1
|
Xie H, Wang H, Li RH, Zhang YW, Fan XR, He XX, Guan AR. DNMT1 promotes the proliferation and migration of gastric cancer cells by inducing microRNA-125a-5p methylation to promote SERPINE1 protein. World J Gastrointest Oncol 2025; 17:98703. [PMID: 40092920 PMCID: PMC11866249 DOI: 10.4251/wjgo.v17.i3.98703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor originating from gastric mucosal epithelial cells that has high morbidity and mortality. microRNAs (miR) are important diagnostic markers and therapeutic targets in this disease. AIM To explore the mechanism of miR-125a-5p in the pathogenesis of GC. METHODS The expression levels of miR-125a-5p, SERPINE1 and DNMT1 in GC cells and tissues were detected by real-time polymerase chain reaction (PCR) and Western blotting. Methylation-specific PCR was used to detect the level of miR-125a-5p methylation. A cell counting kit 8 assay, scratch test, and a Transwell assay were performed to detect the proliferation, migration, and invasiveness of HGC27 cells, respectively. The expression of the epithelial mesenchymal transition (EMT)-related proteins E-cadherin, N-cadherin and vimentin in HGC27 cells was detected by Western blotting, while the expression of vimentin was detected by immunofluorescence. RESULTS This study revealed that miR-125a-5p was expressed at low levels in GC clinical samples and cells and that miR-125a-5p overexpression inhibited the proliferation, migration, invasiveness and EMT of GC cells. Mechanistically, miR-125a-5p can reduce GC cell proliferation, promote E-cadherin expression, inhibit N-cadherin and vimentin expression, and reduce the EMT of GC cells, thus constraining GC cells to a certain extent. Moreover, DNMT1 inhibited miR-125a-5p expression by increasing the methylation of the miR-125a-5p promoter, thereby promoting the expression of SERPINE1, which acts together with miR-125a-5p to exert antagonistic effects on GC. CONCLUSION Our study revealed that DNMT1 promoted SERPINE1 protein expression by inducing miR-125a-5p methylation, which led to the proliferation, migration and occurrence of EMT in GC cells.
Collapse
Affiliation(s)
- Hui Xie
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Hui Wang
- Department of Digestive Internal Medicine, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Ru-Hong Li
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Yue-Wen Zhang
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Xi-Rui Fan
- Department of Digestive Internal Medicine, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Xiao-Xue He
- Department of Digestive Internal Medicine, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Ao-Ran Guan
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| |
Collapse
|
2
|
Teodoro L, Carreira ACO, Sogayar MC. Exploring the Complexity of Pan-Cancer: Gene Convergences and in silico Analyses. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:913-934. [PMID: 39691553 PMCID: PMC11651076 DOI: 10.2147/bctt.s489246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by highly intricate mechanisms of tumorigenesis and tumor progression, which complicates diagnosis, prognosis, and treatment. In recent years, targeted therapies have gained prominence by focusing on specific mutations and molecular features unique to each tumor type, offering more effective and personalized treatment options. However, it is equally critical to explore the genetic commonalities across different types of cancer, which has led to the rise of pan-cancer studies. These approaches help identify shared therapeutic targets across various tumor types, enabling the development of broader and potentially more widely applicable treatment strategies. This review aims to provide a comprehensive overview of key concepts related to tumors, including tumorigenesis processes, the tumor microenvironment, and the role of extracellular vesicles in tumor biology. Additionally, we explore the molecular interactions and mechanisms driving tumor progression, with a particular focus on the pan-cancer perspective. To achieve this, we conducted an in silico analysis using publicly available datasets, which facilitated the identification of both common and divergent genetic and molecular patterns across different tumor types. By integrating these diverse areas, this review offers a clearer and deeper understanding of the factors influencing tumorigenesis and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Leandro Teodoro
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Ana Claudia O Carreira
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09280-560, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
3
|
Petre-Mandache B, Burada E, Cucu MG, Atasie D, Riza AL, Streață I, Mitruț R, Pleșea R, Dobrescu A, Pîrvu A, Popescu-Hobeanu G, Mitruț P, Burada F. Lack of Association Between BsmI and FokI Polymorphisms of the VDR Gene and Sporadic Colorectal Cancer in a Romanian Cohort-A Preliminary Study. Curr Oncol 2024; 31:6406-6418. [PMID: 39451780 PMCID: PMC11505952 DOI: 10.3390/curroncol31100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) is a major public health problem worldwide, currently ranking third in cancer incidence and second in mortality. Multiple genes and environmental factors have been involved in the complex and multifactorial process of CRC carcinogenesis. VDR is an intracellular hormone receptor expressed in both normal epithelial and cancer colon cells at various levels. Several VDR gene polymorphisms, including FokI and BsmI, have been evaluated for their possible association with CRC susceptibility. The aim of our study was to investigate these two SNPs for the first time in Romanian CRC patients. FokI (rs228570 C>T) and BsmI (rs1544410 A>G) were genotyped by real-time polymerase chain reaction (RT-PCR) in 384-well plates using specific TaqMan predesigned probes on a ViiA™ 7 RT-PCR System. A total of 441 subjects (166 CRC patients and 275 healthy controls) were included. No statistically significant difference was observed between CRC patients and controls when we compared the wild-type genotype with heterozygous and mutant genotypes for both FokI (OR 0.85, 95% CI: 0.56-1.28; OR 0.95, 95% CI: 0.51-1.79, respectively) and BsmI (OR 0.97, 95% CI: 0.63-1.49; OR 1.10, 95% CI: 0.65-1.87, respectively) or in the dominant and recessive models. Also, we compared allele frequencies, and no correlation was found. Moreover, the association between these SNPs and the tumor site, TNM stage, and histological type was examined separately, and there was no statistically significant difference. In conclusion, our study did not show any association between FokI and BsmI SNPs and CRC susceptibility in a Romanian population. Further studies including a larger number of samples are needed to improve our knowledge regarding the influence of VDR polymorphism on CRC susceptibility.
Collapse
Affiliation(s)
- Bianca Petre-Mandache
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.P.-M.); (R.M.); (G.P.-H.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihai Gabriel Cucu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Diter Atasie
- Department of Clinical Medicine, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Radu Mitruț
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.P.-M.); (R.M.); (G.P.-H.)
| | - Răzvan Pleșea
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Amelia Dobrescu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Andrei Pîrvu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Gabriela Popescu-Hobeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.P.-M.); (R.M.); (G.P.-H.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
| | - Paul Mitruț
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Florin Burada
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| |
Collapse
|
4
|
Jahantab MB, Salehi M, Koushki M, Farrokhi Yekta R, Amiri-Dashatan N, Rezaei-Tavirani M. Modelling of miRNA-mRNA Network to Identify Gene Signatures with Diagnostic and Prognostic Value in Gastric Cancer: Evidence from In-Silico and In-Vitro Studies. Rep Biochem Mol Biol 2024; 13:281-300. [PMID: 39995653 PMCID: PMC11847593 DOI: 10.61186/rbmb.13.2.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/08/2024] [Indexed: 02/26/2025]
Abstract
Background Gastric cancer (GC) is a prevalent malignancy with high recurrence. Advances in systems biology have identified molecular pathways and biomarkers. This study focuses on discovering gene and miRNA biomarkers for diagnosing and predicting survival in GC patients. Methods Three sets of genes (GSE19826, GSE81948, and GSE112369) and two sets of miRNA expression (GSE26595, GSE78775) were obtained from the Gene Expression Omnibus (GEO), and subsequently, differentially expressed genes (DEGs) and miRNAs (DEMs) were identified. Functional pathway enrichment, DEG-miR-TF-protein-protein interaction network, DEM-mRNA network, ROC curve, and survival analyses were performed. Finally, qRT-PCR was applied to validate our results. Results From the high-throughput profiling studies of GC, we investigated 10 candidate mRNA and 7 candidate miRNAs as potential biomarkers. Expression analysis of these hubs revealed that 5 miRNAs (including miR-141-3p, miR-204-5p, miR-338-3p, miR-609, and miR-369-5p) were significantly upregulated compared to the controls. The genes with the highest degree included 6 upregulated and 4 downregulated genes in tumor samples compared to controls. The expression of miR-141-3p, miR-204-5p, SESTD1, and ANTXR1 were verified in vitro from these hub DEMs and DEGs. The findings indicated a decrease in the expression of miR-141-3p and miR-204-5p and increased expression of SESTD1 and ANTXR1 in GC cell lines compared to the GES-1 cell line. Conclusions The current investigation successfully recognized a set of prospective miRNAs and genes that may serve as potential biomarkers for GC's early diagnosis and prognosis.
Collapse
Affiliation(s)
- Mohammad Bagher Jahantab
- Clinical Research Development Unit, Shahid Jalil Hospital, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mohammad Salehi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Reyhaneh Farrokhi Yekta
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasrin Amiri-Dashatan
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Thodou E, Samara M. Gastric Cancer in the Era of Epigenetics. Int J Mol Sci 2024; 25:3381. [PMID: 38542354 PMCID: PMC10970362 DOI: 10.3390/ijms25063381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein-Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor's metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Konstantinos-Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Marina-Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
6
|
De Marco K, Sanese P, Simone C, Grossi V. Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:4976. [PMID: 37894343 PMCID: PMC10605360 DOI: 10.3390/cancers15204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| |
Collapse
|
7
|
Matsuoka T, Yashiro M. Novel biomarkers for early detection of gastric cancer. World J Gastroenterol 2023; 29:2515-2533. [PMID: 37213407 PMCID: PMC10198055 DOI: 10.3748/wjg.v29.i17.2515] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related death worldwide. Less than half of GC cases are diagnosed at an advanced stage due to its lack of early symptoms. GC is a heterogeneous disease associated with a number of genetic and somatic mutations. Early detection and effective monitoring of tumor progression are essential for reducing GC disease burden and mortality. The current widespread use of semi-invasive endoscopic methods and radiologic approaches has increased the number of treatable cancers: However, these approaches are invasive, costly, and time-consuming. Thus, novel molecular noninvasive tests that detect GC alterations seem to be more sensitive and specific compared to the current methods. Recent technological advances have enabled the detection of blood-based biomarkers that could be used as diagnostic indicators and for monitoring postsurgical minimal residual disease. These biomarkers include circulating DNA, RNA, extracellular vesicles, and proteins, and their clinical applications are currently being investigated. The identification of ideal diagnostic markers for GC that have high sensitivity and specificity would improve survival rates and contribute to the advancement of precision medicine. This review provides an overview of current topics regarding the novel, recently developed diagnostic markers for GC.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| |
Collapse
|
8
|
Hosseini SA, Salehifard Jouneghani A, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. CRISPR/Cas9 as precision and high-throughput genetic engineering tools in gastrointestinal cancer research and therapy. Int J Biol Macromol 2022; 223:732-754. [PMID: 36372102 DOI: 10.1016/j.ijbiomac.2022.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Gastrointestinal cancer (GI) is one of the most serious and health-threatening diseases worldwide. Many countries have encountered an escalating prevalence of shock. Therefore, there is a pressing need to clarify the molecular pathogenesis of these cancers. The use of high-throughput technologies that allow the precise and simultaneous investigation of thousands of genes, proteins, and metabolites is a critical step in disease diagnosis and cure. Recent innovations have provided easy and reliable methods for genome investigation, including TALENs, ZFNs, and the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats system). Among these, CRISPR/Cas9 has been revolutionary tool in genetic research. Recent years were prosperous years for CRISPR by the discovery of novel Cas enzymes, the Nobel Prize, and the development of critical clinical trials. This technology utilizes comprehensive information on genes associated with tumor development, provides high-throughput libraries for tumor therapy by developing screening platforms, and generates rapid tools for cancer therapy. This review discusses the various applications of CRISPR/Cas9 in genome editing, with a particular focus on genome manipulation, including infection-related genes, RNAi targets, pooled library screening for identification of unknown driver mutations, and molecular targets for gastrointestinal cancer modeling. Finally, it provides an overview of CRISPR/Cas9 clinical trials, as well as the challenges associated with its use.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Chen L, Deng J. Role of non-coding RNA in immune microenvironment and anticancer therapy of gastric cancer. J Mol Med (Berl) 2022; 100:1703-1719. [PMID: 36329206 DOI: 10.1007/s00109-022-02264-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Gastric cancer remains one of the cancers with the highest mortality in the world; therefore, it is very important to investigate its pathogenesis to improve the prognosis of gastric cancer patients. Recently, noncoding RNAs have become a research hotspot in the field of oncology. These RNA molecules play complex roles in the regulation of tumor cells, immune cells, and the tumor microenvironment. Therefore, studying their ability to regulate the gastric cancer immune microenvironment will provide us with a better perspective to understand their potential role in anticancer therapy. In this review, we discuss the regulatory effects of several common noncoding RNAs on the immune microenvironment of gastric cancer and their prospects in anticancer therapy to provide some novel insight into the identification of valuable diagnostic markers and improving the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
10
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Ignatavicius P, Dauksa A, Zilinskas J, Kazokaite M, Riauka R, Barauskas G. DNA Methylation of HOXA11 Gene as Prognostic Molecular Marker in Human Gastric Adenocarcinoma. Diagnostics (Basel) 2022; 12:1686. [PMID: 35885590 PMCID: PMC9317388 DOI: 10.3390/diagnostics12071686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Hypermethylation of tumor suppressor genes and hypomethylation of oncogenes might be identified as possible biomarkers in gastric cancer (GC). We aimed to assess the DNA methylation status of selected genes in GC tissue samples and evaluate these genes' prognostic importance on patient survival. Patients (99) diagnosed with GC and who underwent gastrectomy were included. We selected a group of genes (RAD51B, GFRA3, AKR7A3, HOXA11, TUSC3, FLI1, SEZ6L, GLDC, NDRG) which may be considered as potential tumor suppressor genes and oncogenes. Methylation of the HOXA11 gene promoter was significantly more frequent in GC tumor tissue (p = 0.006) than in healthy gastric mucosa. The probability of surviving longer (71.2 months (95% CI 57-85.3) vs. 44.3 months (95% CI 34.8-53.9)) was observed with unmethylated HOXA11 promoter in cancer tissues. Survival in patients with a methylation of HOXA11 promoter either in healthy gastric mucosa or gastric cancer tissue was twice as high as in patients with a methylation of HOXA11 promoter in both healthy gastric mucosa and cancer tissue (61.2 months (95% CI 50.9-71.4) vs. 28.5 months (95% CI 20.8-36.2)). Multivariate Cox analysis revealed the HOXA11 methylation as significantly associated with patients' survival (HR = 2.4, 95% CI 1.19-4.86). Our results suggest that the HOXA11 gene might be a potential prognostic molecular marker in patients with gastric adenocarcinoma.
Collapse
Affiliation(s)
- Povilas Ignatavicius
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
| | - Albertas Dauksa
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
- Institute of Digestive Research, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Justas Zilinskas
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
| | - Mintaute Kazokaite
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Romualdas Riauka
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
| | - Giedrius Barauskas
- Department of Surgery, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (A.D.); (J.Z.); (R.R.); (G.B.)
| |
Collapse
|
12
|
Li N, Zeng A, Wang Q, Chen M, Zhu S, Song L. Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int 2022; 22:227. [PMID: 35810299 PMCID: PMC9270757 DOI: 10.1186/s12935-022-02648-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
As one of the most common malignancies worldwide, gastric cancer contributes to cancer death with a high mortality rate partly responsible for its out-of-control progression as well as limited diagnosis. DNA methylation, one of the epigenetic events, plays an essential role in the carcinogenesis of many cancers, including gastric cancer. Long non-coding RNAs have emerged as the significant factors in the cancer progression functioned as the oncogene genes, the suppressor genes and regulators of signaling pathways over the decade. Intriguingly, increasing reports, recently, have claimed that abnormal DNA methylation regulates the expression of lncRNAs as tumor suppressor genes in gastric cancer and lncRNAs as regulators could exert the critical influence on tumor progression through acting on DNA methylation of other cancer-related genes. In this review, we summarized the DNA methylation-associated lncRNAs in gastric cancer which play a large impact on tumor progression, such as proliferation, invasion, metastasis and so on. Furthermore, the underlying molecular mechanism and signaling pathway might be developed as key points of gastric cancer range from diagnosis to prognosis and treatment in the future.
Collapse
Affiliation(s)
- Nan Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Maohua Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
13
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
14
|
Wang L, Zou J, Zhang J. Dysregulation of let-7c-5p/Tyrosyl-DNA phosphodiesterase 1 axis indicates an unfavorable outcome in gastric cancer. EUR J INFLAMM 2022. [DOI: 10.1177/20587392211069258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Tyrosyl-DNA phosphodiesterase 1 (TDP1) can repair oxidative damage-caused 3′-phosphoglycolates and promote cancer progression. However, the clinical significance of TDP1 and its correlation with microRNAs (miRNAs) in gastric cancer (GC) remains unknown. Methods The relationship of TDP1 or let-7c-5p with the clinical outcomes of GC was determined by a tissue microarray and TCGA dataset. Cell viability and invasion were assessed by MTT and Transwell assays. Pearson correlation analysis, luciferase gene report, qRT-PCR, and Western blot analyses were used to analyze the interaction between TDP1 and let-7c-5p in GC tissues and cells. Results We found that TDP1 expression was elevated in GC tissues and associated with the dysregulation of let-7c-5p. Knockdown of TDP1 inhibited GC cell proliferation and invasion. let-7c-5p could be found to bind with TDP1, reduce its expression levels, and represent a predictive marker in GC. Conclusion Our findings demonstrated that dysregulation of let-7c-5p/TDP1 axis could predict a poor prognosis in GC.
Collapse
Affiliation(s)
- Lan Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zou
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
15
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
16
|
Hernández-Nava E, Montaño LF, Rendón-Huerta EP. Transcriptional and Epigenetic Bioinformatic Analysis of Claudin-9 Regulation in Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5936905. [PMID: 39296813 PMCID: PMC11410435 DOI: 10.1155/2021/5936905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 09/21/2024]
Abstract
Gastric cancer is a heterogeneous disease that represents 5% to 10% of all new cancer cases worldwide. Advances in histological diagnosis and the discovery of new genes have admitted new genomic classifications. Nevertheless, the bioinformatic analysis of gastric cancer databases has favored the detection of specific differentially expressed genes with biological significance. Claudins, a family of proteins involved in tight junction physiology, have emerged as the key regulators of cellular processes, such as growth, proliferation, and migration, associated with cancer progression. The expression of Claudin-9 in the gastric cancer tissue has been linked to poor prognosis, however, its transcriptional and epigenetic regulations demand a more comprehensive analysis. Using the neural network promoter prediction, TransFact, Uniprot-KB, Expasy-SOPMA, protein data bank, proteomics DB, Interpro, BioGRID, String, and the FASTA protein sequence databases and software, we found the following: (1) the promoter sequence has an unconventional structure, including different transcriptional regulation elements distributed throughout it, (2) GATA 4, GATA 6, and KLF5 are the key regulators of Claudin-9 expression, (3) Oct1, NF-κB, AP-1, c-Ets-1, and HNF-3β have the higher binding affinity to the CLDN9 promoter, (4) Claudin-9 interacts with cell differentiation and development proteins, (5) CLDN9 is highly methylated, and (6) Claudin-9 expression is associated with poor survival. In conclusion, Claudin-9 is a protein that should be considered a diagnostic marker as its gene promoter region binds to the transcription factors associated with the deregulation of cell control, enhanced cell proliferation, and metastasis.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Luis F Montaño
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
17
|
Novel Biomarkers of Gastric Adenocarcinoma: Current Research and Future Perspectives. Cancers (Basel) 2021; 13:cancers13225660. [PMID: 34830815 PMCID: PMC8616337 DOI: 10.3390/cancers13225660] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Gastric cancer is characterized by poor survival rates despite surgery and chemotherapy. Current research focuses on biomarkers to improve diagnosis and prognosis, and to enable targeted treatment strategies. The aim of our review was to give an overview over the wide range of novel biomarkers in gastric cancer. These biomarkers are targets of a specific treatment, such as antibodies against human epidermal growth factor receptor 2. Other promising biomarkers for targeted therapies that have shown relevance in clinical trials are vascular endothelial growth factor, programmed cell death protein 1, and Claudin 18.2. There is a vast number of biomarkers based on DNA, RNA, and protein expression, as well as detection of circulating tumor cells and the immune tumor microenvironment. Abstract Overall survival of gastric cancer remains low, as patients are often diagnosed with advanced stage disease. In this review, we give an overview of current research on biomarkers in gastric cancer and their implementation in treatment strategies. The HER2-targeting trastuzumab is the first molecular targeted agent approved for gastric cancer treatment. Other promising biomarkers for targeted therapies that have shown relevance in clinical trials are VEGF and Claudin 18.2. Expression of MET has been shown to be a negative prognostic factor in gastric cancer. Targeting the PD-1/PD-L1 pathway with immune checkpoint inhibitors has proven efficacy in advanced gastric cancer. Recent technology advances allow the detection of circulating tumor cells that may be used as diagnostic and prognostic indicators and for therapy monitoring in gastric cancer patients. Prognostic molecular subtypes of gastric cancer have been identified using genomic data. In addition, transcriptome profiling has allowed a comprehensive characterization of the immune and stromal microenvironment in gastric cancer and development of novel risk scores. These prognostic and predictive markers highlight the rapidly evolving field of research in gastric cancer, promising improved treatment stratification and identification of molecular targets for individualized treatment in gastric cancer.
Collapse
|
18
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
19
|
Gao C, Liu H, Zhao Y, Miao X, Zheng H. Is there a relationship between neural EGFL like 1 (NELL1) promoter hypermethylation and prognosis of gastric cancer? Med Hypotheses 2021; 158:110723. [PMID: 34753006 DOI: 10.1016/j.mehy.2021.110723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
We hypothesized that neural EGFL like 1 (NELL1) promoter hypermethylation might be associated with the prognosis of gastric cancer. Some studies considered NELL1 as a tumor suppressor gene and our research confirmed for the first time the hypermethylation in the promoter region of NELL1 by the application of mass spectrometry. Promoter hypermethylation can cause the silencing of tumor suppressor genes and promote tumor progression. Based on present studies and research results, we proposed that NELL1 promoter hypermethylation might be associated with cancer staging and the survival of gastric cancer patients and had prognostic value. We hoped that NELL1 promoter hypermethylation would be applied not only for early detection but also prognosis prediction of gastric cancer and would become a new prognostic biomarker.
Collapse
Affiliation(s)
- Changlu Gao
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Haibin Liu
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Yubo Zhao
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Xinyu Miao
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Hongqun Zheng
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China.
| |
Collapse
|
20
|
Zhang C, Li YZ, Dai DQ. Aberrant DNA Methylation-Mediated FOXF2 Dysregulation Is a Prognostic Risk Factor for Gastric Cancer. Front Mol Biosci 2021; 8:645470. [PMID: 34568422 PMCID: PMC8460759 DOI: 10.3389/fmolb.2021.645470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background: The prognosis of gastric cancer (GC) patients is poor. The effect of aberrant DNA methylation on FOXF2 expression and the prognostic role of FOXF2 methylation in GC have not yet been identified. Methods: The RNA-Seq and gene methylation HM450 profile data were used for analyzing FOXF2 expression in GC and its association with methylation level. Bisulfite sequencing PCR (BSP) was performed to measure the methylation level of the FOXF2 promoter region in GC cell lines and normal GES-1 cells. The cells were treated with the demethylation reagent 5-Aza-dC, and the mRNA and protein expression levels of FOXF2 were then measured by qRT-PCR and western blot assays. The risk score system from SurvivalMeth was calculated by integrating the methylation level of the cg locus and the corresponding Cox regression coefficient. Results: FOXF2 was significantly downregulated in GC cells and tissues. On the basis of RNA-Seq and Illumina methylation 450 data, FOXF2 expression was significantly negatively correlated with the FOXF2 methylation level (Pearson’s R = −0.42, p < 2.2e−16). The FOXF2 methylation level in the high FOXF2 expression group was lower than that in the low FOXF2 expression group. The BSP assay indicated that the methylation level of the FOXF2 promoter region in GC cell lines was higher than that in GES-1 cells. The qRT-PCR and western blot assay showed that FOXF2 mRNA and protein levels were increased in GC cells following treatment with 5-Aza-Dc. The methylation risk score model indicated that patients in the high risk group had poorer survival probability than those in the low risk group (HR = 1.84 (1.11–3.07) and p = 0.0068). FOXF2 also had a close transcriptional regulation network with four miRNAs and their corresponding target genes. Functional enrichment analysis of the target genes revealed that these genes were significantly related to several important signaling pathways. Conclusion: FOXF2 was downregulated due to aberrant DNA methylation in GC, and the degree of methylation in the promoter region of FOXF2 was related to the prognosis of patients. The FOXF2/miRNAs/target genes axis may play a vital biological regulation role in GC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong-Zhi Li
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Yao L, Xie Y. Down-regulation of hsa_circ_0006470 predicts tumor invasion: A new biomarker of gastric cancer. J Clin Lab Anal 2021; 35:e23879. [PMID: 34165822 PMCID: PMC8373341 DOI: 10.1002/jcla.23879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Gastric cancer (GC) is a common cancer. Circular RNAs (circRNAs) regulate the pathogenesis of GC. This study aims to explore its potential as a GC biomarker. Methods The expression of hsa_circ_0006470 in GC tissues and GC cell lines was measured by quantitative reverse transcription‐polymerase chain reaction. The diagnostic value of hsa_circ_0006470 was estimated by the receiver operating characteristic (ROC) curve. Results Compared with adjacent normal tissues, the expression of hsa_circ_0006470 in GC tissues was significantly lower. The expression levels of hsa_circ_0006470 in different TNM stages and different invasion degrees were significantly different. The area under the ROC curve was 0.783, with sensitivity and specificity 0.725 and 0.750, respectively. Conclusions Hsa_circ_0006470 has a high value as a diagnostic biomarker for GC.
Collapse
Affiliation(s)
- Lipeng Yao
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yaoyao Xie
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
22
|
Bure IV, Nemtsova MV. Methylation and Noncoding RNAs in Gastric Cancer: Everything Is Connected. Int J Mol Sci 2021; 22:ijms22115683. [PMID: 34073603 PMCID: PMC8199097 DOI: 10.3390/ijms22115683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress, gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Aberrant DNA methylation pattern and deregulation of noncoding RNA expression appear in the early stages of gastric cancer. Numerous investigations have confirmed their significant role in gastric cancer tumorigenesis and their high potential as diagnostic and prognostic biomarkers. Currently, it is clear that these epigenetic regulators do not work alone but interact with each other, generating a complex network. The aim of our review was to summarize the current knowledge of this interaction in gastric cancer and estimate its clinical potential for the diagnosis, prognosis, and treatment of the disease.
Collapse
Affiliation(s)
- Irina V. Bure
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +49-915-069-2721
| | - Marina V. Nemtsova
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
23
|
Development and Validation of a Robust Immune-Related Prognostic Signature for Gastric Cancer. J Immunol Res 2021; 2021:5554342. [PMID: 34007851 PMCID: PMC8110424 DOI: 10.1155/2021/5554342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background An increasing number of reports have found that immune-related genes (IRGs) have a significant impact on the prognosis of a variety of cancers, but the prognostic value of IRGs in gastric cancer (GC) has not been fully elucidated. Methods Univariate Cox regression analysis was adopted for the identification of prognostic IRGs in three independent cohorts (GSE62254, n = 300; GSE15459, n = 191; and GSE26901, n = 109). After obtaining the intersecting prognostic genes, the three independent cohorts were merged into a training cohort (n = 600) to establish a prognostic model. The risk score was determined using multivariate Cox and LASSO regression analyses. Patients were classified into low-risk and high-risk groups according to the median risk score. The risk score performance was validated externally in the three independent cohorts (GSE26253, n = 432; GSE84437, n = 431; and TCGA, n = 336). Immune cell infiltration (ICI) was quantified by the CIBERSORT method. Results A risk score comprising nine genes showed high accuracy for the prediction of the overall survival (OS) of patients with GC in the training cohort (AUC > 0.7). The risk of death was found to have a positive correlation with the risk score. The univariate and multivariate Cox regression analyses revealed that the risk score was an independent indicator of the prognosis of patients with GC (p < 0.001). External validation confirmed the universal applicability of the risk score. The low-risk group presented a lower infiltration level of M2 macrophages than the high-risk group (p < 0.001), and the prognosis of patients with GC with a higher infiltration level of M2 macrophages was poor (p = 0.011). According to clinical correlation analysis, compared with patients with the diffuse and mixed type of GC, those with the Lauren classification intestinal GC type had a significantly lower risk score (p = 0.00085). The patients' risk score increased with the progression of the clinicopathological stage. Conclusion In this study, we constructed and validated a robust prognostic signature for GC, which may help improve the prognostic assessment system and treatment strategy for GC.
Collapse
|
24
|
Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep 2021; 40:222270. [PMID: 32124924 PMCID: PMC7080642 DOI: 10.1042/bsr20191653] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
The use of circulating microRNAs as biomarkers opens up new opportunities for the diagnosis of cardiovascular diseases because of their specific expression profiles. The aim of the present study was to identify circulating microRNAs in human plasma as potential biomarkers of heart failure and related diseases. We used real-time quantitative PCR to screen microRNA in plasma samples from 62 normal controls and 62 heart failure samples. We found that circulating miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 expressed differently between healthy controls and heart failure patients. Plasma levels of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 were unaffected by hemolysis. Correlation analysis showed any two of these miRNAs possess a strong correlation, indicating a possibility of combined analysis. MiR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 could be combined in two or three or more combinations. The results suggest that miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 may be a new diagnostic biomarker for heart failure and related diseases.
Collapse
|
25
|
Luo D, Yang Q, Wang H, Tan M, Zou Y, Liu J. A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data. BMC Med Genomics 2021; 14:14. [PMID: 33407483 PMCID: PMC7789242 DOI: 10.1186/s12920-020-00856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The role(s) of epigenetic reprogramming in gastric cancer (GC) remain obscure. This study was designed to identify methylated gene markers with prognostic potential for GC. METHODS Five datasets containing gene expression and methylation profiles from GC samples were collected from the GEO database, and subjected to meta-analysis. All five datasets were subjected to quality control and then differentially expressed genes (DEGs) and differentially expressed methylation genes (DEMGs) were selected using MetaDE. Correlations between gene expression and methylation status were analysed using Pearson coefficient correlation. Then, enrichment analyses were conducted to identify signature genes that were significantly different at both the gene expression and methylation levels. Cox regression analyses were performed to identify clinical factors and these were combined with the signature genes to create a prognosis-related predictive model. This model was then evaluated for predictive accuracy and then validated using a validation dataset. RESULTS This study identified 1565 DEGs and 3754 DEMGs in total. Of these, 369 were differentially expressed at both the gene and methylation levels. We identified 12 signature genes including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5 which were combined with the clinical data to produce a novel prognostic model for GC. This model could effectively split GC patients into two groups, high- and low-risk with these observations being confirmed in the validation dataset. CONCLUSION The differential methylation of the 12 signature genes, including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5, identified in this study may help to produce a functional predictive model for evaluating GC prognosis in clinical samples.
Collapse
Affiliation(s)
- Dan Luo
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - QingLing Yang
- Department of Pulmonary and Critical Care Medicine, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - HaiBo Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - Mao Tan
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - YanLei Zou
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| | - Jian Liu
- Department of General Surgery, Chengdu Fifth People’s Hospital, 33 Mashi St, Chengdu, 610000 Sichuan China
| |
Collapse
|
26
|
Zhang Y, Guo D. Epigenetic Variation Analysis Leads to Biomarker Discovery in Gastric Adenocarcinoma. Front Genet 2020; 11:551787. [PMID: 33363566 PMCID: PMC7753064 DOI: 10.3389/fgene.2020.551787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
As one of the most common malignant tumors worldwide, gastric adenocarcinoma (GC) and its prognosis are still poorly understood. Various genetic and epigenetic factors have been indicated in GC carcinogenesis. However, a comprehensive and in-depth investigation of epigenetic alteration in gastric cancer is still missing. In this study, we systematically investigated some key epigenetic features in GC, including DNA methylation and five core histone modifications. Data from The Cancer Genome Atlas Program and other studies (Gene Expression Omnibus) were collected, analyzed, and validated with multivariate statistical analysis methods. The landscape of epi-modifications in gastric cancer was described. Chromatin state transition analysis showed a histone marker shift in gastric cancer genome by employing a Hidden-Markov-Model based approach, indicated that histone marks tend to label different sets of genes in GC compared to control. An additive effect of these epigenetic marks was observed by integrated analysis with gene expression data, suggesting epigenetic modifications may cooperatively regulate gene expression. However, the effect of DNA methylation was found more significant without the presence of the five histone modifications in our study. By constructing a PPI network, key genes to distinguish GC from normal samples were identified, and distinct patterns of oncogenic pathways in GC were revealed. Some of these genes can also serve as potential biomarkers to classify various GC molecular subtypes. Our results provide important insights into the epigenetic regulation in gastric cancer and other cancers in general. This study describes the aberrant epigenetic variation pattern in GC and provides potential direction for epigenetic biomarker discovery.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
27
|
Alarcón MA, Olivares W, Córdova-Delgado M, Muñoz-Medel M, de Mayo T, Carrasco-Aviño G, Wichmann I, Landeros N, Amigo J, Norero E, Villarroel-Espíndola F, Riquelme A, Garrido M, Owen GI, Corvalán AH. The Reprimo-Like Gene Is an Epigenetic-Mediated Tumor Suppressor and a Candidate Biomarker for the Non-Invasive Detection of Gastric Cancer. Int J Mol Sci 2020; 21:ijms21249472. [PMID: 33322837 PMCID: PMC7763358 DOI: 10.3390/ijms21249472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Reprimo-like (RPRML) is an uncharacterized member of the Reprimo gene family. Here, we evaluated the role of RPRML and whether its regulation by DNA methylation is a potential non-invasive biomarker of gastric cancer. RPRML expression was evaluated by immunohistochemistry in 90 patients with gastric cancer and associated with clinicopathologic characteristics and outcomes. The role of RPRML in cancer biology was investigated in vitro, through RPRML ectopic overexpression. Functional experiments included colony formation, soft agar, MTS, and Ki67 immunofluorescence assays. DNA methylation-mediated silencing was evaluated by the 5-azacytidine assay and direct bisulfite sequencing. Non-invasive detection of circulating methylated RPRML DNA was assessed in 25 gastric cancer cases and 25 age- and sex-balanced cancer-free controls by the MethyLight assay. Downregulation of RPRML protein expression was associated with poor overall survival in advanced gastric cancer. RPRML overexpression significantly inhibited clonogenic capacity, anchorage-independent growth, and proliferation in vitro. Circulating methylated RPRML DNA distinguished patients with gastric cancer from controls with an area under the curve of 0.726. The in vitro overexpression results and the poor patient survival associated with lower RPRML levels suggest that RPRML plays a tumor-suppressive role in the stomach. Circulating methylated RPRML DNA may serve as a biomarker for the non-invasive detection of gastric cancer.
Collapse
Affiliation(s)
- María Alejandra Alarcón
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Wilda Olivares
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Miguel Córdova-Delgado
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Matías Muñoz-Medel
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Tomas de Mayo
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Faculty of Sciences, School of Medicine Universidad Mayor, Santiago 8580745, Chile
| | - Gonzalo Carrasco-Aviño
- Department of Pathology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile;
- Department of Pathology, Clínica Las Condes, Santiago 7591210, Chile
| | - Ignacio Wichmann
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Department of Obstetrics, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Natalia Landeros
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
| | - Julio Amigo
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile;
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr Sótero del Río, Santiago 8207257, Chile;
- Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Franz Villarroel-Espíndola
- Translational Medicine Laboratory, Instituto Oncológico Fundación Arturo López Pérez (FALP), Santiago 8320000, Chile;
| | - Arnoldo Riquelme
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Marcelo Garrido
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile;
| | - Alejandro H. Corvalán
- Department of Hematology & Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (M.A.A.); (W.O.); (M.C.-D.); (M.M.-M.); (I.W.); (N.L.); (M.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (T.d.M.); (G.I.O.)
- Correspondence:
| |
Collapse
|
28
|
Xiang R, Fu T. Gastrointestinal adenocarcinoma analysis identifies promoter methylation-based cancer subtypes and signatures. Sci Rep 2020; 10:21234. [PMID: 33277583 PMCID: PMC7719188 DOI: 10.1038/s41598-020-78228-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Gastric adenocarcinoma (GAC) and colon adenocarcinoma (CAC) are the most common gastrointestinal cancer subtypes, with a high incidence and mortality. Numerous studies have shown that its occurrence and progression are significantly related to abnormal DNA methylation, especially CpG island methylation. However, little is known about the application of DNA methylation in GAC and CAC. The methylation profiles were accessed from the Cancer Genome Atlas database to identify promoter methylation-based cancer subtypes and signatures for GAC and CAC. Six hypo-methylated clusters for GAC and six hyper-methylated clusters for CAC were separately generated with different OS profiles, tumor progression became worse as the methylation level decreased in GAC or increased in CAC, and hypomethylation in GAC and hypermethylation in CAC were negatively correlated with microsatellite instability. Additionally, the hypo- and hyper-methylated site-based signatures with high accuracy, high efficiency and strong independence can separately predict the OS of GAC and CAC patients. By integrating the methylation-based signatures with prognosis-related clinicopathologic characteristics, two clinicopathologic-epigenetic nomograms were cautiously established with strong predictive performance and high accuracy. Our research indicates that methylation mechanisms differ between GAC and CAC, and provides novel clinical biomarkers for the diagnosis and treatment of GAC and CAC.
Collapse
Affiliation(s)
- Renshen Xiang
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
- The Central Laboratory of the First Clinical College of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
29
|
Li T, Chen X, Gu M, Deng A, Qian C. Identification of the subtypes of gastric cancer based on DNA methylation and the prediction of prognosis. Clin Epigenetics 2020; 12:161. [PMID: 33115518 PMCID: PMC7592597 DOI: 10.1186/s13148-020-00940-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a digestive system cancer with a high mortality rate globally. Previous experiences and studies have provided clinicians with ample evidence to diagnose and treat patients with reasonable therapeutic options. However, there remains a need for sensitive biomarkers that can provide clues for early diagnosis and prognosis assessment. RESULTS We found 610 independent prognosis-related 5'-cytosine-phosphate-guanine-3' (CpG) sites (P < 0.05) among 21,121 sites in the training samples. We divided the GC samples into seven clusters based on the selected 610 sites. Cluster 6 had relatively higher methylation levels and high survival rates than the other six clusters. A prognostic risk model was constructed using the significantly altered CpG sites in cluster 6 (P < 0.05). This model could distinguish high-risk GC patients from low-risk groups efficiently with the area under the receiver operating characteristic curve of 0.92. Risk assessment showed that the high-risk patients had poorer prognosis than the low-risk patients. The methylation levels of the selected sites in the established model decreased as the risk scores increased. This model had been validated in testing group and its effectiveness was confirmed. Corresponding genes of the independent prognosis-associated CpGs were identified, they were enriched in several pathways such as pathways in cancer and gastric cancer. Among all of the genes, the transcript level of transforming growth factor β2 (TGFβ2) was changed in different tumor stages, T categories, grades, and patients' survival states, and up-regulated in patients with GC compared with the normal. It was included in the pathways as pathways in cancer, hepatocellular carcinoma or gastric cancer. The methylation site located on the promoter of TGFβ2 was cg11976166. CONCLUSIONS This is the first study to separate GC into different molecular subtypes based on the CpG sites using a large number of samples. We constructed an effective prognosis risk model that can identify high-risk GC patients. The key CpGs sites or their corresponding genes such as TGFβ2 identified in this research can provide new clues that will enable gastroenterologists to make diagnosis or personalized prognosis assessments and better understand this disease.
Collapse
Affiliation(s)
- Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xin Chen
- Princeton High School, 151 Moore Street, Princeton, NJ, 08540, USA
| | - Mingli Gu
- Department of Laboratory Diagnosis, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Anmei Deng
- Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China.
| | - Cheng Qian
- Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
30
|
Ebrahimi V, Soleimanian A, Ebrahimi T, Azargun R, Yazdani P, Eyvazi S, Tarhriz V. Epigenetic modifications in gastric cancer: Focus on DNA methylation. Gene 2020; 742:144577. [DOI: 10.1016/j.gene.2020.144577] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
|
31
|
Xie W, Zhou H, Han Q, Sun T, Nie C, Hong J, Wei R, Leonteva A, Han X, Wang J, Du X, Zhu L, Zhao Y, Tian W, Xue Y. Relationship between DLEC1 and PBX3 promoter methylation and the risk and prognosis of gastric cancer in peripheral blood leukocytes. J Cancer Res Clin Oncol 2020; 146:1115-1124. [PMID: 32144534 DOI: 10.1007/s00432-020-03171-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Aberrant DNA methylation could regulate the expression of tumor suppressor gene DLEC1 and oncogene PBX3 and was related to the occurrence and prognosis of gastric cancer (GC). In this study, the associations between DLEC1 and PBX3 promoter methylation in peripheral blood leukocytes (PBLs) and the risk and prognosis of GC were investigated. METHODS The methylation status of DLEC1 and PBX3 promoter in PBLs of 368 GC cases and 382 controls was detected by the methylation-sensitive high-resolution melting (MS-HRM) method. Logistic and Cox regression were adopted to analyze the associations of DLEC1 and PBX3 methylation with GC risk and prognosis, respectively. Confounding biases were controlled by propensity score (PS). RESULTS Compared with negative methylation (Nm), DLEC1-positive methylation (Pm) was associated with increased GC risk in PS (OR 2.083, 95% CI 1.220-3.558, P = 0.007), but PBX3 Pm was not associated with GC risk. In the elderly group (≥ 60 years), DLEC1 Pm was associated with increased GC risk (OR 2.951, 95% CI 1.426-6.104, P = 0.004). The combined effects between DLEC1 methylation and consumption of dairy products, fried food intake and Helicobacter pylori (H. pylori) infection on GC risk were discovered (ORc 3.461, 95% CI 1.847-6.486, P < 0.001, ORc 3.246, 95% CI 1.708-6.170, P < 0.001 and ORc 2.964, 95% CI 1.690-5.197, P < 0.001, respectively). Furthermore, DLEC1 and PBX3 methylation were not associated with GC prognosis. CONCLUSION DLEC1 methylation in PBLs and the combined effects of gene-environment can influence GC risk.
Collapse
Affiliation(s)
- Wenzhen Xie
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Qian Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tong Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chuang Nie
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jia Hong
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Rongrong Wei
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Anastasiia Leonteva
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jing Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xinyu Du
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China.
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
32
|
Zhang Y, Chen L, Cao Y, Chen S, Xu C, Xing J, Zhang K. LETM1 Promotes Gastric Cancer Cell Proliferation, Migration, and Invasion via the PI3K/Akt Signaling Pathway. J Gastric Cancer 2020; 20:139-151. [PMID: 32595998 PMCID: PMC7311216 DOI: 10.5230/jgc.2020.20.e12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Globally, there is a high incidence of gastric cancer (GC). Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) is reported to play a vital role in several human malignancies. However, there is limited understanding of the role of LETM1 in GC. This study aims to investigate the effects of LETM1 on proliferation, migration, and invasion of GC cells. Materials and Methods The expression levels of LETM1 in the normal gastric mucosal epithelial cells (GES-1) and GC cells were analyzed by quantitative real-time polymerase chain reaction and western blotting. CCK-8, wound healing, and Transwell invasion assays were performed to evaluate the effect of LETM1 knockdown or overexpression on the proliferation, migration, and invasion of the GC cells, respectively. Additionally, the effect of LETM1 knockdown or overexpression on GC cell apoptosis was determined by flow cytometry. Furthermore, the effect of LETM1 knockdown or overexpression on the expression levels of PI3K/Akt signaling pathway-related proteins was evaluated by western blotting. Results The GC cells exhibited markedly higher mRNA and protein expression levels of LETM1 than the GES-1 cells. Additionally, the knockdown of LETM1 remarkably suppressed the GC cell proliferation, migration, and invasion, and promoted the apoptosis of GC cells, which were reversed upon LETM1 overexpression. Furthermore, the western blotting analysis indicated that LETM1 facilitates GC progression via the PI3K/Akt signaling pathway. Conclusions LETM1 acts as an oncogenic gene to promote GC cell proliferation, migration, and invasion via the PI3K/Akt signaling pathway. Therefore, LETM1 may be a potential target for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Gastroenterology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Lele Chen
- Department of Gastroenterology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Yifan Cao
- Department of Gastroenterology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Si Chen
- Department of Gastroenterology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Chao Xu
- Department of Gastroenterology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Jun Xing
- Department of Gastroenterology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Kaiguang Zhang
- Department of Gastroenterology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Tang X, Zhu J, Liu Y, Chen C, Liu T, Liu J. Current Understanding of Circular RNAs in Gastric Cancer. Cancer Manag Res 2019; 11:10509-10521. [PMID: 31853202 PMCID: PMC6916696 DOI: 10.2147/cmar.s223204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. Advanced diagnosis and high rates of relapse and metastasis are associated with the poor prognosis of this disease. GC has a complex etiopathogenesis of which the underlying mechanisms remain to be explored. Studies on circular RNAs (circRNAs), noncoding RNAs that may be potential targets in GC, have made substantial progress over the past few years. CircRNAs exert important effects on the onset and progression of GC. Hence, this article aims to summarize the findings of recent studies of circRNAs related to GC and to describe the underlying mechanisms and potential applications. The findings indicate that circRNAs participate in GC regulation, proliferation, invasion, and metastasis through regulating microRNAs, proteins, genes, and signaling pathways. In addition, dysregulated circRNAs may be used as novel diagnostic and prognostic biomarkers or therapeutic targets. This review is expected to facilitate a better understanding of GC, and it suggests novel circRNA-based methods to inhibit or prevent GC.
Collapse
Affiliation(s)
- Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jingjing Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
34
|
Xiong J, Tu Y, Feng Z, Li D, Yang Z, Huang Q, Li Z, Cao Y, Jie Z. Epigenetics mechanisms mediate the miR-125a/BRMS1 axis to regulate invasion and metastasis in gastric cancer. Onco Targets Ther 2019; 12:7513-7525. [PMID: 31571904 PMCID: PMC6753057 DOI: 10.2147/ott.s210376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Altered expression of breast cancer metastasis suppressor 1 (BRMS1), is a tumor suppressor, which is found in many types of cancers, including gastric cancer (GC), but the mechanism by which BRMS1 inhibits invasion and metastasis in GC is unknown. The aim of the study was to investigate the molecular mechanisms of miR-125a/BRMS1 in GC. Materials and methods The expression of BRMS1 and miR-125a were detected by quantitative real-time PCR (qRT-PCR) and analyzed by bioinformatics. BSP and MSP were used to detecte the methylation status of miR-125a and BRMS1 which was treated by 5-Aza or not. Western Blot and qRT-PCR were used to analyze the expression of BRMS1 and EZH2. Transwell was performed to explore the invasion and metastasis ability of GC cells. The nude mice were used for the tumor formation assay. Results BRMS1 may be regulated by copy number variation (CNV), methylation and miR-125a-5p. As one of the essential components of PRC2, EZH2 is an important regulatory factor resulting in the low expression of miR-125a. An epigenetic mechanism mediates the miR-125a/BRMS1 axis to inhibit the invasion and metastasis of GC cells. In vivo experiments, it is also showed that BRMS1 is involved in invasion and metastasis but not the proliferation in GC. Conclusion These studies shed light on the mechanism of BRMS1 inhibition of GC invasion and metastasis and the development of new drugs targeting the miR-125a/BRMS1 axis, which will be a promising therapeutic strategy for GC and other human cancers.
Collapse
Affiliation(s)
- Jianbo Xiong
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Tu
- Department of Pathology, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zhouwen Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Qiuxia Huang
- Department of Nursing, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
35
|
Lu X, Yang P, Zhao X, Jiang M, Hu S, Ouyang Y, Zeng L, Wu J. OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer. Exp Cell Res 2019; 382:111483. [PMID: 31247190 DOI: 10.1016/j.yexcr.2019.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022]
Abstract
SIRT5 has a wide range of functions in different cellular processes such as glycolysis, TCA cycle and antioxidant defense, which mediates lysine desuccinylation, deglutarylation and demalonylation. Recent evidences have implicated that SIRT5 is a potential suppressor of gastric cancer (GC). However, the underlying mechanism of SIRT5 in gastric cancer is still unclear. Here, we show that SIRT5 expression is significantly decreased in human GC tissues. Functional analysis demonstrates that SIRT5 inhibits cell growth in vitro and in vivo, arrests the cell cycle in G1/S transition, and suppresses migration and invasion of GC cells via regulating epithelial-to-mesenchymal transition. Mechanistically, we demonstrate that there is the direct interaction between SIRT5 and 2-oxoglutarate dehydrogenase (OGDH), and desuccinylation of OGDH by SIRT5 inhibits the activity of OGDH complex. Further studies of the relationship between SIRT5 and OGDH show OGDH inhibition by succinyl phosphonate (SP) or siRNA suppresses the increase in cell growth and migration induced by SIRT5 deletion. Moreover, SIRT5 decreases mitochondrial membrane potential (ΔΨm), ATP products and increases the ROS levels and NADP/NADPH ratio in GC cells through the inhibition of OGDH complex activity. Therefore, SIRT5 suppresses GC cell growth and migration through desuccinylating OGDH and inhibiting OGDH complex activity to disturb mitochondrial functions and redox status.
Collapse
Affiliation(s)
- Xin Lu
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Pengfei Yang
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Xinrui Zhao
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Mingzu Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yanan Ouyang
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Li Zeng
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Jing Wu
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
36
|
Zhang Y, Zhu C, Lu X. [Advances in serum biomarkers for early diagnosis of gastric cancer]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:326-333. [PMID: 31496166 DOI: 10.3785/j.issn.1008-9292.2019.06.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early diagnosis is the key to improve the prognosis of gastric cancer. How to screen out high-risk subjects of gastric cancer in population is a hot spot. Serum-based early detection of gastric cancer is suitable for high-risk population screening, which is more convenient and safer. This article reviews the diagnostic value of serum biomarkers for gastric cancer, including serum DNA methylation, various RNAs, pepsinogen, gastrin, osteopontin, MG7-Ag and CA724. Until now, there is still lack of ideal biomarkers for gastric cancer, and searching for specific RNAs may be promising for early diagnosis and screening of gastric cancer.
Collapse
Affiliation(s)
- Yunzhu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chunpeng Zhu
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinliang Lu
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
37
|
Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M. Recent advances in gastric cancer early diagnosis. World J Gastroenterol 2019; 25:2029-2044. [PMID: 31114131 PMCID: PMC6506585 DOI: 10.3748/wjg.v25.i17.2029] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains an important cause of cancer death worldwide with a high mortality rate due to the fact that the majority of GC cases are diagnosed at an advanced stage when the prognosis is poor and the treatment options are limited. Unfortunately, the existing circulating biomarkers for GC diagnosis and prognosis display low sensitivity and specificity and the GC diagnosis is based only on the invasive procedures such as upper digestive endoscopy. There is a huge need for less invasive or non-invasive tests but also highly specific biomarkers in case of GC. Body fluids such as peripheral blood, urine or saliva, stomach wash/gastric juice could be a source of specific biomarkers, providing important data for screening and diagnosis in GC. This review summarized the recently discovered circulating molecules such as microRNAs, long non-coding RNAs, circular RNAs, which hold the promise to develop new strategies for early diagnosis of GC.
Collapse
Affiliation(s)
- Laura Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
- Faculty of Medicine, Titu Maiorescu University, Bucharest 040441, Romania
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Denisa Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Ana I Neagu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Cristina Mambet
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Saviana Nedeianu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Carmen C Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| |
Collapse
|
38
|
Wang F, Hu YL, Feng Y, Guo YB, Liu YF, Mao QS, Xue WJ. High-level expression of PRSS3 correlates with metastasis and poor prognosis in patients with gastric cancer. J Surg Oncol 2019; 119:1108-1121. [PMID: 30908656 DOI: 10.1002/jso.25448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/08/2019] [Accepted: 02/23/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Serine protease-3 (PRSS3) is a known contributor to the genesis and development of malignant tumors, although its role in gastric cancer (GC) is still unclear. METHODS PRSS3 expression in GC tissue samples and its relationship with clinicopathological features were analyzed. Effects of GC cellular responses to the introduction of small interfering RNA (siRNA)-mediated and short hairpin RNA (shRNA)-mediated interference with tumor PRSS3 expression were also assessed. RESULTS PRSS3 was significantly upregulated in GC tissues, and PRSS3 protein levels were higher in tumors that developed metastases soon after the surgery compared with those that remained metastasis-free. High expression of PRSS3 was associated with tumor N staging and independently predictive of postoperative prognosis in patients with GC. The V1 variant of PRSS3 was primarily detected in GC tissue and cell lines, the others (V2-V4) being scarcely detectable. Methylation and demethylation drugs had no impact on expression levels of any PRSS3 transcriptional variant. The downregulated PRSS3 expression suppressed GC cell growth, migration, and invasion in vitro and in vivo. CONCLUSIONS PRSS3 appears to act as an oncogene of GC. High PRSS3 expression portends postoperative metastasis, serving as an effective biomarker of poor therapeutic outcomes.
Collapse
Affiliation(s)
- Fei Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yi-Bing Guo
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yi-Fei Liu
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
39
|
Liu D, Meng X, Wu D, Qiu Z, Luo H. A Natural Isoquinoline Alkaloid With Antitumor Activity: Studies of the Biological Activities of Berberine. Front Pharmacol 2019; 10:9. [PMID: 30837865 PMCID: PMC6382680 DOI: 10.3389/fphar.2019.00009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Coptis, a traditional medicinal plant, has been used widely in the field of traditional Chinese medicine for many years. More recently, the chemical composition and bioactivity of Coptis have been studied worldwide. Berberine is a main component of Rhizoma Coptidis. Modern medicine has confirmed that berberine has pharmacological activities, such as anti-inflammatory, analgesic, antimicrobial, hypolipidemic, and blood pressure-lowering effects. Importantly, the active ingredient of berberine has clear inhibitory effects on various cancers, including colorectal cancer, lung cancer, ovarian cancer, prostate cancer, liver cancer, and cervical cancer. Cancer, ranked as one of the world’s five major incurable diseases by WHO, is a serious threat to the quality of human life. Here, we try to outline how berberine exerts antitumor effects through the regulation of different molecular pathways. In addition, the berberine-mediated regulation of epigenetic mechanisms that may be associated with the prevention of malignant tumors is described. Thus, this review provides a theoretical basis for the biological functions of berberine and its further use in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xue Meng
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Donglu Wu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
40
|
KRT15, INHBA, MATN3, and AGT are aberrantly methylated and differentially expressed in gastric cancer and associated with prognosis. Pathol Res Pract 2019; 215:893-899. [PMID: 30718100 DOI: 10.1016/j.prp.2019.01.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
AIM The present study aims to identify aberrantly methylated and differentially expressed genes (DEGs) in gastric cancer (GC) and explore their potential role in the carcinogenesis and development of GC. METHODS The original RNA-Seq, clinical information and Illumina Human Methylation 27 Chip data associated with GC were downloaded from The Cancer Genome Atlas (TCGA) database using the gdc-client tool. The DEGs and aberrantly methylated genes (AMGs) were screened with edgeR and limma package in R, respectively. The cut-off criteria for DEG identification were P < 0.05 and fold change (FC) >2.0, and for AMG identification were P < 0.05 and |t|>2.0. Genes which were both DEGs and AMGs were considered to be regulated by aberrant DNA methylation in GC. The common genes were used for further functional enrichment analysis in the categories of cellular component, molecular function, biological process and biological pathway. RESULTS In total 465 genes including 336 down-regulated genes with hyper-methylation (DGs-Hyper) and 129 up-regulated genes with hypo-methylation (UGs-Hypo) were identified. Cellular component analysis showed that these genes were mainly expressed in the cytoplasm and plasma membrane. Molecular function and biological process analysis indicated that the genes primarily participate in cell communication, signal transduction, cell growth/maintenance and function as transcription factors, receptor, cell adhesion molecules, and transmembrane receptor protein tyrosine kinases. Biological pathway analysis revealed that the genes are involved in some crucial pathways including epithelial-to-mesenchymal transition, IL3-mediated signaling, mTOR signaling, VEGF/VEGFR and c-Met signaling. KRT15, INHBA, MATN3, and AGT are significantly associated with the prognosis of GC patients. CONCLUSION Our study identified several DEGs regulated by aberrant DNA methylation in GC. The mechanism of DNA methylation in the carcinogenesis and development of GC could be further explored in these genes, especially KRT15, INHBA, MATN3, and AGT.
Collapse
|
41
|
Guo LQ, Chen Y, Teng XL, Xia WB, Xu J, Qu YK. TERT expression in gastric carcinogenesis: Correlation with clinical features. Shijie Huaren Xiaohua Zazhi 2018; 26:979-985. [DOI: 10.11569/wcjd.v26.i16.979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of telomerase reverse transcriptase (TERT) mRNA in gastric cancer and precancerous lesions, and to analyze the relationship between TERT expression and clinicopathologic features and prognosis in gastric cancer.
METHODS From September 2011 to October 2016, 102 patients with gastric cancer, 32 patients with precancerous lesions, and 30 patients with chronic non-atrophic gastritis were treated at the First Affiliated Hospital of Jiamus University. The expression of TERT mRNA in tissues was detected by real-time quantitative PCR, and the correlation of expression of TERT with clinicopathologic features and prognosis in gastric cancer was analyzed.
RESULTS The expression of TERT in gastric cancer and precancerous lesions was significantly higher than that in chronic non-atrophic gastritis (P < 0.05). TERT expression was significantly correlated with the depth of invasion, TNM stage, vascular invasion, and lymph node metastasis (P < 0.05). The overall survival rate of gastric cancer patients with high expression of TERT was significantly lower than that of patients with low expression of TERT (HR = 0.420, 95%CI: 0.264-0.668, P < 0.001). The progression-free survival rate of gastric cancer patients with high expression of TERT was also significantly lower than that of patients with low TERT expression (HR = 0.649, 95%CI: 0.421-0.999, P = 0.049). Cox multivariate survival analysis showed that TERT expression was an independent prognostic factor for overall survival in gastric cancer.
CONCLUSION TERT is highly expressed in gastric cancer and precancerous lesions, and high expression of TERT is significantly associated with the clinicopathologic features and prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Lin-Qi Guo
- the Second Department of General Surgery, the First Affiliated Hospital of Jiamus University, Jiamus 154003, Heilongjiang Province, China
| | - Ying Chen
- the Second Department of General Surgery, the First Affiliated Hospital of Jiamus University, Jiamus 154003, Heilongjiang Province, China
| | - Xin-Li Teng
- the Second Department of radiology, the Oncology Hospital of Jiamus, Jiamus 154007, Heilongjiang Province, China
| | - Wei-Bin Xia
- the Second Department of General Surgery, the First Affiliated Hospital of Jiamus University, Jiamus 154003, Heilongjiang Province, China
| | - Jian Xu
- the Second Department of General Surgery, the First Affiliated Hospital of Jiamus University, Jiamus 154003, Heilongjiang Province, China
| | - Yi-Kun Qu
- the Second Department of General Surgery, the First Affiliated Hospital of Jiamus University, Jiamus 154003, Heilongjiang Province, China
| |
Collapse
|