expressions of N-cadherin and Vimentin, however, on the contrary increased expressions of E-cadherin were observed. Following tumor xenograft in nude mice, tumor growth was exhibited vast levels of inhibition, particularly in the SHH-RNAi group in comparison to the blank and the NC groups. During the study it was well established that SHH gene silencing suppresses EMT, proliferation, invasion, and migration of CC cells through the repression of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yan-Nan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-Ming Wang
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| | - Feng-Jing Yu
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
17
|
Montagna E, Lopes OS. Molecular basis of basal cell carcinoma. An Bras Dermatol 2017; 92:517-520. [PMID: 28954101 PMCID: PMC5595599 DOI: 10.1590/abd1806-4841.20176544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/22/2017] [Indexed: 12/11/2022] Open
Abstract
Basal cell carcinoma is the most common cancer, presenting low mortality but high
morbidity, and it has as risk factor exposure to sunlight, especially UVB
spectrum. The most important constitutional risk factors for basal cell
carcinoma development are clear phototypes (I and II, Fitzpatrick
classification), family history of basal cell carcinoma (30-60%), freckles in
childhood, eyes and light hair. The environmental risk factor better established
is exposure to ultraviolet radiation. However, different solar exposure
scenarios probably are independent risk factors for certain clinical and
histological types, topographies and prognosis of this tumor, and focus of
controversy among researchers. Studies confirm that changes in cellular genes
Hedgehog signaling pathway are associated with the development of basal cell
carcinoma. The cellular Hedgehog signaling pathway is activated in
organogenesis, but is altered in various types of tumors.
Collapse
Affiliation(s)
- Erik Montagna
- Postgraduate, Research and Innovation Center, Faculdade de Medicina do ABC (FMABC) - Santo André (SP), Brazil
| | - Otávio Sérgio Lopes
- Research Center of the Clínica Dermatológica Santa Catarina - João Pessoa (PB), Brazil.,Departament of Dermatology of Faculty of Medical Sciences of Santa Casa de São Paulo (FCMSCSP) - São Paulo (SP), Brazil
| |
Collapse
|
18
|
Tajima Y, Murakami T, Saito T, Hiromoto T, Akazawa Y, Sasahara N, Mitomi H, Yao T, Watanabe S. Distinct Involvement of the Sonic Hedgehog Signaling Pathway in Gastric Adenocarcinoma of Fundic Gland Type and Conventional Gastric Adenocarcinoma. Digestion 2017; 96:81-91. [PMID: 28738329 DOI: 10.1159/000478999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Gastric adenocarcinoma of fundic gland type (GAFG), which is a rare variant of gastric cancer, is reportedly associated with both Wnt/β-catenin signaling activation and guanine nucleotide binding protein, alpha stimulating complex (GNAS) mutations. This study aimed to elucidate potential roles of the Sonic hedgehog (Shh) signaling pathway in GAFG. METHODS We performed immunostaining for β-catenin and Shh signal-associated proteins, including Patched (Ptch), Smoothened (Smo), and Glioma-associated oncogene-1 (Gli1), and the direct sequencing of GNAS/BRAF/KRAS in 27 GAFGs, and compared them with 30 conventional gastric adenocarcinomas (CGAs). RESULTS GAFGs exhibited significantly lower immunoreactivity scores for Ptch, Smo, and Gli1 than CGAs. Moreover, while the Ptch score was significantly lower in the GAFG tumor areas than in the non-neoplastic areas adjacent to GAFG, the score was significantly higher in the CGA tumor areas than in the non-neoplastic areas. Similar trends were observed in the scores for Smo and Gli1. β-Catenin expression and GNAS mutations were found in 22 (81%) and 8 (30%) of the 27 GAFGs respectively. Gli1 expression was significantly associated with mutations in GNAS. CONCLUSION GAFG and CGA exhibited distinct Ptch, Smo, and Gli1 expression patterns. Downregulation of the Shh signaling pathway, as well as activation of the Wnt/β-catenin signaling pathway, may therefore be associated with tumorigenesis in GAFG.
Collapse
Affiliation(s)
- Yuzuru Tajima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fang D, Kitamura H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol 2017; 25:7-17. [PMID: 28697535 DOI: 10.1111/iju.13404] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
There is growing evidence of the presence of cancer stem cells in urothelial carcinoma. Cancer stem cells have the ability to self-renew and to differentiate into all cell types of the original heterogeneous tumor. A panel of diverse cancer stem cell markers might be suitable for simulation studies of urothelial cancer stem cells and for the development of optimized treatment protocols. The present review focuses on the advances in recognizing the markers of urothelial cancer stem cells and possible therapeutic targets. The commonly reported markers and pathways that were evaluated include CD44, CD133, ALDH1, SOX2 & SOX4, BMI1, EZH1, PD-L1, MAGE-A3, COX2/PGE2/STAT3, AR, and autophagy. Studies on the epithelial-mesenchymal transition-related pathways (Shh, Wnt/β-catenin, Notch, PI3K/Akt, TGF-β, miRNA) are also reviewed. Most of these markers were recognized through the expression patterns of cancer stem cell-rich side populations. Their regulative role in the development and differentiation of urothelial cancer stem cells was confirmed in vitro by functional analyses (e.g. cell migration, colony formation, sphere formation), and in vivo in xenograft experiments. Although a small number of these pathways are targeted by currently available drugs or drugs that are the currently being tested in clinical trials, a clear treatment approach has not been developed for most pathways. A greater understanding of the mechanisms that control the proliferation and differentiation of cancer stem cells is expected to lead to improvements in targeted therapy.
Collapse
Affiliation(s)
- Dong Fang
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan.,Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Zhao H, Tang H, Xiao Q, He M, Zhao L, Fu Y, Wu H, Yu Z, Jiang Q, Yan Y, Jin F, Wei M. The Hedgehog signaling pathway is associated with poor prognosis in breast cancer patients with the CD44+/CD24− phenotype. Mol Med Rep 2016; 14:5261-5270. [DOI: 10.3892/mmr.2016.5856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
|
21
|
Kobayashi T. Understanding the biology of urothelial cancer metastasis. Asian J Urol 2016; 3:211-222. [PMID: 29264189 PMCID: PMC5730871 DOI: 10.1016/j.ajur.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
Collapse
|
22
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
23
|
Cheng J, Gao J, Tao K. Prognostic role of Gli1 expression in solid malignancies: a meta-analysis. Sci Rep 2016; 6:22184. [PMID: 26899488 PMCID: PMC4762019 DOI: 10.1038/srep22184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
Gli1 is a downstream transcriptional factor of Sonic hedgehog pathway in mammalians, and has been recognized as a proliferative indicator of carcinogenesis. However, its actual role in prognosis among solid malignancies remains unclear. Therefore we performed this meta-analysis aiming to discover the correlation between Gli1 positivity and clinical prognosis in patients suffering from diverse carcinomas. A total of 39 studies containing 4496 cases were selected into our quantitative analysis via electronic database search. Original data of 3-year, 5-year, 10-year overall survival and disease-free survival were extracted and calculated using odds ratio and Mantel-Haenszel model. Subgroup analysis was also conducted to clarify the possible confounding factors. P < 0.05 was considered significant in statistics. Gli1 redundancy was associated with worse 3-year, 5-year, 10-year overall survival and disease-free survival in solid malignancies. Different source regions, sample-size, mean-age and detection approaches had no impact on the negative prognostic effect of Gli1 over-expression. Nevertheless, stratified by cancer type and subcellular localization, cytoplasmic Gli1 expression and Gli1 positivity in intracranial tumors was not correlated to poorer 3-year and 5-year prognosis. The over-expression of Gli1 is a credible indicator of poorer prognosis in most of solid malignancies, irrespective of intracranial tumors.
Collapse
Affiliation(s)
- Ji Cheng
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
24
|
Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol Ther 2015; 158:71-90. [PMID: 26706243 DOI: 10.1016/j.pharmthera.2015.12.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Despite advances in anti-cancer therapies such as chemotherapy, radiotherapy and targeted therapies, five-year survival rates remain poor (<15%). Inherent and acquired resistance has been identified as a key factor in reducing the efficacy of current cytotoxic therapies in the management of non-small cell lung cancer (NSCLC). There is growing evidence suggesting that cancer stem cells (CSCs) play a critical role in tumor progression, metastasis and drug resistance. Similar to normal tissue stem cells, CSCs exhibit significant phenotypic and functional heterogeneity. While CSCs have been reported in a wide spectrum of human tumors, the biology of CSCs in NSCLC remain elusive. Current anti-cancer therapies fail to eradicate CSC clones and instead, favor the expansion of the CSC pool and select for resistant CSC clones thereby resulting in treatment resistance and subsequent relapse in these patients. The identification of CSC-specific marker subsets and the targeted therapeutic destruction of CSCs remains a significant challenge. Strategies aimed at efficient targeting of CSCs are becoming increasingly important for monitoring the progress of cancer therapy and for evaluating new therapeutic approaches. This review focuses on the current knowledge of cancer stem cell markers in treatment-resistant lung cancer cells and the signaling cascades activated by these cells to maintain their stem-like properties. Recent progress in CSC-targeted drug development and the current status of novel agents in clinical trials are also reviewed.
Collapse
Affiliation(s)
- Gemma Leon
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Lauren MacDonagh
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland; Department of Histopathology, St James's Hospital, Dublin 8, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
25
|
Duan ZH, Wang HC, Zhao DM, Ji XX, Song M, Yang XJ, Cui W. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer. Cancer Sci 2015; 106:1084-91. [PMID: 25990213 PMCID: PMC4556399 DOI: 10.1111/cas.12697] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 01/24/2023] Open
Abstract
Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients’ prognosis.
Collapse
Affiliation(s)
- Zhao-Heng Duan
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Hao-Chuan Wang
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Dong-Mei Zhao
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xin Ji
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Min Song
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiao-Jun Yang
- Center for Neuroscience, Medical College of Shantou University, Shantou, China
| | - Wei Cui
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
26
|
The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients. Clin Sci (Lond) 2015. [PMID: 26201092 DOI: 10.1042/cs20140592] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.
Collapse
|
27
|
Gustafson TL, Kitchell BE, Biller B. Hedgehog signaling is activated in canine transitional cell carcinoma and contributes to cell proliferation and survival. Vet Comp Oncol 2015; 15:174-183. [PMID: 25864514 DOI: 10.1111/vco.12149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/11/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023]
Abstract
Transitional cell carcinoma (TCC) is the most commonly diagnosed tumor of the canine urinary system. Hedgehog (HH) signaling represents one possible novel therapeutic target, based on its recently identified central role in human urothelial carcinoma. The purpose of this study was to determine if HH mediators are expressed in canine TCC and the effect of inhibition of this pathway on cell growth and survival. HH pathway mediators were found to be expressed in five canine TCC cell lines. Indian HH was expressed in tumor cells in five canine bladder tumor tissues, but not in normal canine bladder tissue. Inhibition of HH signaling with cyclopamine and GANT61 led to significantly decreased cell proliferation but had a smaller effect on apoptosis. These results support future investigation of inhibitors of HH signaling in the treatment of canine TCC.
Collapse
Affiliation(s)
- T L Gustafson
- Colorado State University, Animal Cancer Center, Fort Collins, CO, USA
| | - B E Kitchell
- VCA Veterinary Care Animal Hospital and Referral Center, Oncology, Albuquerque, NM, USA
| | - B Biller
- Colorado State University, CVMBS-VTH, Animal Cancer Center, Fort Collins, CO, USA
| |
Collapse
|
28
|
Islam SS, Mokhtari RB, Noman AS, Uddin M, Rahman MZ, Azadi MA, Zlotta A, van der Kwast T, Yeger H, Farhat WA. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog 2015; 55:537-51. [PMID: 25728352 DOI: 10.1002/mc.22300] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 01/06/2015] [Accepted: 01/14/2015] [Indexed: 01/15/2023]
Abstract
Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the ability to reverse the EMT phenotype of tumor cells and potentially inhibit bladder cancer progression and metastasis.
Collapse
Affiliation(s)
- S S Islam
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Urology, The Hospital for Sick Children, Toronto, ON, Canada
| | - R B Mokhtari
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - A S Noman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - M Uddin
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Z Rahman
- Department of Pathology, Chittagong Medical College, Chittagong, Bangladesh
| | - M A Azadi
- Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - A Zlotta
- Department of Uro-Oncology, Mount Sinai Hospital, Toronto, ON, Canada
| | - T van der Kwast
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - H Yeger
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - W A Farhat
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Urology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
29
|
Hwang J, Kang MH, Yoo YA, Quan YH, Kim HK, Oh SC, Choi YH. The effects of sonic hedgehog signaling pathway components on non-small-cell lung cancer progression and clinical outcome. World J Surg Oncol 2014; 12:268. [PMID: 25141859 PMCID: PMC4155123 DOI: 10.1186/1477-7819-12-268] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023] Open
Abstract
Background Researchers in recent studies have reported that the sonic hedgehog (Shh) signaling pathway plays a crucial role during tumorigenesis, angiogenesis and cellular differentiation. We investigated the clinical and pathological significances of the Shh pathway and of its lymphangiogenic components in non-small-cell lung cancer (NSCLC), namely, Shh, glioma-associated oncogene homolog zinc finger protein 1 (Gli1), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and vascular endothelial growth factor D (VEGF-D). Methods The expression of Shh, Gli1, LYVE-1 and VEGF-D in primary NSCLC tissue from 40 patients was examined using immunohistochemical assays, and relationships between expression and clinicopathological data, such as age, gender, histology, tumor size, nodal stage, visceral pleural invasion, lymphatic thromboembolism, recurrence and overall survival were investigated. Results Of the 40 specimens examined, 25 (62.5%), 20 (50.0%), 11 (27.5%) and 20 (50.0%) were positive for Shh, Gli1, LYVE-1 or VEGF-D expression, respectively. The expression of Gli1 and LYVE-1 were significantly associated (P = 0.011), and Shh and LYVE-1 expression was related to visceral pleural invasion and lymphatic thromboembolism, respectively (P < 0.05). Shh expression levels compared on survival curves were statistically significant in univariate logrank analysis (P = 0.020). However, other clinicopathological factors did not reveal any statistical significance in univariate and multivariate analyses. Conclusions To our knowledge, this the first report of the relationship between components of the Shh signaling pathway and prognosis in NSCLC. The expression of Shh, Gli1 and LYVE-1 was found to be associated with clinicopathological factors and survival. Thus, the overexpression of the Shh signaling pathway could serve as a predictor of malignant behavior, including lymphangiogenesis, in NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Hyun Koo Kim
- Division of Oncology/Hematology, Departments of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 97 Guro-dong kil, Guro-ku, Seoul 152-703, Republic of Korea.
| | | | | |
Collapse
|
30
|
Ishikawa M, Sonobe M, Imamura N, Sowa T, Shikuma K, Date H. Expression of the GLI family genes is associated with tumor progression in advanced lung adenocarcinoma. World J Surg Oncol 2014; 12:253. [PMID: 25103784 PMCID: PMC4249769 DOI: 10.1186/1477-7819-12-253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 07/20/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The hedgehog (Hh) signaling pathway is aberrantly activated in various cancers. Expression of the GLI family of genes, which encode for transcriptional factors of the Hh pathway, has not been fully assessed in clinical samples of advanced lung adenocarcinoma. In this study, we retrospectively evaluated the expression of the GLI family of genes in advanced stage lung adenocarcinoma samples and determined their relation to patient survival. METHODS The levels of GLI1, GLI2, and GLI3 mRNA expression were measured by quantitative real-time polymerase chain reaction in surgically obtained tissue samples from stage II-IV lung adenocarcinoma patients (n = 102). Pairwise comparisons between all three GLI mRNA expression were performed, and after dichotomizing the patients into low and high expression groups according to each GLI mRNA expression level, survival curves were calculated and multivariate analyses were conducted. RESULTS Significant positive correlation was found between GLI1 and GLI3 mRNA expression (P <0.001). Tumors with higher expression (upper 15%) of GLI1 or GLI3 mRNA were associated with poor survival in stage II-IV (5-year overall survival rates: GLI1 mRNA low, 41.7% vs. high, 20.0%, P = 0.0074; GLI3 mRNA low, 43.1% vs. high, 13.3%, P = 0.0062) and stage III-IV (5-year overall survival rates: GLI1 mRNA low, 34.0% vs. high, 0%, P = 0.0012; GLI3 mRNA low, 33.4% vs. high, 7.7%, P = 0.057) lung adenocarcinoma patients. GLI2 mRNA expression did not appear to have great clinical significance. Multivariate analysis revealed higher GLI1 mRNA expression as an independent factor for unfavorable patient survival (P = 0.0030, hazard ratio = 3.1, 95% confidence interval = 1.5-6.2), as well as tumor differentiation and stage. CONCLUSIONS Expression of GLI1 and GLI3 mRNA was strongly correlated, and their overexpression, especially that of GLI1, was found to be predictive of aggressive tumor behavior. This study indicates that the Hh pathway may be a key oncogenic signaling network in tumor pathogenesis and, thus, a potential therapeutic target in advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Jäger W, Thomas C, Fazli L, Hurtado-Coll A, Li E, Janssen C, Gust KM, So AI, Hainz M, Schmidtmann I, Roos FC, Thüroff JW, Brenner W, Black PC. DHH is an independent prognosticator of oncologic outcome of clear cell renal cell carcinoma. J Urol 2014; 192:1842-8. [PMID: 25046620 DOI: 10.1016/j.juro.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE Aberrant HH signaling has proved important in the pathogenesis of several solid cancers. Limited in vitro analyses suggested an oncogenic role for HH in renal cell carcinoma. In this explorative study we sought to validate aberrant HH expression in patients with renal cell carcinoma. MATERIALS AND METHODS A tissue microarray was constructed from 140 radical nephrectomy specimens of patients with clear cell renal cell carcinoma. We performed immunohistochemistry for Ki67 and HH pathway biomarkers, including PTCH1, Smo, SHH, IHH, DHH, Gli1, Gli2 and Gli3. Staining intensity was measured by automated image processing and related to tumor stage and grade. The impact of biomarker expression on cancer specific survival was determined by univariate and multivariate Cox regression analysis. RESULTS Gli3, PTCH1, DHH and SHH demonstrated markedly higher expression in high than in low grade tumors. Tumor stage was not associated with marker expression. On univariate analysis DHH expression, and tumor grade and stage were associated with cancer specific survival. Multivariate analysis revealed that DHH, grade and stage were independent predictors of cancer specific survival. CONCLUSIONS To our knowledge we report for the first time that a biomarker of the HH pathway is associated with adverse pathological features and poor disease outcomes in patients with clear cell renal cell carcinoma. DHH may serve as an independent predictor of cancer specific survival in clear cell renal cell carcinoma cases. This supports further evaluation of HH signaling to validate the pathway as a target for novel therapy.
Collapse
Affiliation(s)
- Wolfgang Jäger
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Christian Thomas
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Ladan Fazli
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonio Hurtado-Coll
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Estelle Li
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claudia Janssen
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Kilian M Gust
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alan I So
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Hainz
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, Johannes Gutenberg University, Mainz, Germany
| | - Frederik C Roos
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Joachim W Thüroff
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Walburgis Brenner
- Department of Urology, Johannes Gutenberg University, Mainz, Germany
| | - Peter C Black
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Sverrisson EF, Zens MS, Fei DL, Andrews A, Schned A, Robbins D, Kelsey KT, Li H, DiRenzo J, Karagas MR, Seigne JD. Clinicopathological correlates of Gli1 expression in a population-based cohort of patients with newly diagnosed bladder cancer. Urol Oncol 2014; 32:539-45. [PMID: 24856810 PMCID: PMC4243987 DOI: 10.1016/j.urolonc.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Dysregulation of the hedgehog signaling pathway has been linked to the development and progression of a variety of different human tumors including cancers of the skin, brain, colon, prostate, blood, and pancreas. We assessed the clinicopathological factors that are potentially related to expression of Gli1, the transcription factor that is thought to be the most reliable marker of hedgehog pathway activation in bladder cancer. METHODS Bladder cancer cases were identified from the New Hampshire State Cancer Registry as histologically confirmed primary bladder cancer diagnosed between January 1, 2002, and July 31, 2004. Immunohistochemical analysis was performed on a tissue microarray to detect Gli1 and p53 expression in these bladder tumors. We computed odds ratios (ORs) and their 95% CIs for Gli1 positivity for pathological category using T category (from TNM), invasiveness, and grade with both the World Health Organization 1973 and World Health Organization International Society of Urological Pathology criteria. We calculated hazard ratios and their 95% CI for Gli1 positivity and recurrence for both Ta-category and invasive bladder tumors (T1+). RESULTS A total of 194 men and 67 women, whose tumors were assessable for Gli1 staining, were included in the study. No appreciable differences in Gli1 staining were noted by sex, age, smoking status, or high-risk occupation. Ta-category tumors were more likely to stain for Gli1 as compared with T1-category tumors (adjusted OR = 0.38, CI: 0.17-0.87). Similarly, low-grade (grades 1-2) tumors were more likely to stain for Gli1 as compared with high-grade tumors (grade 3) (adjusted OR = 0.44, CI: 0.21-0.93). In a Cox proportional hazards regression analysis, non-muscle-invasive bladder tumors expressing Gli1 were less likely to recur (adjusted hazard ratio = 0.48; CI: 0.28-0.82; P<0.05) than those in which Gli1 was absent. CONCLUSION Our findings indicate that Gli1 expression may be a marker of low-stage, low-grade bladder tumors and an indicator of a reduced risk of recurrence in this group.
Collapse
Affiliation(s)
- Einar F Sverrisson
- Department of Surgery (Urology), Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Michael S Zens
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Dennis Liang Fei
- Cancer Biology Section, National Institutes of Health, Bethesda, MD
| | - Angeline Andrews
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Alan Schned
- Department of Pathology (Urology), Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - David Robbins
- Molecular Oncology Program, Department of Surgery, University of Miami, Miami, FL
| | - Karl T Kelsey
- Department of Community Health, Brown University, Providence, RI
| | - Hua Li
- Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - James DiRenzo
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Margaret R Karagas
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - John D Seigne
- Department of Surgery (Urology), Dartmouth-Hitchcock Medical Center, Lebanon, NH.
| |
Collapse
|
33
|
Hong Z, Bi A, Chen D, Gao L, Yin Z, Luo L. Activation of hedgehog signaling pathway in human non-small cell lung cancers. Pathol Oncol Res 2014; 20:917-22. [PMID: 24710823 DOI: 10.1007/s12253-014-9774-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
The activation of the hedgehog pathway, which is an important signaling mechanism crucial in embryogenesis, has strong links to carcinogenesis. Aberrant regulation of this pathway can result in the development of tumors. The present study was designed to investigate Hh related protein expression in non-small cell lung cancers. Fifty five non-small cell lung cancers samples were used in the study. By reverse transcription-polymerase chain reaction (RT-PCR), the expression of Shh, Ptch-1, and Gli-1 in tumor and adjacent normal tissues was examined and associated to clinical pathologic features. The expression levels of Shh, Ptch-1, Gli-1 in non-small cell lung cancer tissues were 63.64, 69.09, 43.64 %, respectively, higher than that in the adjacent normal tissues. Survival analysis showed that both Ptch-1 and Gli-1 expression were associated with poor survival (both P <0.05, log-rank test). Shh and Ptch-1 expression were correlated with lymph node metastasis. These results suggest that dysregulation of Hh signaling pathway plays an important role in the development of human NSCLCs. The expression of Ptch-1 and Gli-1 is possibly involved in NSCLCs progression, which may be a useful prognostic indicator of NSCLCs.
Collapse
Affiliation(s)
- Zhuan Hong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, 22 Hankou Road, Nanjing, 210093, Poeple's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Che L, Yuan YH, Jia J, Ren J. Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients. Chin J Cancer Res 2013. [PMID: 23359030 DOI: 10.1007/s11670-012-0271-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The activation of hedgehog (HH) pathway is implicated in the development of human malignancies including hepatocellular carcinoma (HCC). However, the clinical impact of HH activation in HCC patients is still unclear. This study was conducted to confirm whether the expression of HH pathway components was associated with HCC progression and clinical outcome. METHODS This study was a sample-expanded and prolonged follow up of one of our previous studies. It included 46 HCC patients who underwent surgical treatment from 2002 to 2005. The expression of sonic HH (SHH), patched-1 (PTCH1), smoothened (SMOH) and glioma-associated oncogene-1 (GLI1) genes in tumor and adjacent normal tissues extracted from the patients were examined by reverse transcription-polymerase chain reaction (RT-PCR) to explore the relationship between these genes and the clinical prognosis of HCC. RESULTS The expression levels of SHH, PTCH1, SMOH and GLI1 in HCC tissues were 60.87%, 50.00%, 32.61% and 54.35%, respectively. The expression levels of SHH-related molecules were relatively intense in cancer tissue, but insignificantly correlated with any clinicopathological factors of tumor. Transcriptional factor GLI1 was the only molecule associated with poor prognosis among the HCC patients. The expression of GLI1 gene in tumor tissues was significantly related with disease-free survival (DFS) (P=0.042) and overall survival (OS) (P=0.030). The simultaneous expression of GLI1 in tumor and adjacent normal liver tissues correlated with DFS (P<0.029) and OS (P<0.025). CONCLUSIONS HH signaling activation is an important event in the development of human HCC. The expression of GLI1 in SHH pathway is possibly involved in HCC progression, which may be a useful prognostic indicator of HCC.
Collapse
Affiliation(s)
- Li Che
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Medical Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | | | | |
Collapse
|
35
|
Che L, Yuan YH, Jia J, Ren J. Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients. Chin J Cancer Res 2013; 24:323-31. [PMID: 23359030 DOI: 10.3978/j.issn.1000-9604.2012.10.10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/30/2012] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The activation of hedgehog (HH) pathway is implicated in the development of human malignancies including hepatocellular carcinoma (HCC). However, the clinical impact of HH activation in HCC patients is still unclear. This study was conducted to confirm whether the expression of HH pathway components was associated with HCC progression and clinical outcome. METHODS This study was a sample-expanded and prolonged follow up of one of our previous studies. It included 46 HCC patients who underwent surgical treatment from 2002 to 2005. The expression of sonic HH (SHH), patched-1 (PTCH1), smoothened (SMOH) and glioma-associated oncogene-1 (GLI1) genes in tumor and adjacent normal tissues extracted from the patients were examined by reverse transcription-polymerase chain reaction (RT-PCR) to explore the relationship between these genes and the clinical prognosis of HCC. RESULTS The expression levels of SHH, PTCH1, SMOH and GLI1 in HCC tissues were 60.87%, 50.00%, 32.61% and 54.35%, respectively. The expression levels of SHH-related molecules were relatively intense in cancer tissue, but insignificantly correlated with any clinicopathological factors of tumor. Transcriptional factor GLI1 was the only molecule associated with poor prognosis among the HCC patients. The expression of GLI1 gene in tumor tissues was significantly related with disease-free survival (DFS) (P=0.042) and overall survival (OS) (P=0.030). The simultaneous expression of GLI1 in tumor and adjacent normal liver tissues correlated with DFS (P<0.029) and OS (P<0.025). CONCLUSIONS HH signaling activation is an important event in the development of human HCC. The expression of GLI1 in SHH pathway is possibly involved in HCC progression, which may be a useful prognostic indicator of HCC.
Collapse
Affiliation(s)
- Li Che
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Medical Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | | | | |
Collapse
|
36
|
Zhang D, Cao L, Li Y, Lu H, Yang X, Xue P. Expression of glioma-associated oncogene 2 (Gli 2) is correlated with poor prognosis in patients with hepatocellular carcinoma undergoing hepatectomy. World J Surg Oncol 2013; 11:25. [PMID: 23356443 PMCID: PMC3565946 DOI: 10.1186/1477-7819-11-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/06/2013] [Indexed: 02/04/2023] Open
Abstract
Background Our previous studies showed that glioma-associated oncogene (Gli)2 plays an important role in the proliferation and apoptosis resistance of hepatocellular carcinoma (HCC) cells. The aim of this study was to explore the clinical significance of Gli2 expression in HCC. Methods Expression of Gli2 protein was detected in samples from 68 paired HCC samples, the corresponding paraneoplastic liver tissues, and 20 normal liver tissues using immunohistochemistry. Correlation of the immunohistochemistry results with clinicopathologic parameters, prognosis, and the expression of E-cadherin, N-cadherin, and vimentin were analyzed. Results Immunohistochemical staining showed high levels of Gli2 protein expression in HCC, compared with paraneoplastic and normal liver tissues (P < 0.05). This high expression level of Gli2 was significantly associated with tumor differentiation, encapsulation, vascular invasion, early recurrence, and intra-hepatic metastasis (P < 0.05). There was a significantly negative correlation between Gli2 and E-cadherin expression (r = −0.302, P < 0.05) and a significantly positive correlation between expression of Gli2 and expression of vimentin (r = −0.468, P < 0.05) and N-cadherin (r = −0.505, P < 0.05). Kaplan-Meier analysis showed that patients with overexpressed Gli2 had significantly shorter overall survival and disease-free survival times (P < 0.05). Multivariate analysis suggested that the level of Gli2 expression was an independent prognostic factor for HCC. Conclusions Expression of Gli2 is high in HCC tissue, and is associated with poor prognosis in patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical College, No, 250, East Changgang Road, Guangzhou 510260, China
| | | | | | | | | | | |
Collapse
|
37
|
Down-regulation of the ErbB3 binding protein 1 in human bladder cancer promotes tumor progression and cell proliferation. Mol Biol Rep 2013; 40:3799-805. [PMID: 23283744 DOI: 10.1007/s11033-012-2458-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/18/2012] [Indexed: 01/23/2023]
Abstract
The ErbB3 binding protein 1 (Ebp1) represents a downstream effector of the ErbB signaling network and has been demonstrated to be a potent tumor suppressor in various human malignancies, however, its involvement in human bladder cancer is still unclear.To investigate the clinical significance and potential role of ErbB3 binding protein 1 (Ebp1) in bladder cancer. Ebp1 expression at protein and gene levels in 52 surgically removed bladder cancer specimens as well as 21 adjacent normal bladder specimens were respectively detected by immunohistochemistry and qRT-PCR. The association of Ebp1 protein expression with the clinicopathological features of bladder cancer was also statistically analyzed. Its roles in bladder cancer cell line were further evaluated. The expression level of Ebp1 protein and gene in bladder cancer tissues was significantly lower than that in adjacent normal bladder tissues (P < 0.01). When categorized into low vs. high expression, the down-regulation of Ebp1 protein was associated with the advanced pathologic stage (P = 0.036) and the high histologic grade (P = 0.001) of patients with bladder cancer. Moreover, following the transfection of Ebp1 in bladder cancer cells, not only cell proliferation and cell invasion decreased significantly, but also the cell cycle was blocked at G0/G1 stage. Our data suggest for the first time that the down-regulation of Ebp1 closely correlates with advanced clinicopathological characteristics of human bladder cancer. Furthermore, Ebp1 plays an important role in the bladder cancer cells' proliferation by regulating the cancer cell cycle from G0/G1 to S.
Collapse
|
38
|
Fei DL, Sanchez-Mejias A, Wang Z, Flaveny C, Long J, Singh S, Rodriguez-Blanco J, Tokhunts R, Giambelli C, Briegel KJ, Schulz WA, Gandolfi AJ, Karagas M, Zimmers TA, Jorda M, Bejarano P, Capobianco AJ, Robbins DJ. Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res 2012; 72:4449-58. [PMID: 22815529 PMCID: PMC3809830 DOI: 10.1158/0008-5472.can-11-4123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The role of Hedgehog (HH) signaling in bladder cancer remains controversial. The gene encoding the HH receptor and negative regulator PATCHED1 (PTCH1) resides on a region of chromosome 9q, one copy of which is frequently lost in bladder cancer. Inconsistent with PTCH1 functioning as a classic tumor suppressor gene, loss-of-function mutations in the remaining copy of PTCH1 are not commonly found. Here, we provide direct evidence for a critical role of HH signaling in bladder carcinogenesis. We show that transformed human urothelial cells and many urothelial carcinoma cell lines exhibit constitutive HH signaling, which is required for their growth and tumorigenic properties. Surprisingly, rather than originating from loss of PTCH1, the constitutive HH activity observed in urothelial carcinoma cell lines was HH ligand dependent. Consistent with this finding, increased levels of HH and the HH target gene product GLI1 were found in resected human primary bladder tumors. Furthermore, on the basis of the difference in intrinsic HH dependence of urothelial carcinoma cell lines, a gene expression signature was identified that correlated with bladder cancer progression. Our findings therefore indicate that therapeutic targeting of the HH signaling pathway may be beneficial in the clinical management of bladder cancer.
Collapse
Affiliation(s)
- Dennis Liang Fei
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Program in Experimental and Molecular Medicine, Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, NH
| | - Avencia Sanchez-Mejias
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Zhiqiang Wang
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Colin Flaveny
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Jun Long
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Samer Singh
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Jezabel Rodriguez-Blanco
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Robert Tokhunts
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Program in Experimental and Molecular Medicine, Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, NH
| | - Camilla Giambelli
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Karoline J. Briegel
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | | | - A. Jay Gandolfi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Margaret Karagas
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, NH
| | - Teresa A. Zimmers
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Merce Jorda
- Department of Pathology, University of Miami, Miami, FL
| | | | - Anthony J. Capobianco
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David J. Robbins
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
39
|
Pignot G, Vieillefond A, Vacher S, Zerbib M, Debre B, Lidereau R, Amsellem-Ouazana D, Bieche I. Hedgehog pathway activation in human transitional cell carcinoma of the bladder. Br J Cancer 2012; 106:1177-86. [PMID: 22361633 PMCID: PMC3304423 DOI: 10.1038/bjc.2012.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/27/2012] [Accepted: 02/03/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Hedgehog (Hh) signalling pathway functions as an organiser in embryonic development. Recent studies have shown constitutive activation of this pathway in various malignancies, but its role in bladder cancer remains poorly studied. METHODS Expression levels of 31 genes and 9 microRNAs (miRNAs) involved in the Hh pathway were determined by quantitative real-time RT-PCR in 71 bladder tumour samples (21 muscle-invasive (MIBC) and 50 non-muscle-invasive (NMIBC) bladder cancers), as well as in 6 bladder cancer cell lines. RESULTS The SHH ligand gene and Gli-inducible target genes (FOXM1, IGF2, OSF2, H19, and SPP1) were overexpressed in tumour samples as compared with normal bladder tissue. SHH overexpression was found in 96% of NMIBC and 52% of MIBC samples, as well as in two bladder cancer cell lines. Altered expression of miRNAs supported their oncogene or tumour-suppressor gene status. In univariate analysis, high expression levels of PTCH2, miRNA-92A, miRNA-19A, and miRNA-20A were associated with poorer overall survival in MIBC (P=0.02, P=0.012, P=0.047, and P=0.036, respectively). CONCLUSION We observed constitutive activation of the Hh pathway in most NMIBC and about 50% of MIBC. We also found that some protein-coding genes and miRNAs involved in the Hh pathway may have prognostic value at the individual level.
Collapse
Affiliation(s)
- G Pignot
- Department of Urology, Service d'Urologie, Université Paris Descartes, Sorbonne Paris Cité, 27 rue du Faubourg Saint Jaques, Paris F-75014, France.
| | | | | | | | | | | | | | | |
Collapse
|