1
|
Wang S, Wang Q, Zheng J, Yan L, Pan Y, Jiang D, Li H, Liang S, He Z, Chen Q. Clinical implications and molecular mechanism of long noncoding RNA LINC00518 and protein-coding genes in skin cutaneous melanoma by genome‑wide investigation. Arch Dermatol Res 2025; 317:454. [PMID: 39987414 DOI: 10.1007/s00403-025-03961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Skin cutaneous melanoma (SKCM) is a cancer with serious global impact. Long non-coding RNA was previously found to be associated with tumor prognosis. This research focuses on long intergenic non-protein coding (LINC) RNAs, and correlated protein-coding genes (PCGs), to explore their diagnostic and prognostic value, function and mechanism. Gene expression data was obtained from TCGA and Oncomine for analysis; in total there were 458 cases included in this study. LIN00518 and the 10 most highly correlated PCGs were selected to determine the diagnostic and prognostic value. We undertook bioinformatic analysis with LINC00518 and the prognostic-related PCGs in order to explore their molecular mechanism. The Connectivity Map was carried out for pharmacological target prediction and drug selection. Among the top 10 correlated PCGs, trafficking kinesin protein 2 (TRAK2), epilepsy of progressive myoclonus type 2 gene A (EPM2A) and melanocyte inducing transcription factor (MITF) had significant diagnostic value (all AUC > 0.7, P < 0.05). LINC00518, ras association domain family member 3 (RASSF3), cdk5 and Abl enzyme substrate 1 (CABLES1), kazrin, periplakin interacting protein (KAZN), EF-hand calcium binding domain 5 (EFCAB5) and MITF were significantly associated with prognosis (all adjusted P < 0.05). LINC00518 was associated with cell cycle process, melanogenesis, MAPK signaling pathway, cell division and DNA repair(all P < 0.05). Pharmacological targets analysis suggested results acquired eight potential target drugs. Up-regulation of LINC00518 is significantly associated with poor prognosis. TRAK2, EPM2A and MITF had diagnostic significance. RASSF3, CABLES1, KAZN, EFCAB5 and MITF had prognostic significance. This study provided novel biomarkers for SKCM.
Collapse
Affiliation(s)
- Shaoxi Wang
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Qiaoqi Wang
- The Emergency Department, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Jiayu Zheng
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Lingxin Yan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Yanqing Pan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Diandian Jiang
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Huiling Li
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Siqiao Liang
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Zhiyi He
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China.
| | - Quanfang Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China.
| |
Collapse
|
2
|
de Sousa MSA, Nunes IN, Christiano YP, Sisdelli L, Cerutti JM. Genetic alterations landscape in paediatric thyroid tumours and/or differentiated thyroid cancer: Systematic review. Rev Endocr Metab Disord 2024; 25:35-51. [PMID: 37874477 DOI: 10.1007/s11154-023-09840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Differentiated thyroid cancer (DTC) is a rare disease in the paediatric population (≤ 18 years old. at diagnosis). Increasing incidence is reflected by increases in incidence for papillary thyroid carcinoma (PTC) subtypes. Compared to those of adults, despite aggressive presentation, paediatric DTC has an excellent prognosis. As for adult DTC, European and American guidelines recommend individualised management, based on the differences in clinical presentation and genetic findings. Therefore, we conducted a systematic review to identify the epidemiological landscape of all genetic alterations so far investigated in paediatric populations at diagnosis affected by thyroid tumours and/or DTC that have improved and/or informed preventive and/or curative diagnostic and prognostic clinical conduct globally. Fusions involving the gene RET followed by NTRK, ALK and BRAF, were the most prevalent rearrangements found in paediatric PTC. BRAF V600E was found at lower prevalence in paediatric (especially ≤ 10 years old) than in adults PTC. We identified TERT and RAS mutations at very low prevalence in most countries. DICER1 SNVs, while found at higher prevalence in few countries, they were found in both benign and DTC. Although the precise role of DICER1 is not fully understood, it has been hypothesised that additional genetic alterations, similar to that observed for RAS gene, might be required for the malignant transformation of these nodules. Regarding aggressiveness, fusion oncogenes may have a higher growth impact compared with BRAF V600E. We reported the shortcomings of the systematized research and outlined three key recommendations for global authors to improve and inform precision health approaches, glocally.
Collapse
Affiliation(s)
- Maria Sharmila Alina de Sousa
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
| | - Isabela Nogueira Nunes
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
| | - Yasmin Paz Christiano
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
| | - Luiza Sisdelli
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
- PreScouter Inc., 29 E Madison St #500, Chicago, IL, 60602, USA
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
3
|
Yan Z, Yan Q, Song Y, Wang L. TMSB10, a potential prognosis prediction biomarker, promotes the invasion and angiogenesis of gastric cancer. J Gastroenterol Hepatol 2021; 36:3102-3112. [PMID: 34114679 DOI: 10.1111/jgh.15576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM The thymosin beta 10 (TMSB10) was originally identified from the thymus, which plays a key role in the development of many cancers. However, the underlying molecular mechanisms of TMSB10 involved in GC have not been understood. METHODS We sought to determine the expression of TMSB10 in human GC tissues and illustrate whether it is correlated with the clinical pathologic characteristics and prognosis in GC patients. Its roles and potential mechanisms in regulating tumor growth, invasion, and angiogenesis were evaluated by TMSB10 knockdown/overexpression of GC cells in vitro and ex vivo. RESULTS Marked overexpression of TMSB10 protein expression was observed in GC cells and tissues, which was associated with the advanced tumor stage and lymph nodes (LN) metastasis of GC patients. Furthermore, prognostic analysis showed that GC patients with high TMSB10 expression had a remarkably shorter survival and acted as an important factor for predicting poor overall survival in GC patients. Moreover, TMSB10 overexpression promoted, while TMSB10 knockdown the proliferation, EMT process, and angiogenesis of GC cells. CONCLUSION The study highlights that TMSB10 may hold promise as potential prognosis prediction biomarker for the diagnosis of GC and a potential therapeutic target, which will facilitate the development of a novel therapeutic strategy against GC.
Collapse
Affiliation(s)
- ZhenKun Yan
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiaomei Yan
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, China
| | - Yumei Song
- Department of Thoracic Oncology, Tumor Hospital of Jilin Province, Changchun, China
| | - Liqiang Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Li J, Zhou S, Li H, Xu Y, Zhou N, Liu R. PTEN/AKT upregulation of TMSB10 contributes to lung cancer cell growth and predicts poor survival of the patients. Biosci Biotechnol Biochem 2021; 85:805-813. [PMID: 33686397 DOI: 10.1093/bbb/zbaa113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
PTEN/AKT signaling cascade is frequently activated in various cancers, including lung cancer. The downstream effector of this signaling cascade is poorly understood. β-Thymosin 10 (TMSB10) functions as an oncogene or tumor suppressors in cancers, whereas its significance in lung cancer remains unknown. In this study, we showed that the activation of PTEN/AKT signaling promoted the expression of TMSB10. Based on the TCGA database, TMSB10 was upregulated in lung cancer tissues and its overexpression was correlated with poor prognosis of lung cancer patients. Functional experiments demonstrated that TMSB10 knockdown suppressed, while its overexpression promoted the proliferation, growth, and migration of lung cancer cells. Apoptosis and epithelial-mesenchymal transition were also regulated by TMSB10. We therefore suggest that TMSB10 is a novel oncogene for lung cancer. Targeting TMSB10 may benefit lung cancer patients with activated PTEN/AKT signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Lymphadenopathy
| | - Shaohui Zhou
- Department of Thoracic Surgery, Hebei General Hospital
| | - Hongchen Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yanzhao Xu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P. R. China
| | - Ning Zhou
- Department of Laboratory, Baotou Cancer Hospital, Baotou, Inner Mongolia, P.R. China
| | - Rongfeng Liu
- Department of Oncology, Fourth Hospital of Hebei Medical University, Hebei, P. R. China
| |
Collapse
|
5
|
Zeng J, Yang X, Yang L, Li W, Zheng Y. Thymosin β10 promotes tumor-associated macrophages M2 conversion and proliferation via the PI3K/Akt pathway in lung adenocarcinoma. Respir Res 2020; 21:328. [PMID: 33349268 PMCID: PMC7754581 DOI: 10.1186/s12931-020-01587-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background Thymosin β10 (TMSB10) has been reported to play a protumorigenic role in a majority of solid cancers. However, the existence of TMSB10 in immune microenvironment may contribute to the pathogenesis of lung adenocarcinoma has not been previously explored. Method TAMs-associated TMSB10 expression was evaluated by immunohistochemistry (IHC) in 184 lung adenocarcinomas. Xenograft mice model was established to investigate the effect of TMSB10 shRNA on TAMs phenotypes. The macrophages phenotype associated cytokines IL-6, IL-8, IL-12 and TNF-α were detected by ELISA after treated with TMSB10 shRNA or scramble. Furthermore, the target proteins were detected by immunoblotting. Results We found that high TAMs-associated TMSB10 expression was significantly correlated with the advanced TNM stage and T3/T4 tumor size. And high TAMs-associated TMSB10 expression was significantly correlated with poor overall and progression-free survival of lung adenocarcinoma, acting as an independent prognostic factor for lung adenocarcinoma. Furthermore, we investigated the biological functions of TMSB10 in macrophages in vivo and in vitro. TMSB10 knockdown dramatically reduced TAMs, THP-1 and RAW264.7 cell proliferation, and promoted macrophages phenotype conversion of M2 to M1, and TMSB10 knockdown reduced the levels of p-Akt (Sec473), p-mTOR (Sec2448) and p-p70S6K (Thr389) without effect on Akt, mTOR and p70S6K expression. Conclusions These results demonstrate that TAMs-associated TMSB10 promotes tumor growth through increasing TAMs M2 conversion and proliferation via PI3K/Akt signaling pathway, providing a promising tumor biomarker for predicting prognosis and a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Jun Zeng
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| | - Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Li Yang
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Wancheng Li
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Yaxin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
6
|
Wang HL, Li KZ, Li JL, Hu BL. Prognostic value of AKAP13 methylation and expression in lung squamous cell carcinoma. Biomark Med 2020; 14:503-512. [PMID: 32208871 DOI: 10.2217/bmm-2020-0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aimed to analyze the prognostic value and clinical significance of AKAP13 mRNA expression and AKAP13 methylation in lung squamous cell carcinoma (LUSC). Materials & methods: The mRNA expression and methylation of AKAP13 data of LUSC patients were downloaded from the Broad GDAC Firehose database and analyzed. Results: AKAP13 mRNA expression was downregulated and methylation was upregulated in LUSC tissue. Three CpG sites of AKAP13 were associated with overall survival. Combination of AKAP13 mRNA and methylation revealed 11 CpG sites associated with overall survival of LUSC patients. AKAP13 mRNA expression was associated with distant metastasis of LUSC, no associations were found between methylation status of CpG sites and clinical features. Conclusion: AKAP13 mRNA and its methylated CpG sites are potential prognostic indicators in LUSC patients.
Collapse
Affiliation(s)
- Hui-Lin Wang
- Second Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Ji-Lin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| |
Collapse
|
7
|
Pan Q, Cheng G, Liu Y, Xu T, Zhang H, Li B. TMSB10 acts as a biomarker and promotes progression of clear cell renal cell carcinoma. Int J Oncol 2020; 56:1101-1114. [PMID: 32319572 PMCID: PMC7115359 DOI: 10.3892/ijo.2020.4991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common urological malignancies. Identifying novel biomarkers and investigating the underlying mechanism of ccRCC development will be crucial to the management and treatment of ccRCC in patients. Thymosin b10 (TMSB10), a member of the thymosin family, is involved in various physiological processes, including tissue regeneration and inflammatory regulation. Moreover, it has been found to be upregulated in many types of carcinoma. However, its roles in ccRCC remain to be elucidated. The present study aimed to explore the expression of TMSB10 in ccRCC through mining The Cancer Genome Atlas (TCGA) and Oncomine databases, and to investigate the association between TMSB10 expression and clinicopathological factors. Furthermore, immunohistochemistry assays and western blotting were conducted to verify TMSB10 expression levels in human ccRCC tissues and cell lines. Functional analyses were also performed to identify the roles of TMSB10 in vitro. The results revealed that TMSB10 was significantly upregulated in RCC tissues and cell lines. The expression of TMSB10 was closely associated with various clinicopathological parameters. In addition, high expression of TMSB10 predicted poor clinical outcome. The receiver operating characteristic curve revealed that TMSB10 could sufficiently distinguish the tumor from normal kidney (area under the curve = 0.9543, P<0.0001). Furthermore, knockdown of TMSB10 impaired the proliferation of ccRCC cells, and attenuated cell and invasion in vitro. In addition, TMSB10 knockdown downregulated reduced the phosphorylation of PI3K and the expression of vascular endothelial growth factor. In conclusion, the present study demonstrated that high expression of TMSB10 could serve as a useful diagnostic and prognostic biomarker and a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Qiufeng Pan
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gong Cheng
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuenan Liu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tianbo Xu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao Zhang
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing Li
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
8
|
Thymosin β 10 is overexpressed and associated with unfavorable prognosis in hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20182355. [PMID: 30787051 PMCID: PMC6418399 DOI: 10.1042/bsr20182355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/01/2019] [Accepted: 01/14/2019] [Indexed: 01/29/2023] Open
Abstract
Thymosin β 10 (TMSB10) has been demonstrated to be overexpressed and function as an oncogene in most types of human cancer including hepatocellular carcinoma (HCC). In our study, we present more evidence about the clinical significance and biological function of TMSB10 in HCC. First, we observed levels of TMSB10 expression were obviously increased in HCC tissues compared with normal liver tissues at The Cancer Genome Atlas (TCGA) datasets. Furthermore, we confirmed that TMSB10 mRNA and protein levels were also increased in HCC tissue samples compared with normal adjacent normal liver tissue samples. In addition, we found high TMSB10 expression was remarkably associated with the advanced tumor stage, large tumor size, distant metastasis, and poor prognosis, and acted as an independent factor for predicting poor overall survival in HCC patients. Loss-of-function studies suggested silencing of TMSB10 expression dramatically reduced cell proliferation, migration, and invasion in HCC. In conclusion, TMSB10 may hold promise as a tumor biomarker for predicting prognosis and a potential target for developing a novel therapeutic strategy.
Collapse
|
9
|
Zhang W, Chu W, Liu Q, Coates D, Shang Y, Li C. Deer thymosin beta 10 functions as a novel factor for angiogenesis and chondrogenesis during antler growth and regeneration. Stem Cell Res Ther 2018; 9:166. [PMID: 29921287 PMCID: PMC6009950 DOI: 10.1186/s13287-018-0917-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/29/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deer antlers are the only known mammalian organ with vascularized cartilage that can completely regenerate. Antlers are of real significance as a model of mammalian stem cell-based regeneration with particular relevance to the fields of chondrogenesis, angiogenesis, and regenerative medicine. Recent research found that thymosin beta 10 (TMSB10) is highly expressed in the growth centers of growing antlers. The present study reports here the expression, functions, and molecular interactions of deer TMSB10. METHODS The TMSB10 expression level in both tissue and cells in the antler growth center was measured. The effects of both exogenous (synthetic protein) and endogenous deer TMSB10 (lentivirus-based overexpression) on antlerogenic periosteal cells (APCs; nonactivated antler stem cells with no basal expression of TMSB10) and human umbilical vein endothelial cells (HUVECs; endothelial cells with no basal expression of TMSB10) were evaluated to determine whether TMSB10 functions on chondrogenesis and angiogenesis. Differences in deer and human TMSB10 in angiogenesis and molecular structure were determined using animal models and molecular dynamics simulation, respectively. The molecular mechanisms underlying deer TMSB10 in promoting angiogenesis were also explored. RESULTS Deer TMSB10 was identified as a novel proangiogenic factor both in vitro and in vivo. Immunohistochemistry revealed that TMSB10 was widely expressed in the antler growth center in situ, with the highest expression in the reserve mesenchyme, precartilage, and transitional zones. Western blot analysis using deer cell lines further supports this result. Both exogenous and endogenous deer TMSB10 significantly decreased proliferation of APCs (P < 0.05), while increasing the proliferation of HUVECs (P < 0.05). Moreover, deer TMSB10 enhanced chondrogenesis in micromass cultures and nerve growth as assessed using a dorsal root ganglion model (P < 0.05). Deer TMSB10 was proangiogenic using models of chicken chorioallantoic membrane, tube formation, and aortic arch assay. At the molecular level, endogenous deer TMSB10 elevated the expression of vascular endothelial growth factor (VEGF), VEGF-B, VEGF-C, and VEGF-D, and VEGFR2 and VEGFR3 in HUVECs (P < 0.05). CONCLUSIONS Deer TMSB10, in contrast to its human counterpart, was identified as a novel stimulating factor for angiogenesis, cartilage formation, and nerve growth, which is understandable given that deer antlers (as the arguably fastest mammalian growing tissue) may require this extra boost during a period of rapid growth and regeneration.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Wenhui Chu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Qingxiu Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Yudong Shang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Chunyi Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China.
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China.
| |
Collapse
|
10
|
Reggi E, Diviani D. The role of A-kinase anchoring proteins in cancer development. Cell Signal 2017; 40:143-155. [DOI: 10.1016/j.cellsig.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
11
|
Kangawa Y, Yoshida T, Tanaka T, Kataoka A, Koyama N, Ohsumi T, Hayashi SM, Shibutani M. Expression of A-kinase anchor protein 13 and Rho-associated coiled-coil containing protein kinase in restituted and regenerated mucosal epithelial cells following mucosal injury and colorectal cancer cells in mouse models. ACTA ACUST UNITED AC 2017; 69:443-450. [PMID: 28434818 DOI: 10.1016/j.etp.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
We demonstrate the expression patterns of A-kinase anchor protein 13 (AKAP13), a scaffold protein that acts upstream of Rho signaling, and Rho-associated coiled-coil containing protein kinase (ROCK) 1/2 in mouse colorectal cancer and during the healing stage of mouse colitis. BALB/c mice received an intraperitoneal injection of azoxymethane at 10mg/kg, followed by two 7-day cycles of 3% dextran sulfate sodium (DSS) administered through their drinking water to induce colon cancer, or a 7-day administration of 4% DSS to induce colitis. The colorectal tissue was then analyzed for gene expression, histopathology, and immunohistochemistry. In the colorectal cancer, AKAP13 and ROCK1/2 were highly expressed in adenocarcinoma compared to the control tissue and low-grade dysplasia. In colitis, AKAP13 and ROCK1 were highly expressed in the restituted and regenerated mucosa but were only moderately expressed in the injured mucosal epithelium, compared to the normal epithelium that exhibited weak expression levels. ROCK2 was weakly expressed in these cells, consistent with the expression of AKAP13 and ROCK1. Furthermore, we found several clumps of epithelial cells expressing AKAP13 and ROCK1/2 in the lamina propria during the mucosal healing process, and these cells also expressed interleukin-6, which is a multipotential cytokine for both inflammation and healing. These data suggest that AKAP13 was expressed in relation with ROCK1/2, which probably play an overall role in both mucosal healing and tumorigenesis.
Collapse
Affiliation(s)
- Yumi Kangawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Akira Kataoka
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Naomi Koyama
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Tomoka Ohsumi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| |
Collapse
|
12
|
Generation of metastatic melanoma specific antibodies by affinity purification. Sci Rep 2016; 6:37253. [PMID: 27853253 PMCID: PMC5112778 DOI: 10.1038/srep37253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2016] [Indexed: 12/03/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer and one of the most frequent tumours in young adults. Identification of primary tumours prone to develop metastasis is of paramount importance for further patient stratification. However, till today, no markers exist that are routinely used to predict melanoma progression. To ameliorate this problem, we generated antiserum directed against metastatic melanoma tissue lysate and applied a novel approach to purify the obtained serum via consecutive affinity chromatography steps. The established antibody, termed MHA-3, showed high reactivity against metastatic melanoma cell lines both in vitro and in vivo. We also tested MHA-3 on 227 melanoma patient samples and compared staining with the melanoma marker S100b. Importantly, MHA-3 was able to differentiate between metastatic and non-metastatic melanoma samples. By proteome analysis we identified 18 distinct antigens bound by MHA-3. Combined expression profiling of all identified proteins revealed a significant survival difference in melanoma patients. In conclusion, we developed a polyclonal antibody, which is able to detect metastatic melanoma on paraffin embedded sections. Hence, we propose that this antibody will represent a valuable additional tool for precise melanoma diagnosis.
Collapse
|
13
|
Diviani D, Raimondi F, Del Vescovo CD, Dreyer E, Reggi E, Osman H, Ruggieri L, Gonano C, Cavin S, Box CL, Lenoir M, Overduin M, Bellucci L, Seeber M, Fanelli F. Small-Molecule Protein-Protein Interaction Inhibitor of Oncogenic Rho Signaling. Cell Chem Biol 2016; 23:1135-1146. [PMID: 27593112 DOI: 10.1016/j.chembiol.2016.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 06/30/2016] [Accepted: 07/09/2016] [Indexed: 01/23/2023]
Abstract
Uncontrolled activation of Rho signaling by RhoGEFs, in particular AKAP13 (Lbc) and its close homologs, is implicated in a number of human tumors with poor prognosis and resistance to therapy. Structure predictions and alanine scanning mutagenesis of Lbc identified a circumscribed hot region for RhoA recognition and activation. Virtual screening targeting that region led to the discovery of an inhibitor of Lbc-RhoA interaction inside cells. By interacting with the DH domain, the compound inhibits the catalytic activity of Lbc, halts cellular responses to activation of oncogenic Lbc pathways, and reverses a number of prostate cancer cell phenotypes such as proliferation, migration, and invasiveness. This study provides insights into the structural determinants of Lbc-RhoA recognition. This is a successful example of structure-based discovery of a small protein-protein interaction inhibitor able to halt oncogenic Rho signaling in cancer cells with therapeutic implications.
Collapse
Affiliation(s)
- Dario Diviani
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Cosmo D Del Vescovo
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Elisa Dreyer
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Erica Reggi
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Halima Osman
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Lucia Ruggieri
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Cynthia Gonano
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Sabrina Cavin
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland
| | - Clare L Box
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Marc Lenoir
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Luca Bellucci
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Michele Seeber
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
14
|
Passon N, Bregant E, Sponziello M, Dima M, Rosignolo F, Durante C, Celano M, Russo D, Filetti S, Damante G. Somatic amplifications and deletions in genome of papillary thyroid carcinomas. Endocrine 2015; 50:453-64. [PMID: 25863487 DOI: 10.1007/s12020-015-0592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Somatic gene copy number variation contributes to tumor progression. Using comparative genomic hybridization (CGH) array, the presence of genomic imbalances was evaluated in a series of 27 papillary thyroid carcinomas (PTCs). To detect only somatic imbalances, for each sample, the reference DNA was from normal thyroid tissue of the same patient. The presence of the BRAF V600E mutation was also evaluated. Both amplifications and deletions showed an uneven distribution along the entire PTC cohort; amplifications were more frequent than deletions (mean values of 17.5 and 7.2, respectively). Number of aberration events was not even among samples, the majority of them occurring only in a small fraction of PTCs. Most frequent amplifications were detected at regions 2q35, 4q26, and 4q34.1, containing FN1, PDE5A, and GALNTL6 genes, respectively. Most frequent deletions occurred at regions 6q25.2, containing OPMR1 and IPCEF1 genes and 7q14.2, containing AOAH and ELMO1 genes. Amplification of FN1 and PDE5A genomic regions was confirmed by quantitative PCR. Frequency of amplifications and deletions was in relationship with clinical features and BRAF mutation status of tumor. In fact, according to the American Joint Committee on Cancer stage and American Thyroid Association (ATA) risk classification, amplifications are more frequent in higher risk samples, while deletions tend to prevail in the lower risk tumors. Analysis of single aberrations according to the ATA risk grouping shows that amplifications containing PDE5A, GALNTL6, DHRS3, and DOCK9 genes are significantly more frequent in the intermediate/high risk group than in the low risk group. Thus, our data would indicate that analysis of somatic genome aberrations by CGH array can be useful to identify additional prognostic variables.
Collapse
Affiliation(s)
- Nadia Passon
- Azienda Ospedaliero-Universitaria S. Maria della Misericordia, Udine, Italy
| | - Elisa Bregant
- Azienda Ospedaliero-Universitaria S. Maria della Misericordia, Udine, Italy
| | - Marialuisa Sponziello
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Maria Dima
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Francesca Rosignolo
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Cosimo Durante
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Marilena Celano
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Diego Russo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Sebastiano Filetti
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Giuseppe Damante
- Azienda Ospedaliero-Universitaria S. Maria della Misericordia, Udine, Italy.
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
15
|
Raimondi F, Felline A, Fanelli F. Catching Functional Modes and Structural Communication in Dbl Family Rho Guanine Nucleotide Exchange Factors. J Chem Inf Model 2015; 55:1878-93. [PMID: 26322553 DOI: 10.1021/acs.jcim.5b00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Computational approaches such as Principal Component Analysis (PCA) and Elastic Network Model-Normal Mode Analysis (ENM-NMA) are proving to be of great value in investigating relevant biological problems linked to slow motions with no demand in computer power. In this study, these approaches have been coupled to the graph theory-based Protein Structure Network (PSN) analysis to dissect functional dynamics and structural communication in the Dbl family of Rho Guanine Nucleotide Exchange Factors (RhoGEFs). They are multidomain proteins whose common structural feature is a DH-PH tandem domain deputed to the GEF activity that makes them play a central role in cell and cancer biology. While their common GEF action is accomplished by the DH domain, their regulatory mechanisms are highly variegate and depend on the PH and the additional domains as well as on interacting proteins. Major evolutionary-driven deformations as inferred from PCA concern the α6 helix of DH that dictates the orientation of the PH domain. Such deformations seem to depend on the mechanisms adopted by the GEF to prevent Rho binding, i.e. functional specialization linked to autoinhibition. In line with PCA, ENM-NMA indicates α6 and the linked PH domain as the portions of the tandem domain holding almost the totality of intrinsic and functional dynamics, with the α6/β1 junction acting as a hinge point for the collective motions of PH. In contrast, the DH domain holds a static scaffolding and hub behavior, with structural communication playing a central role in the regulatory actions by other domains/proteins. Possible allosteric communication pathways involving essentially DH were indeed found in those RhoGEFs acting as effectors of small or heterotrimeric RasGTPases. The employed methodology is suitable for deciphering structure/dynamics relationships in large sets of homologous or analogous proteins.
Collapse
Affiliation(s)
- Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Modena, Italy
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Modena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Modena, Italy
| |
Collapse
|
16
|
Dey KK, Pal I, Bharti R, Dey G, Kumar BNP, Rajput S, Parekh A, Parida S, Halder P, Kulavi I, Mandal M. Identification of RAB2A and PRDX1 as the potential biomarkers for oral squamous cell carcinoma using mass spectrometry-based comparative proteomic approach. Tumour Biol 2015; 36:9829-37. [PMID: 26159854 DOI: 10.1007/s13277-015-3758-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022] Open
Abstract
Despite the recent advances in diagnostic and therapeutic strategies, oral squamous cell carcinoma (OSCC) remains a major health burden. Protein biomarker discovery for early detection will help to improve patient survival rate in OSCC. Mass spectrometry-based proteomics has emerged as an excellent approach for detection of protein biomarkers in various types of cancers. In the current study, we have used 4-Plex isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun quantitative proteomic approach to identify proteins that are differentially expressed in cancerous tissues compared to normal tissues. The high-resolution mass spectrometric analysis resulted in identifying 2,074 proteins, among which 288 proteins were differentially expressed. Further, it was noticed that 162 proteins were upregulated, while 125 proteins were downregulated in OSCC-derived cancer tissue samples as compared to the adjacent normal tissues. We identified some of the known molecules which were reported earlier in OSCC such as MMP-9 (8.4-fold), ZNF142 (5.6-fold), and S100A7 (3.5-fold). Apart from this, we have also identified some novel signature proteins which have not been reported earlier in OSCC including ras-related protein Rab-2A isoform, RAB2A (4.6-fold), and peroxiredoxin-1, PRDX1 (2.2-fold). The immunohistochemistry-based validation using tissue microarray slides in OSCC revealed overexpression of the RAB2A and PRDX1 gene in 80 and 68 % of the tested clinical cases, respectively. This study will not only serve as a resource of candidate biomarkers but will contribute towards the existing knowledge on the role of the candidate molecules towards disease progression and therapeutic potential.
Collapse
Affiliation(s)
- Kaushik Kumar Dey
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Ipsita Pal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Rashmi Bharti
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Goutam Dey
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - B N Prashanth Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Aditya Parekh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Sheetal Parida
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Priyanka Halder
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Indranil Kulavi
- Bankura Sammilani Medical College, Bankura, West Bengal, 722101, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
17
|
Bouchal P, Dvořáková M, Roumeliotis T, Bortlíček Z, Ihnatová I, Procházková I, Ho JTC, Maryáš J, Imrichová H, Budinská E, Vyzula R, Garbis SD, Vojtěšek B, Nenutil R. Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor κB (NF-κB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer. Mol Cell Proteomics 2015; 14:1814-30. [PMID: 25903579 DOI: 10.1074/mcp.m114.041335] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/22/2022] Open
Abstract
Current prognostic factors are insufficient for precise risk-discrimination in breast cancer patients with low grade breast tumors, which, in disagreement with theoretical prognosis, occasionally form early lymph node metastasis. To identify markers for this group of patients, we employed iTRAQ-2DLC-MS/MS proteomics to 24 lymph node positive and 24 lymph node negative grade 1 luminal A primary breast tumors. Another group of 48 high-grade tumors (luminal B, triple negative, Her-2 subtypes) was also analyzed to investigate marker specificity for grade 1 luminal A tumors. From the total of 4405 proteins identified (FDR < 5%), the top 65 differentially expressed together with 30 previously identified and control markers were analyzed also at transcript level. Increased levels of carboxypeptidase B1 (CPB1), PDZ and LIM domain protein 2 (PDLIM2), and ring finger protein 25 (RNF25) were associated specifically with lymph node positive grade 1 tumors, whereas stathmin 1 (STMN1) and thymosin beta 10 (TMSB10) associated with aggressive tumor phenotype also in high grade tumors at both protein and transcript level. For CPB1, these differences were also observed by immunohistochemical analysis on tissue microarrays. Up-regulation of putative biomarkers in lymph node positive (versus negative) luminal A tumors was validated by gene expression analysis of an independent published data set (n = 343) for CPB1 (p = 0.00155), PDLIM2 (p = 0.02027) and RELA (p = 0.00015). Moreover, statistically significant connections with patient survival were identified in another public data set (n = 1678). Our findings indicate unique pro-metastatic mechanisms in grade 1 tumors that can include up-regulation of CPB1, activation of NF-κB pathway and changes in cell survival and cytoskeleton. These putative biomarkers have potential to identify the specific minor subpopulation of breast cancer patients with low grade tumors who are at higher than expected risk of recurrence and who would benefit from more intensive follow-up and may require more personalized therapy.
Collapse
Affiliation(s)
- Pavel Bouchal
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; §Masaryk University, Faculty of Science, Department of Biochemistry, Brno, Czech Republic
| | - Monika Dvořáková
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; §Masaryk University, Faculty of Science, Department of Biochemistry, Brno, Czech Republic
| | - Theodoros Roumeliotis
- ¶Proteomics Mass Spectrometry, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Zbyněk Bortlíček
- ‖Masaryk University, Faculty of Medicine, Institute of Biostatistics and Analyses, Brno, Czech Republic
| | - Ivana Ihnatová
- ‖Masaryk University, Faculty of Medicine, Institute of Biostatistics and Analyses, Brno, Czech Republic
| | - Iva Procházková
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | | | - Josef Maryáš
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; §Masaryk University, Faculty of Science, Department of Biochemistry, Brno, Czech Republic
| | - Hana Imrichová
- ‡‡Laboratory of Computational Biology, Center for Human Genetics, University of Leuven, Belgium
| | - Eva Budinská
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; ‖Masaryk University, Faculty of Medicine, Institute of Biostatistics and Analyses, Brno, Czech Republic
| | - Rostislav Vyzula
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | - Spiros D Garbis
- §§University of Southampton, School of Medicine, Cancer Sciences Division, Institute for Life Sciences-Center for Proteomic Research, Southampton, UK
| | - Bořivoj Vojtěšek
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | - Rudolf Nenutil
- From the ‡Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic;
| |
Collapse
|
18
|
Wang H, Jiang S, Zhang Y, Pan K, Xia J, Chen M. High expression of thymosin beta 10 predicts poor prognosis for hepatocellular carcinoma after hepatectomy. World J Surg Oncol 2014; 12:226. [PMID: 25037578 PMCID: PMC4113489 DOI: 10.1186/1477-7819-12-226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Background Thymosin beta 10 (Tbeta10) overexpression has been reported in a variety of human cancers. However, the role of Tbeta10 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study was to analyze Tbeta10 expression in tumor and matched non-tumorous tissues, and to assess its prognostic significance for HCC after hepatectomy. Methods The level of Tbeta10 mRNA and protein in tumor and matched non-tumorous tissues was evaluated in 26 fresh HCC cases by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Additionally, Tbeta10 protein expression in 196 HCC was analyzed by immunohistochemistry (IHC) and correlated with clinicopathological characteristics and survival. Results Results from RT-PCR and western blot analysis show that the levels of Tbeta10 mRNA and protein were significantly higher in tumor tissues of HCC, compared to that in matched non-tumorous tissues (P = 0.01 and P <0.001, respectively). IHC staining showed that high expression of Tbeta10 was detected in 58.2% (114/196) of HCC cases. High expression of Tbeta10 was significantly associated with advanced TNM stage (P <0.001). Survival analysis demonstrated that high Tbeta10 was related to shorter overall survival (OS) (P = 0.000) and disease-free survival (DFS) (P = 0.000). Multivariate analysis showed that high expression of Tbeta10 was an independent prognostic factor for both OS (P = 0.001, HR = 4.135, 95% CI: 2.603 to 6.569) and DFS (P = 0.001, HR = 2.021, 95% CI: 1.442 to 2.832). Subgroup analysis revealed that high expression of Tbeta10 predicts poorer survival for early and advanced stage. Conclusions Tbeta10 protein abnormal expression might contribute to the malignant progression of HCC. High expression of Tbeta10 predicts poor prognosis in patients with HCC after hepatectomy.
Collapse
Affiliation(s)
| | | | | | | | - Jianchuan Xia
- Department of Hepatobiliary Surgery, Cancer Center of Sun Yat-Sen University, 651 Dongfeng Road East, Guangzhou 510060, China.
| | | |
Collapse
|
19
|
Li Z, Qu L, Zhong H, Xu K, Qiu X. [Thymosin beta 10 prompted the VEGF-C expression in lung cancer cell]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:378-83. [PMID: 24854554 PMCID: PMC6000446 DOI: 10.3779/j.issn.1009-3419.2014.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
背景与目的 我们前期的研究发现胸腺素β10(thymosin β10, Tβ10)在肺癌中过表达并与肺癌的分期、分化及淋巴结转移呈正相关。本研究旨在探讨外源人重组蛋白Tβ10在肺癌细胞系中促进血管内皮生长因子(vascular endothelial growth factor, VEGF)-C表达情况及其调控机制。 方法 采用RT-PCR法检测不同肺癌细胞系加入外源Tβ10或Tβ10加AKT特异性抑制剂LY294002后VEGF-C mRNA水平的变化;采用Western blot法检测不同肺癌细胞系加入Tβ10或Tβ10加LY294002后VEGF-C及P-AKT蛋白的变化。 结果 在肺癌细胞系SPC-A-1中加入Tβ10可以促进VEGF-C mRNA及蛋白的表达水平,同时促进AKT的磷酸化。在肺癌细胞系A549和LK2中加入Tβ10同样可以促进VEGF-C mRNA及蛋白的表达(P < 0.05),并且这种促进作用可以被LY294002所抑制(P < 0.05)。 结论 人重组蛋白Tβ10肺癌通过激活AKT的磷酸化促进VEGF-C的表达。
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pathology, the First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China;Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Lianyue Qu
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Hongshan Zhong
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ke Xu
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xueshan Qiu
- Department of Pathology, the First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| |
Collapse
|
20
|
Haselgrübler T, Haider M, Ji B, Juhasz K, Sonnleitner A, Balogi Z, Hesse J. High-throughput, multiparameter analysis of single cells. Anal Bioanal Chem 2013; 406:3279-96. [PMID: 24292433 DOI: 10.1007/s00216-013-7485-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/23/2022]
Abstract
Heterogeneity of cell populations in various biological systems has been widely recognized, and the highly heterogeneous nature of cancer cells has been emerging with clinical relevance. Single-cell analysis using a combination of high-throughput and multiparameter approaches is capable of reflecting cell-to-cell variability, and at the same time of unraveling the complexity and interdependence of cellular processes in the individual cells of a heterogeneous population. In this review, analytical methods and microfluidic tools commonly used for high-throughput, multiparameter single-cell analysis of DNA, RNA, and proteins are discussed. Applications and limitations of currently available technologies for cancer research and diagnostics are reviewed in the light of the ultimate goal to establish clinically applicable assays.
Collapse
Affiliation(s)
- Thomas Haselgrübler
- Center for Advanced Bioanalysis GmbH, Gruberstraße 40-42, 4020, Linz, Austria,
| | | | | | | | | | | | | |
Collapse
|
21
|
Sribenja S, Sawanyawisuth K, Kraiklang R, Wongkham C, Vaeteewoottacharn K, Obchoei S, Yao Q, Wongkham S, Chen C. Suppression of thymosin β10 increases cell migration and metastasis of cholangiocarcinoma. BMC Cancer 2013; 13:430. [PMID: 24053380 PMCID: PMC3849271 DOI: 10.1186/1471-2407-13-430] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/17/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Thymosin β10 (Tβ10) expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of Tβ10 in liver fluke-associated cholangiocarcinoma (CCA) are not fully understood. In this study, we investigated the expression of Tβ10 in CCA tumor tissues and cell lines as well as molecular mechanisms of Tβ10 in tumor metastasis of CCA cell lines. METHODS Tβ10 expression was determined by real time RT-PCR or immunocytochemistry. Tβ10 silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell migration was assessed using modified Boyden chamber and wound healing assay. The effect of silencing Tβ10 on CCA tumor metastasis was determined in nude mice. Phosphorylation of ERK1/2 and the expression of EGR1, Snail and matrix metalloproteinases (MMPs) were studied. RESULTS Ten pairs of CCA tissues (primary and metastatic tumors) and 5 CCA cell lines were studied. With real time RT-PCR and immunostaining analysis, Tβ10 was highly expressed in primary tumors of CCA; while it was relatively low in the metastatic tumors. Five CCA cell lines showed differential expression levels of Tβ10. Silence of Tβ10 significantly increased cell migration, invasion and wound healing of CCA cells in vitro; reversely, overexpression of Tβ10 reduced cell migration compared with control cells (P<0.05). In addition, silence of Tβ10 in CCA cells increased liver metastasis in a nude mouse model of CCA implantation into the spleen. Furthermore, silence of Tβ10 activated ERK1/2 and increased the expression of Snail and MMPs in CCA cell lines. Ras-GTPase inhibitor, FPT inhibitor III, effectively blocked Tβ10 silence-associated ERK1/2 activation, Snail expression and cell migration. CONCLUSIONS Low expression of Tβ10 is associated with metastatic phenotype of CCA in vitro and in vivo, which may be mediated by the activation of Ras, ERK1/2 and upregulation of Snail and MMPs. This study suggests a new molecular pathway of CCA pathogenesis and a novel strategy to treat or prevent CCA metastasis.
Collapse
Affiliation(s)
- Sirinapa Sribenja
- Molecular Surgeon Research Center, Division of Surgical Research, Michael E, DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Elfenbein DM, Scheri RP, Roman S, Sosa JA. Detection and management of cervical lymph nodes in papillary thyroid cancer. Expert Rev Endocrinol Metab 2013; 8:365-378. [PMID: 30736153 DOI: 10.1586/17446651.2013.811839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lymph node metastases in papillary thyroid cancer are a common occurrence; however, the management of clinically negative cervical lymph nodes remains controversial. Preoperative neck ultrasound mapping is crucial, and complete dissection of a nodal compartment is recommended for any metastatic lymph nodes. The role of prophylactic central neck dissection remains controversial. The BRAF V600E mutation is a common mutation in papillary thyroid cancer, and has been associated with more aggressive tumor behavior. Evaluating the BRAF status of tumors may have implications for treatment and surveillance. New areas of research continue to focus on risk stratification and identifying which patients benefit from a more aggressive treatment, such as prophylactic central lymphadenectomy and radioiodine ablation and more intense surveillance strategies.
Collapse
Affiliation(s)
- Dawn M Elfenbein
- a Section of Endocrine Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Randall P Scheri
- a Section of Endocrine Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sanziana Roman
- a Section of Endocrine Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Julie A Sosa
- b Section of Endocrine Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
23
|
Nemolato S, Ekstrom J, Cabras T, Gerosa C, Fanni D, Di Felice E, Locci A, Messana I, Castagnola M, Faa G. Immunoreactivity for thymosin beta 4 and thymosin beta 10 in the adult rat oro-gastro-intestinal tract. Eur J Histochem 2013; 57:e17. [PMID: 23807296 PMCID: PMC3794343 DOI: 10.4081/ejh.2013.e17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/19/2013] [Accepted: 04/05/2013] [Indexed: 12/29/2022] Open
Abstract
Thymosin beta 4 (Tβ4) and thymosin beta 10 (Tβ10) are two members of the β-thymosin family, involved in multiple cellular activities in different organs in multiple animal species. Here we report the expression pattern of Tβ4 and Tβ10 in rat tissues, in the gut and in annexed glands. The two peptide were differently expressed: Tβ4 was absent in salivary glands whereas Tβ10 was expressed in parotid and in submandibular glands. Tβ4 was mildly expressed in the tongue and in the esophagus, where Tβ10 was absent. A similar expression was found in the stomach, ileum and colon mucosa. In pancreas Tβ4 reactivity was restricted to the Langerhans islet cells; Tβ4 was also detected in the exocrine cells. Both peptide were not expressed in liver cells. When the rat expression pattern in rat organs was compared to reactivity for Tβ4 and Tβ10 in humans, marked differences were found. Our data clearly indicate a species-specific expression of Tβ4 and Tβ10, characterized by the actual unpredictability of the expression of these peptides in different cells and tissues. The common high expression of Tβ4 in mast cells, both in humans and in rats, represents one of the few similarities between these two species.
Collapse
Affiliation(s)
- S Nemolato
- Istituto di Anatomia Patologica, Dipartimento di Scienze Chirurgiche, PO S. Giovanni di Dio, Università di Cagliari, 09124 Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sribenja S, Wongkham S, Wongkham C, Yao Q, Chen C. Roles and Mechanisms of β-Thymosins in Cell Migration and Cancer Metastasis: An Update. Cancer Invest 2013; 31:103-10. [DOI: 10.3109/07357907.2012.756111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Current World Literature. Curr Opin Oncol 2013; 25:99-104. [DOI: 10.1097/cco.0b013e32835c1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|