1
|
Sun M, Li Z, Wang X, Zhao M, Chu Y, Zhang Z, Fang K, Zhao Z, Feng A, Leng Z, Shi J, Zhang L, Chen T, Xu M. TAOK3 Facilitates Esophageal Squamous Cell Carcinoma Progression and Cisplatin Resistance Through Augmenting Autophagy Mediated by IRGM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300864. [PMID: 37705061 PMCID: PMC10582451 DOI: 10.1002/advs.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/02/2023] [Indexed: 09/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its robust aggressive phenotype and chemoresistance. TAO kinase belongs to mitogen-activated protein kinases, which mediate drug resistance in multiple cancers. However, the role of TAO kinase in ESCC progression and chemoresistance has never been explored. Here, it is reported that TAOK3 augments cell autophagy and further promotes ESCC progression and chemoresistance. Mechanistically, TAOK3 phosphorylates KMT2C at S4588 and strengthens the interaction between KMT2C and ETV5. Consequently, the nuclear translocation of KMT2C is increased, and the transcription of autophagy-relevant gene IRGM is further upregulated. Additionally, the inhibitor SBI-581 can significantly suppress cell autophagy mediated by TAOK3 and synergizes with cisplatin to treat ESCC in vitro and in vivo.
Collapse
Affiliation(s)
- Mingchuang Sun
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zhaoxing Li
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Xiaoyuan Wang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Meirong Zhao
- Shanghai East HospitalJinzhou Medical UniversityLiaoning121001China
| | - Yuan Chu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zehua Zhang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Kang Fang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Ziying Zhao
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Anqi Feng
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zhuyun Leng
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jianing Shi
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Li Zhang
- Department of PathologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Tao Chen
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Meidong Xu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| |
Collapse
|
2
|
Zhou S, Sun X, Jin Z, Yang H, Ye W. The role of autophagy in initiation, progression, TME modification, diagnosis, and treatment of esophageal cancers. Crit Rev Oncol Hematol 2022; 175:103702. [PMID: 35577254 DOI: 10.1016/j.critrevonc.2022.103702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022] Open
Abstract
Autophagy is a highly conserved metabolic process with a cytoprotective function. Autophagy is involved in cancer, infection, immunity, and inflammation and may be a potential therapeutic target. Increasing evidence has revealed that autophagy has primary implications for esophageal cancer, including its initiation, progression, tumor microenvironment (TME) modification, diagnosis, and treatment. Notably, autophagy displayed excellent application potential in radiotherapy combined with immunotherapy. Radiotherapy combined with immunotherapy is a new potential therapeutic strategy for cancers, including esophageal cancer. Autophagy modulators can work as adjuvant enhancers in radiotherapy or immunotherapy of cancers. This review highlights the most recent data related to the role of autophagy regulation in esophageal cancer.
Collapse
Affiliation(s)
- Suna Zhou
- Department of Radiation Oncology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China; Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, P.R. China
| | - Xuefeng Sun
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Zhicheng Jin
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Wenguang Ye
- Department of Gastroenterology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| |
Collapse
|
3
|
Luo Y, Da D, Weng Q, Yao S, Zhang H, Han X, Zhang Y. miR-296-5p promotes autophagy in mouse LS8 cells under excessive fluoride via AMPK/ULK1 pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113362. [PMID: 35306215 DOI: 10.1016/j.ecoenv.2022.113362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Numerous microRNAs participate in regulating the pathological process of autophagy. We have found miR-296-5p is one of the most significantly down-regulated microRNAs in a high concentration of sodium fluoride. However, it is not clear whether miR-296-5p augments autophagy in dental fluorosis. Our purpose is to explore the function of miR-296-5p in regulating autophagy of excessive fluoride development. Thus, the cell line of ameloblasts LS8 was exposed to a 1.5 mM dose of NaF and miR-296-5p-mimics, Real-time qPCR, CCK-8 assays, Fluorescence imaging and Western blot analysis were performed. Autophagy was observed. As our results indicated, miR-296-5p overexpression in mouse LS8 cells significantly accelerated autophagy. The autophagy inhibition effect of miR-296-5p underexpression was consistent with the effect of the AMPK inhibitor. And we found that the expression of LC3II was decreased via down-regulation of AMPK. The change of ULK1 by miR-296-5p may be accomplished through AMPK. Thus, miR-296-5p may improve the secretion of autophagic mediators by activating AMPK/ULK1 expression in fluorosis, suggesting that miR-296-5p, AMPK/ULK1 may be potential therapeutic targets under the higher fluoride stimulation.
Collapse
Affiliation(s)
- Yinyue Luo
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Dongxin Da
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Qingqing Weng
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Shuran Yao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Hao Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Xinxin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Ying Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China.
| |
Collapse
|
4
|
Guo Y, Liu Y, Yang H, Dai N, Zhou F, Yang H, Sun W, Kong J, Yuan X, Gao S. Associations of Porphyromonas gingivalis Infection and Low Beclin1 Expression With Clinicopathological Parameters and Survival of Esophageal Squamous Cell Carcinoma Patients. Pathol Oncol Res 2021; 27:1609976. [PMID: 34955686 PMCID: PMC8692246 DOI: 10.3389/pore.2021.1609976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
Purpose: The present study focused on exploring the associations of Porphyromonas gingivalis (P. gingivalis) infection and low Beclin1 expression with clinicopathological parameters and survival of esophageal squamous cell carcinoma (ESCC) patients, so as to illustrate its clinical significance and prognostic value. Methods: Immunohistochemistry (IHC) was used to detect P. gingivalis infection status and Beclin1 expression in 370 ESCC patients. The chi-square test was adopted to illustrate the relationship between categorical variables, and Cohen's kappa coefficient was used for correlation analysis. Kaplan-Meier survival curves with the log-rank test were used to analyse the correlation of P. gingivalis infection and low Beclin1 expression with survival time. The effects of P. gingivalis infection and Beclin1 downregulation on the proliferation, migration and antiapoptotic abilities of ESCC cells in vitro were detected by Cell Counting Kit-8, wound healing and flow cytometry assays. For P. gingivalis infection of ESCC cells, cell culture medium was replaced with antibiotic-free medium when the density of ESCC cells was 70-80%, cells were inoculated with P. gingivalis at a multiplicity of infection (MOI) of 10. Result: P. gingivalis infection was negatively correlated with Beclin1 expression in ESCC tissues, and P. gingivalis infection and low Beclin1 expression were associated with differentiation status, tumor invasion depth, lymph node metastasis, clinical stage and prognosis in ESCC patients. In vitro experiments confirmed that P. gingivalis infection and Beclin1 downregulation potentiate the proliferation, migration and antiapoptotic abilities of ESCC cells (KYSE150 and KYSE30). Our results provide evidence that P. gingivalis infection and low Beclin1 expression were associated with the development and progression of ESCC. Conclusion: Long-term smoking and alcohol consumption causes poor oral and esophageal microenvironments and ESCC patients with these features were more susceptible to P. gingivalis infection and persistent colonization, and exhibited lower Beclin1 expression, worse prognosis and more advanced clinicopathological features. Our findings indicate that effectively eliminating P. gingivalis colonization and restoring Beclin1 expression in ESCC patients may contribute to preventation and targeted treatment, and yield new insights into the aetiological research on ESCC.
Collapse
Affiliation(s)
- Yibo Guo
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
- College of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yiwen Liu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Haijun Yang
- Department of Thoracic Surgery, Department of Pathology, Anyang Tumor Hospital, Anyang, China
| | - Ningtao Dai
- Department of Thoracic Surgery, Department of Pathology, Anyang Tumor Hospital, Anyang, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Department of Pathology, Anyang Tumor Hospital, Anyang, China
| | - Hong Yang
- School of PE, Henan University of Science and Technology, Luoyang, China
| | - Wei Sun
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Jinyu Kong
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Wu D, Ding Y, Fan J. Bioinformatics Analysis of Autophagy-related lncRNAs in Esophageal Carcinoma. Comb Chem High Throughput Screen 2021; 25:1374-1384. [PMID: 34170806 DOI: 10.2174/1386207324666210624143452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Esophageal carcinoma (ESCA) is a malignant tumor with high invasiveness and mortality. Autophagy has multiple roles in the development of cancer; however, there are limited data on autophagy genes associated with long non-coding RNAs (lncRNAs) in ESCA. The purpose of this study was to screen potential diagnostic and prognostic molecules and to identify gene co-expression networks associated with autophagy in ESCA. METHODS We downloaded transcriptome expression profiles from The Cancer Genome Atlas and autophagy-related gene data from the Human Autophagy Database and analyzed the co-expression of mRNAs and lncRNAs. In addition, the diagnostic and prognostic value of autophagy-related lncRNAs was analyzed by multivariate Cox regression. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was carried out for high-risk patients, and enriched pathways were analyzed by gene set enrichment analysis. RESULTS The results showed that genes of high-risk patients were enriched in protein export and spliceosome. Based on Cox stepwise regression and survival analysis, we identified seven autophagy-related lncRNAs with prognostic and diagnostic value, with the potential to be used as a combination to predict the prognosis of patients with ESCA. Finally, a co-expression network related to autophagy was constructed. CONCLUSION These results suggest that autophagy-related lncRNAs and the spliceosome play important parts in the pathogenesis of ESCA. Our findings provide new insight into the molecular mechanism of ESCA and suggest a new method for improving its treatment.
Collapse
Affiliation(s)
- Dan Wu
- Department of Anesthesiology, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - JunBai Fan
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| |
Collapse
|
6
|
Yang Y, Bai L, Liao W, Feng M, Zhang M, Wu Q, Zhou K, Wen F, Lei W, Zhang N, Huang J, Li Q. The role of non-apoptotic cell death in the treatment and drug-resistance of digestive tumors. Exp Cell Res 2021; 405:112678. [PMID: 34171351 DOI: 10.1016/j.yexcr.2021.112678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Tumor cell apoptosis evasion is one of the main reasons for easy metastasis occurrence, chemotherapy resistance, and the low five-year survival rate of digestive system tumors. Current research has shown that non-apoptotic cell death plays an important role in tumors of the digestive system. Therefore, increasing the proportion of non-apoptotic tumor cells is one of the effective methods of improving therapeutic efficacies for digestive system tumors. Non-apoptotic cell death modes mainly include autophagic cell death, pyroptosis, ferroptosis, in addition to other cell death modes. This review covers a systematic review relating to the research progress made into autophagic cell death, pyroptosis, ferroptosis, and other cell death modes in the treatment of digestive system tumors. It also highlights how treatment is a reasonable prospect based on clinical experience and provides reliable guidance for the further development of digestive system tumor treatments.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - LiangLiang Bai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mengxi Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Jiaxing Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Hu YJ, Zhong JT, Gong L, Zhang SC, Zhou SH. Autophagy-Related Beclin 1 and Head and Neck Cancers. Onco Targets Ther 2020; 13:6213-6227. [PMID: 32669852 PMCID: PMC7335767 DOI: 10.2147/ott.s256072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Beclin 1, a positive regulator of autophagy, behaves as a double-edged sword in tumorigenesis. Beclin 1 contributes to tumor suppression by removing defective or damaged organelles and other cellular components; however, its activity can also stimulate cancer initiation and progression. In head and neck cancer, Beclin 1 overexpression promotes autophagy, which limits DNA damage and chromosomal instability and increases necrosis and inflammation by impacting apoptotic and autophagic pathways. This paper reviews the relationship between Beclin 1, carcinogenesis and head and neck cancer prognosis.
Collapse
Affiliation(s)
- Yang-Jie Hu
- Department of Otolaryngology, The Affiliated Cixi Hospital of Wenzhou Medical University, Cixi 315300, Zhejiang, People's Republic of China.,Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Liang Gong
- Department of Otolaryngology, The Affiliated Cixi Hospital of Wenzhou Medical University, Cixi 315300, Zhejiang, People's Republic of China
| | - Si-Cong Zhang
- Department of Otolaryngology, The Affiliated Cixi Hospital of Wenzhou Medical University, Cixi 315300, Zhejiang, People's Republic of China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
8
|
Roles for Autophagy in Esophageal Carcinogenesis: Implications for Improving Patient Outcomes. Cancers (Basel) 2019; 11:cancers11111697. [PMID: 31683722 PMCID: PMC6895837 DOI: 10.3390/cancers11111697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is among the most aggressive forms of human malignancy with five-year survival rates of <20%. Autophagy is an evolutionarily conserved catabolic process that degrades and recycles damaged organelles and misfolded proteins to maintain cellular homeostasis. While alterations in autophagy have been associated with carcinogenesis across tissues, cell type- and context-dependent roles for autophagy have been reported. Herein, we review the current knowledge related to autophagy in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), the two most common subtypes of esophageal malignancy. We explore roles for autophagy in the development and progression of ESCC and EAC. We then continue to discuss molecular markers of autophagy as they relate to esophageal patient outcomes. Finally, we summarize current literature examining roles for autophagy in ESCC and EAC response to therapy and discuss considerations for the potential use of autophagy inhibitors as experimental therapeutics that may improve patient outcomes in esophageal cancer.
Collapse
|
9
|
Wang CY, Ma S, Bi SJ, Su L, Huang SY, Miao JY, Ma CH, Gao CJ, Hou M, Peng J. Enhancing autophagy protects platelets in immune thrombocytopenia patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:134. [PMID: 31157255 DOI: 10.21037/atm.2019.03.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder and involves increased apoptosis of platelets. Autophagy is an essential process for platelets to maintain their life and physiological functions. However, the role of autophagy in ITP platelets was previously unclear. Methods In the present study, the expression of autophagy-related protein and autophagy flux were detected in platelets from ITP patients and healthy controls by immunofluorescence staining and immunoblotting, and the influence of autophagy on the viability and apoptosis of ITP platelets was further explored. Results We found that platelet autophagy was diminished in ITP patients. Platelet autophagy in ITP was regulated by the PI3K/AKT/mTOR pathway, with mTOR (mammalian target of rapamycin) as a negative regulator and class III PtdIns3K playing a crucial role in the process. Importantly, the small-molecule compound ABO (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine) enhanced autophagy in ITP platelets. Enhancing platelet autophagy alleviated platelet destruction by inhibiting apoptosis and improving platelet viability. Conclusions These results suggest a role for autophagy regulation in the pathogenesis of ITP, and offer a novel treatment for these patients.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Department of Geriatric Medicine, Second Hospital of Shandong University, Ji'nan 250033, China.,Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| | - Shao-Jie Bi
- Department of Cardiology, Second Hospital of Shandong University, Ji'nan 250033, China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Shu-Ya Huang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Jun-Ying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Chun-Hong Ma
- Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, China
| | - Cheng-Jiang Gao
- Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, China
| | - Ming Hou
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Ji'nan 250012, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Ji'nan 250012, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| |
Collapse
|
10
|
Lai K, Matthews S, Wilmott JS, Killingsworth MC, Yong JL, Caixeiro NJ, Wykes J, Samakeh A, Forstner D, Lee M, McGuinness J, Niles N, Hong A, Ebrahimi A, Lee CS. Differences in LC3B expression and prognostic implications in oropharyngeal and oral cavity squamous cell carcinoma patients. BMC Cancer 2018; 18:624. [PMID: 29859041 PMCID: PMC5984815 DOI: 10.1186/s12885-018-4536-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background This study examined the prognostic significance of microtubule-associated protein light chain 3B (LC3B) expression in oropharyngeal and oral cavity squamous cell carcinoma (SCC). The prognostic significance of LC3B expression in relation to human papillomavirus (HPV) status in oropharyngeal SCC was also examined. Methods Tissue microarrays (TMAs) were constructed from formalin-fixed, paraffin-embedded oropharyngeal (n = 47) and oral cavity (n = 95) SCC tissue blocks from patients with long-term recurrence and overall survival data (median = 47 months). LC3B expression on tumour was assessed by immunohistochemistry and evaluated for associations with clinicopathological variables. LC3B expression was stratified into high and low expression cohorts using ROC curves with Manhattan distance minimisation, followed by Kaplan–Meier and multivariable survival analyses. Interaction terms between HPV status and LC3B expression in oropharyngeal SCC patients were also examined by joint-effects and stratified analyses. Results Kaplan–Meier survival and univariate analyses revealed that high LC3B expression was correlated with poor overall survival in oropharyngeal SCC patients (p = 0.007 and HR = 3.18, 95% CI 1.31–7.71, p = 0.01 respectively). High LC3B expression was also an independent prognostic factor for poor overall survival in oropharyngeal SCC patients (HR = 4.02, 95% CI 1.38–11.47, p = 0.011). In contrast, in oral cavity SCC, only disease-free survival remained statistically significant after univariate analysis (HR = 2.36, 95% CI 1.19–4.67, p = 0.014), although Kaplan-Meier survival analysis showed that high LC3B expression correlated with poor overall and disease-free survival (p = 0.046 and 0.011 respectively). Furthermore, oropharyngeal SCC patients with HPV-negative/high LC3B expression were correlated with poor overall survival in both joint-effects and stratified presentations (p = 0.024 and 0.032 respectively). Conclusions High LC3B expression correlates with poor prognosis in oropharyngeal and oral cavity SCC, which highlights the importance of autophagy in these malignancies. High LC3B expression appears to be an independent prognostic marker for oropharyngeal SCC but not for oral cavity SCC patients. The difference in the prognostic significance of LC3B between oropharyngeal and oral cavity SCCs further supports the biological differences between these malignancies. The possibility that oropharyngeal SCC patients with negative HPV status and high LC3B expression were at particular risk of a poor outcome warrants further investigation in prospective studies with larger numbers.
Collapse
Affiliation(s)
- Kenneth Lai
- Sydney Medical School, The University of Sydney, Sydney, Australia. .,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia. .,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia. .,Department of Anatomical Pathology, Sydney South West Pathology Service (SSWPS) Liverpool Hospital, Sydney, Australia. .,Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.
| | - Slade Matthews
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Bosch Institute, The University of Sydney, Sydney, Australia
| | - James S Wilmott
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Melanoma Institute Australia, Sydney, Australia
| | - Murray C Killingsworth
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia.,Department of Anatomical Pathology, Sydney South West Pathology Service (SSWPS) Liverpool Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jim L Yong
- Department of Anatomical Pathology, Sydney South West Pathology Service (SSWPS) Liverpool Hospital, Sydney, Australia
| | - Nicole J Caixeiro
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia
| | - James Wykes
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Sydney, Australia
| | - Allan Samakeh
- Department of Head & Neck Surgery, Liverpool Hospital, Sydney, Australia
| | - Dion Forstner
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Radiation Oncology, Liverpool Hospital, Sydney, Australia
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Sydney, Australia
| | - John McGuinness
- Department of Head & Neck Surgery, Liverpool Hospital, Sydney, Australia
| | - Navin Niles
- Department of Head & Neck Surgery, Liverpool Hospital, Sydney, Australia
| | - Angela Hong
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Ardalan Ebrahimi
- Department of Head & Neck Surgery, Liverpool Hospital, Sydney, Australia
| | - Cheok Soon Lee
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia.,Department of Anatomical Pathology, Sydney South West Pathology Service (SSWPS) Liverpool Hospital, Sydney, Australia
| |
Collapse
|
11
|
Hall TM, Tétreault MP, Hamilton KE, Whelan KA. Autophagy as a cytoprotective mechanism in esophageal squamous cell carcinoma. Curr Opin Pharmacol 2018; 41:12-19. [PMID: 29677645 DOI: 10.1016/j.coph.2018.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is amongst the most aggressive human malignancies, representing a significant health burden worldwide. Autophagy is an evolutionarily conserved catabolic process that degrades and recycles damaged organelles and misfolded proteins to maintain cellular homeostasis. Alterations in autophagy are associated with cancer pathogenesis, including ESCC; however, the functional role of autophagy in ESCC remains elusive. Here, we discuss the clinical relevance of autophagy effectors in ESCC and review current knowledge regarding the molecular mechanisms through which autophagy contributes to ESCC. We highlight the cytoprotective role of autophagy in ESCC and discuss autophagy inhibitors as novel experimental therapeutics to potentiate the effects of anti-cancer therapies and/or to overcome therapeutic resistance in ESCC.
Collapse
Affiliation(s)
- Timothy M Hall
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn E Hamilton
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly A Whelan
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
12
|
Raju GSR, Pavitra E, Merchant N, Lee H, Prasad GLV, Nagaraju GP, Huh YS, Han YK. Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Lett 2018; 419:222-232. [DOI: 10.1016/j.canlet.2018.01.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|
13
|
Wu J, Gao F, Xu T, Deng X, Wang C, Yang X, Hu Z, Long Y, He X, Liang G, Ren D, Dai T. miR-503 suppresses the proliferation and metastasis of esophageal squamous cell carcinoma by triggering autophagy via PKA/mTOR signaling. Int J Oncol 2018; 52:1427-1442. [PMID: 29568867 PMCID: PMC5873897 DOI: 10.3892/ijo.2018.4320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/14/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miR)-503 is involved in the regulation of the malignant phenotype in multiple tumor types, and has been proven to be a novel diagnostic and therapeutic target; however, its function and mechanisms of action have not yet been fully elucidated in esophageal squamous cell carcinoma (ESCC). In the current study, we detected miR‑503 expression by RT‑qPCR and found that miR‑503 expression was increased in ESCC, but negatively correlated with lymph node metastasis, TNM stage and tumor differentiation. Functionally, we confirmed that miR‑503 inhibited the proliferation and metastasis of ESCC cells by triggering cellular autophagy. Mechanistically, we confirmed that miR‑503 exerted its biological effects by targeting protein kinase CAMP‑activated catalytic subunit alpha (PRKACA) in ESCC by dual luciferase reporter assay. Moreover, miR‑503 was found to trigger autophagy in ESCC cells through the protein kinase A (PKA)/mammalian target of rapamycin (mTOR) pathway. Taken together, our results demonstrate that miR‑503 suppresses the proliferation and metastasis of ESCC via the activation of autophagy, mediated by the PKA/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fengxia Gao
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoyan Yang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Long
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuemei He
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Guannan Liang
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Delian Ren
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tianyang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
14
|
Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 2018; 7:83907-83925. [PMID: 27880732 PMCID: PMC5356634 DOI: 10.18632/oncotarget.13438] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that are hallmarks of human cancer. MDSCs inhibit cytotoxic T lymphocytes (CTLs) and NK cell functions to promote tumor immune escape and progression, and therefore are considered key targets in cancer immunotherapy. Recent studies determined a key role of the apoptosis pathways in tumor-induced MDSC homeostasis and it is known that ceramide plays a key role in regulation of mammalian cell apoptosis. In this study, we aimed to determine the efficacy and underlying molecular mechanism of ceramide in suppression of MDSCs. Treatment of tumor-bearing mice with LCL521, a lysosomotropic inhibitor of acid ceramidase, significantly decreased MDSC accumulation in vivo. Using a MDSC-like myeloid cell model, we determined that LCL521 targets lysosomes and increases total cellular C16 ceramide level. Although MDSC-like cells have functional apoptosis pathways, LCL521-induced MDSC death occurs in an apoptosis- and necroptosis-independent mechanism. LCL521 treatment resulted in an increase in the number of autophagic vesicles, heterolysosomes and swollen ERs. Finally, concomitant inhibition of cathepsin B and cathepsin D was required to significantly decrease LCL521-induced cell death. Our observations indicate that LCL521 targets lysosomes to activate cathepsin B and cathepsin D, resulting in interrupted autophagy and ER stress that culminates in MDSC death. Therefore, a ceramidase inhibitor is potentially an effective adjunct therapeutic agent for suppression of MDSCs to enhance the efficacy of CTL-based cancer immunotherapy.
Collapse
|
15
|
Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Semin Cancer Biol 2017; 44:60-66. [DOI: 10.1016/j.semcancer.2017.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|