1
|
Lu D, Mihoayi M, Ablikim Y, Arikin A. RNA splicing regulator EIF3D regulates the tumor microenvironment through immunogene-related alternative splicing in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:5929-5948. [PMID: 38535990 PMCID: PMC11042944 DOI: 10.18632/aging.205681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 04/23/2024]
Abstract
Study finds that eukaryotic translation initiation factor 3 subunit D (EIF3D) may play an important role in aberrant alternative splicing (AS) events in tumors. AS possesses a pivotal role in both tumour progression and the constitution of the tumour microenvironment (TME). Regrettably, our current understanding of AS remains circumscribed especially in the context of immunogene-related alternative splicing (IGAS) profiles within Head and Neck Squamous Cell Carcinoma (HNSC). In this study, we comprehensively analyzed the function and mechanism of action of EIF3D by bioinformatics analysis combined with in vitro cellular experiments, and found that high expression of EIF3D in HNSC was associated with poor prognosis of overall survival (OS) and progression-free survival (PFS). The EIF3D low expression group had a higher degree of immune infiltration and better efficacy against PD1 and CTLA4 immunotherapy compared to the EIF3D high expression group. TCGA SpliceSeq analysis illustrated that EIF3D influenced differentially spliced alternative splicing (DSAS) events involving 105 differentially expressed immunogenes (DEIGs). We observed an induction of apoptosis and a suppression of cell proliferation, migration, and invasion in EIF3D knock-down FaDu cells. RNA-seq analysis unveiled that 531 genes exhibited differential expression following EIF3D knockdown in FaDu cells. These include 52 DEIGs. Furthermore, EIF3D knockdown influenced the patterns of 1923 alternative splicing events (ASEs), encompassing 129 IGASs. This study identified an RNA splicing regulator and revealed its regulatory role in IGAS and the TME of HNSC, suggesting that EIF3D may be a potential target for predicting HNSC prognosis and immunotherapeutic response.
Collapse
Affiliation(s)
- Dandan Lu
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
- Department of Otolaryngology, Shaanxi Nuclear Industry 215 Hospital, Xianyang 712000, China
| | - Mijti Mihoayi
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Yimin Ablikim
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Abdeyrim Arikin
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| |
Collapse
|
2
|
Rachman A, Fiantoro ZH, Sutandyo N, Priantono D, Romadhon PZ, Jonlean R. Metabolic Profile and Negatively Association Between Insulin Resistance and Metastatic Incidence in Indonesian Primary Invasive Breast Cancer: A Cross-Sectional Study. Int J Gen Med 2023; 16:3257-3265. [PMID: 37546243 PMCID: PMC10404037 DOI: 10.2147/ijgm.s421558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Metastatic breast cancer was associated with high morbidity and mortality. Insulin resistance was hypothesized to be related to the incidence of advanced breast cancer. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Triglyceride/Glucose Index (TyG Index) are two metrics used to measure the degree of insulin resistance. This study aims to assess the relationship between the incidence of metastatic breast cancer and insulin resistance as reflected by both metrics. Material and Methods This study is a cross-sectional study involving 150 primary invasive breast cancer patients recruited from two hospitals of different sectors from August 2019 to April 2020. Patients with double cancer and autoimmune disorder were excluded from this study. Data obtained from the patients include age, body mass index (BMI), type 2 diabetes mellitus (T2DM) status and treatment, and low-density lipoprotein (LDL) cholesterol. The electronic medical records (EMR) was consulted to find histopathology examination result, cancer staging, and any missing data. The association between HOMA-IR and TyG with metastatic incidence was analyzed using either the Mann-Whitney test (for non-normally distributed data) or the independent-sample t-test (for normally distributed data). Results The mean of the TyG index is 8.60, and the median of HOMA-IR is 1.22. We found no significant correlation between both variables and the incidence of metastases. Conclusion Insulin resistance was not associated with metastatic breast cancer.
Collapse
Affiliation(s)
- Andhika Rachman
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Siloam MRCCC Semanggi Hospital, Jakarta, Indonesia
| | - Zaenal Hakiki Fiantoro
- Departement of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Dimas Priantono
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Pradana Zaky Romadhon
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Airlangga University, Surabaya, Indonesia
| | | |
Collapse
|
3
|
Li L, Liu J, Wang W, Fu Y, Deng Y, Li X, Liu Z, Pang Y, Xu Y, Yan M, Li Z. Cancer stem cells promote lymph nodes metastasis of breast cancer by reprogramming tumor microenvironment. Transl Oncol 2023; 35:101733. [PMID: 37421907 DOI: 10.1016/j.tranon.2023.101733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Breast cancer progression and metastasis are governed by a complex interplay within the tumor immune microenvironment (TIME), involving numerous cell types. Lymph node metastasis (LNM) is a key prognostic marker associated with distant organ metastasis and reduced patient survival, but the mechanisms underlying its promotion by breast cancer stem cells (CSCs) remain unclear. Our study sought to unravel how CSCs reprogram TIME to facilitate LNM. Utilizing single-cell RNA sequencing, we profiled TIME in primary cancer and corresponding metastatic lymph node samples from patients at our institution. To verify the derived data, we cultured CSCs and performed validation assays employing flow cytometry and CyTOF. Our analysis revealed distinct differences in cellular infiltration patterns between tumor and LNM samples. Importantly, RAC2 and PTTG1 double-positive CSCs, which exhibit the highest stem-like attributes, were markedly enriched in metastatic lymph nodes. These CSCs are hypothesized to foster metastasis via activation of specific metastasis-related transcription factors and signaling pathways. Additionally, our data suggest that CSCs might modulate adaptive and innate immune cell evolution, thereby further contributing to metastasis. In summary, this study illuminates a critical role of CSCs in modifying TIME to facilitate LNM. The enrichment of highly stem-like CSCs in metastatic lymph nodes offers novel therapeutic targeting opportunities and deepens our understanding of breast cancer metastasis.
Collapse
Affiliation(s)
- Lin Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Jianyu Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Wenzheng Wang
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yingqiang Fu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yuhan Deng
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Xin Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Zhuolin Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yuheng Pang
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Yangyang Xu
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zhigao Li
- Harbin Medical University Cancer Hospital, Harbin Medical University, No.150 Haping Rd, Nangang District, Harbin 150081, China.
| |
Collapse
|
4
|
Xu N, Liu H, Wang Y, Xue Y. Relationship between insulin resistance and thyroid cancer in Chinese euthyroid subjects without conditions affecting insulin resistance. BMC Endocr Disord 2022; 22:58. [PMID: 35255873 PMCID: PMC8903656 DOI: 10.1186/s12902-022-00943-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUNDS In recent years, many studies have shown that insulin resistance is related to the occurrence of thyroid cancer, but there are few reports on whether the two are related under the premise that thyroid function is normal and the metabolic components related to insulin resistance are excluded. This study aims to analyze the insulin resistance of patients with differentiated thyroid cancer after excluding the population with abnormal metabolic components, and to study the risk factors of thyroid cancer in this population. METHODS 61 subjects diagnosed with differentiated thyroid carcinoma (DTC) formed the DTC group and 262 subjects with benign nodules formed the control group. Body mass index (BMI, kg/m2), waist circumference (WC), lipid profiles, and free T3 (FT3), free T4 (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb), thyroid globulin antibody (TGAb), alanine transaminase (ALT), aspartate aminotransferase (AST), fasting plasma glucose (FPG), fasting serum insulin and homeostatic model assessment of insulin resistance (HOMA-IR) levels were measured. RESULTS Mean subjects age (P = 0.021), BMI (P = 0.049), WC (P = 0.01), serum insulin concentration (P = 0.006), and HOMA-IR level (P = 0.005) were significantly greater in the DTC group than in the control group. Multivariate binary logistic regression analysis identified advanced age (OR = 1.027 [1.003-1.051], P = 0.029) and an increased HOMA-IR level (OR = 1.572 [1.277-1.935], P < 0.001) as significant risk factors for thyroid cancer. CONCLUSIONS IR may increase the risk of thyroid cancer development even in the absence of conditions affecting insulin resistance.
Collapse
Affiliation(s)
- Ning Xu
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, P.R. China
| | - Haixia Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, P.R. China.
| | - Yuan Wang
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, P.R. China
| | - Yimiao Xue
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, 116027, P.R. China
| |
Collapse
|
5
|
PD1/PDL1 expression is associated with increased TIM3 expression and tumor-infiltrating T lymphocytes in fibroblastic tumors. Clin Transl Oncol 2021; 24:586-596. [PMID: 34741725 DOI: 10.1007/s12094-021-02723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The combined therapy of inhibiting T cell immunoglobulin domain and mucin domain 3 (TIM3) and programmed cell death 1/programmed death-ligand 1 (PD1/PDL1) has shown encouraging therapeutic effects in some solid tumors. However, the expression of PD1/PDL1 and TIM3 in fibroblastic tumors is ill defined, which has limited the application of these immune checkpoint inhibitors in such tumors. METHODS Immunostaining of 68 tissue microarray cores of fibroblastic tumors, including intermediate dermatofibrosarcoma protuberans and malignant myxofibrosarcoma and adult-type fibrosarcoma, was used to determine the expression of PD1, PDL1 and TIM3, as well as their relationship with the accumulation of tumor-infiltrating T lymphocytes (TILs). RESULTS Both PD1 and PDL1 expression was only observed in a small proportion of fibroblastic tumors, whereas TIM3 was expressed in almost all tumors. However, only the positive expression of PDL1 was related to tumors with high grade and staging. A considerable number of TILs, including CD4- and CD8A-positive T cells and a small group of FoxP3-positive T cells, was also observed in most tumors. The density of TIM3 was positively correlated with that of TILs. Furthermore, higher densities of TIM3, CD4, CD8A and FoxP3 were observed in PD1 and PDL1 double-positive fibroblastic tumors. CONCLUSIONS This study indicates that TILs with high expression of TIM3 may contribute to immunosuppression in the tumor microenvironment of fibroblastic tumors. Patients with fibroblastic tumors with high expression of PD1/PDL1 and TIM3 may therefore benefit from combination therapy with PD1/PDL1 and TIM3 inhibitors.
Collapse
|
6
|
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release 2021; 340:168-187. [PMID: 34743998 DOI: 10.1016/j.jconrel.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy in the female population with a high mortality rate. Despite the satisfying depth of studies evaluating the contributory role of immune checkpoints in this malignancy, few articles have reviewed the pros and cons of immune checkpoint blockades (ICBs). In the current review, we provide an overview of immune-related inhibitory molecules and also discuss the original data obtained from international research laboratories on the aberrant expression of T and non-T cell-associated immune checkpoints in breast cancer. Then, we especially focus on recent studies that utilized ICBs as the treatment strategy in breast cancer and provide their efficiency reports. As there are always costs and benefits, we discuss the limitations and challenges toward ICB therapy such as adverse events and drug resistance. In the last section, we allocate an overview of the recent data concerning the application of nanoparticle systems for cancer immunotherapy and propose that nano-based ICB approaches may overcome the challenges related to ICB therapy in breast cancer. In conclusion, it seems it is time for nanoscience to more rapidly move forward into clinical trials and illuminates the breast cancer treatment area with its potent features for the target delivery of ICBs.
Collapse
Affiliation(s)
- Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sahar Tahaghoghi-Hajghorbani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Jafarzadeh
- Department of Laboratory Science, Sirjan Faculty of Medical Science, Sirjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Cong Y, Liu J, Chen G, Qiao G. The Emerging Role of T-Cell Immunoglobulin Mucin-3 in Breast Cancer: A Promising Target For Immunotherapy. Front Oncol 2021; 11:723238. [PMID: 34504800 PMCID: PMC8421567 DOI: 10.3389/fonc.2021.723238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer treatment through immune checkpoint receptor blockade has made significant advances in the recent years. However, resistance to the current immune checkpoint inhibitors (ICIs) has been observed in many patients, who consequently do not respond to these treatments. T-cell immunoglobulin mucin-3 (Tim-3) is a novel immune checkpoint molecule emerging as a potential therapeutic target for cancer immunotherapy. Epidemiologic findings reveal that genetic polymorphisms in the Tim-3 gene are associated with increased susceptibility to breast cancer. In patients with breast cancer, Tim-3 is expressed both on immune and tumor cells. Accumulating evidence demonstrates that Tim-3 can notably affect breast cancer treatment outcome and prognosis. Therefore, Tim-3 is being regarded as a high-potential target for improving breast cancer therapy. In this review, we summarize the role of Tim-3 in breast cancer and the regulation mechanisms of Tim-3 to furnish evidences for future research and therapy.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Liu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
8
|
Low Distribution of TIM-3 + Cytotoxic Tumor-Infiltrating Lymphocytes Predicts Poor Outcomes in Gastrointestinal Stromal Tumors. J Immunol Res 2021; 2021:6647292. [PMID: 33681387 PMCID: PMC7907748 DOI: 10.1155/2021/6647292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
There are multiple tumor-infiltrating lymphocytes (TILs) and relevant immune checkpoints existing in gastrointestinal stromal tumor (GIST), which provides opportunities and rationales for developing effective immunotherapies. Recent studies have suggested that checkpoint TIM-3/Gal-9 plays a pivotal role on immune response in multiple tumors, similar to the PD-1/PD-L1, emerging as a potential therapeutic target. However, their functions in GIST are unrevealed. Hence, the expression of immune checkpoints TIM-3 and Gal-9, as well as the infiltration of CD8+ T cells and NK cells, is described in 299 cases of GIST specimens. The results showed that TIM-3 and Gal-9 are mainly expressed in TILs, rarely in tumor cells. Expression levels of TIM-3 and Gal-9 significantly differ in varying risks of GIST and exert opposite distribution trends. Indicated by prognosis analysis, high TIM-3 expression of TILs was associated with improved outcome, while low expression levels of TIM-3 in combination with low amounts of CD8+ and CD56+ TILs predict extremely poor survival. The integrated analysis of TIM-3+, CD8+, and CD56+ TILs as one biomarker is a reliable independent predictor of prognosis. In conclusion, low densities of TIM-3+ TILs are associated with poor survival, and integrated immune biomarkers lead to superior predictors of GIST prognosis.
Collapse
|
9
|
Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, Yan Z, Wang J, Xu H, Wang S, Wang J, Chen D, Cao Y, Zhao J. CyTOF Analysis Reveals a Distinct Immunosuppressive Microenvironment in IDH Mutant Anaplastic Gliomas. Front Oncol 2021; 10:560211. [PMID: 33614475 PMCID: PMC7890006 DOI: 10.3389/fonc.2020.560211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
The immune microenvironment is important for the development, progression, and prognosis of anaplastic glioma (AG). This complex milieu has not been fully elucidated, and a high-dimensional analysis is urgently required. Utilizing mass cytometry (CyTOF), we performed an analysis of immune cells from 5 patients with anaplastic astrocytoma, IDH-mutant (AAmut) and 10 patients with anaplastic oligodendroglioma, IDH-mutant and 1p/19q codeletion (AOD) and their paired peripheral blood mononuclear cells (PBMCs). Based on a panel of 33 biomarkers, we demonstrated the tumor-driven immune changes in the AG immune microenvironment. Our study confirmed that mononuclear phagocytes and T cells are the most abundant immunocytes in the AG immune microenvironment. Glioma-associated microglia/macrophages in both AAmut and AOD samples showed highly immunosuppressive characteristics. Compared to those in the PBMCs, the ratios of immune checkpoint-positive exhausted CD4+ T cells and CD8+ T cells were higher at the AG tumor sites. The AAmut immune milieu exhibits more immunosuppressive characteristics than that in AOD.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
10
|
Schwich E, Hò GGT, LeMaoult J, Bade-Döding C, Carosella ED, Horn PA, Rebmann V. Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2 Positive and ILT-2 Negative CD8 T Cells Complementary. Front Immunol 2020; 11:2046. [PMID: 32973812 PMCID: PMC7472666 DOI: 10.3389/fimmu.2020.02046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor immune escape is associated with both, the expression of immune checkpoint molecules on peripheral immune cells and soluble forms of the human leukocyte antigen-G (HLA-G) in the blood, which are consequently discussed as clinical biomarker for disease status and outcome of cancer patients. HLA-G preferentially interacts with the inhibitory receptor immunoglobulin-like transcript (ILT) receptor-2 in the blood and can be secreted as free soluble molecules (sHLA-G) or via extracellular vesicles (EV). To investigate the contribution of these two forms to the expression of checkpoint molecules in peripheral blood, we primed peripheral blood mononuclear cells with purified soluble sHLA-G1 protein, or EV preparations derived from SUM149 cells transfected with membrane-bound HLA-G1 or control vector prior to anti-CD3/CD28 T cell activation. Our study demonstrated that priming of PBMC with sHLA-G1 protein prior to 48 h activation resulted in enhanced frequencies of ILT-2 expressing CD8+ T cells, and in an upregulation of immune checkpoint molecules CTLA-4, PD-1, TIM-3, and CD95 exclusively on ILT-2 positive CD8+ T cells. In contrast, when PBMC were primed with EV (containing HLA-G1 or not) upregulation of CTLA-4, PD-1, TIM-3, and CD95 occurred exclusively on ILT-2 negative CD8+ T cells. Taken together, our data suggest that priming with sHLA-G forms induces a pronounced immunosuppressive/exhausted phenotype and that priming with sHLA-G1 protein or EV derived from HLA-G1 positive or negative SUM149 cells affects CD8+ T cells complementary by targeting either the ILT-2 positive or negative subpopulation, respectively, after T cell activation.
Collapse
Affiliation(s)
- Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Joel LeMaoult
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Institut de Recherche Saint-Louis, Université de paris, Paris, France
| | | | - Edgardo D Carosella
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Service de Recherche en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, Paris, France.,Institut de Recherche Saint-Louis, Université de paris, Paris, France
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Woodall MJ, Neumann S, Campbell K, Pattison ST, Young SL. The Effects of Obesity on Anti-Cancer Immunity and Cancer Immunotherapy. Cancers (Basel) 2020; 12:E1230. [PMID: 32422865 PMCID: PMC7281442 DOI: 10.3390/cancers12051230] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Traditional treatments include surgery, chemotherapy and radiation therapy, and more recently targeted therapies including immunotherapy are becoming routine care for some cancers. Immunotherapy aims to upregulate the patient's own immune system, enabling it to destroy cancerous cells. Obesity is a metabolic disorder characterized by significant weight that is an important contributor to many different diseases, including cancers. Obesity impacts the immune system and causes, among other things, a state of chronic low-grade inflammation. This is hypothesized to impact the efficacy of the immunotherapies. This review discusses the effects of obesity on the immune system and cancer immunotherapy, including the current evidence on the effect of obesity on immune checkpoint blockade, something which currently published reviews on this topic have not delved into. Data from several studies show that even though obesity causes a state of chronic low-grade inflammation with reductions in effector immune populations, it has a beneficial effect on patient survival following anti-PD-1/PD-L1 and anti-CTLA-4 treatment. However, research in this field is just emerging and further work is needed to expand our understanding of which cancer patients are likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Matthew J. Woodall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (M.J.W.); (S.N.); (K.C.)
| | - Silke Neumann
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (M.J.W.); (S.N.); (K.C.)
| | - Katrin Campbell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (M.J.W.); (S.N.); (K.C.)
| | - Sharon T. Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand;
| | - Sarah L. Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (M.J.W.); (S.N.); (K.C.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
12
|
Dayoub AS, Brekken RA. TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commun Signal 2020; 18:29. [PMID: 32087708 PMCID: PMC7036251 DOI: 10.1186/s12964-020-0521-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy for cancer is making impressive strides at improving survival of a subset of cancer patients. To increase the breadth of patients that benefit from immunotherapy, new strategies that combat the immunosuppressive microenvironment of tumors are needed. Phosphatidylserine (PS) signaling is exploited by tumors to enhance tumor immune evasion and thus strategies to inhibit PS-mediated immune suppression have potential to increase the efficacy of immunotherapy. PS is a membrane lipid that flips to the outer surface of the cell membrane during apoptosis and/or cell stress. Externalized PS can drive efferocytosis or engage PS receptors (PSRs) to promote local immune suppression. In the tumor microenvironment (TME) PS-mediated immune suppression is often termed apoptotic mimicry. Monoclonal antibodies (mAbs) targeting PS or PSRs have been developed and are in preclinical and clinical testing. The TIM (T-cell/transmembrane, immunoglobulin, and mucin) and TAM (Tyro3, AXL, and MerTK) family of receptors are PSRs that have been shown to drive PS-mediated immune suppression in tumors. This review will highlight the development of mAbs targeting PS, TIM-3 and the TAM receptors. Video Abstract
Collapse
Affiliation(s)
- Adam S Dayoub
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Chen M, Wang L, Wang Y, Zhou X, Liu X, Chen H, Huang B, Hu Z. Soluble Tim3 detection by time-resolved fluorescence immunoassay and its application in membranous nephropathy. J Clin Lab Anal 2020; 34:e23248. [PMID: 32077157 PMCID: PMC7307342 DOI: 10.1002/jcla.23248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background We aimed to develop a time‐resolved fluorescence immunoassay (TRFIA) for detecting soluble T‐cell immunoglobulin and mucin domain 3 (sTim3) in serum samples and to demonstrate a preliminary application of this method in membranous nephropathy (MN). Methods sTim3 TRFIA was developed, and the sTim3 concentration in the serum of patients with MN and healthy individuals was detected using a sandwich method. Results The sensitivity of the developed sTim3 TRFIA was 0.66 ng/mL, higher than that of an enzyme‐linked immunosorbent assay (ELISA) (1.11 ng/mL). The detection range was 0.66‐40 ng/mL. The intra‐assay coefficient of variation (CV) for sTim3 was 1.64%‐4.68%, and the inter‐assay CV was 5.72%‐9.32%. The cross‐reactivity to interleukin 6 (IL‐6) and kidney injury molecule 1 (KIM‐1) was 0.25% and 0.04%, respectively. The average recovery was 105.26%. The sTim3 concentration in patients with MN was considerably higher than that in healthy individuals (P < .001). The sTim3 concentration in the serum of patients with MN was significantly increased from G1 to G4 based on the Jonckheere‐Terpstra test (P < .001). Thus, we used sTim3 as a diagnostic indicator for distinguishing between healthy individuals and patients with MN as well as between different stages of MN. Conclusion We successfully established TRFIA to detect sTim3 in serum. We then applied this method to patients with MN, demonstrating for the first time that TRFIA is a valid diagnostic tool to detect sTim3 in serum.
Collapse
Affiliation(s)
- Ming Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liang Wang
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyuan Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
14
|
Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, Yan Z, Wang J, Xu H, Wang S, Wang J, Chen D, Cao Y, Zhao J. High Dimensional Mass Cytometry Analysis Reveals Characteristics of the Immunosuppressive Microenvironment in Diffuse Astrocytomas. Front Oncol 2020; 10:78. [PMID: 32117733 PMCID: PMC7010913 DOI: 10.3389/fonc.2020.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) plays a pivotal role in tumor development, progression, and prognosis. However, the characteristics of the TIME in diffuse astrocytoma (DA) are still unclear. Leveraging mass cytometry with a panel of 33 markers, we analyzed the infiltrating immune cells from 10 DA and 4 oligodendroglioma (OG) tissues and provided a single cell-resolution landscape of the intricate immune microenvironment. Our study profiled the composition of the TIME in DA and confirmed the presence of immune cells, such as glioma-associated microglia/macrophages (GAMs), CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and natural killer cells. Increased percentages of PD-1+ CD8+ T cells, TIM-3+ CD4+ T cell subpopulations, Tregs and pro-tumor phenotype GAMs substantially contribute to the local immunosuppressive microenvironment in DA. DAs and OGs share similar compositions in terms of immune cells, while GAMs in DA exhibit more inhibitory characteristics than those in OG.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
15
|
Sun L, Zou S, Ding S, Du X, Shen Y, Liu C, Shi B, Zhang X. Circulating T Cells Exhibit Different TIM3/Galectin-9 Expression in Patients with Obesity and Obesity-Related Diabetes. J Diabetes Res 2020; 2020:2583257. [PMID: 33123595 PMCID: PMC7585658 DOI: 10.1155/2020/2583257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS Obesity is highly associated with type 2 diabetes mellitus (T2DM). The TIM3/galectin-9 pathway plays an important role in immune tolerance. Herein, we aimed to investigate the expression of TIM3 and galectin-9 in peripheral blood and to evaluate their clinical significance in patients with obesity and obesity-related T2DM. METHODS We performed flow cytometry on peripheral blood samples from healthy donors (HC), patients with simple obesity (OB), and patients with obesity comorbid T2DM (OD). The expression of TIM3 on CD3+, CD4+, and CD8+ T cells was determined. The level of galectin-9 in plasma was detected by ELISA. RESULTS We demonstrated the enhancement of TIM3 on CD3+, CD4+, and CD8+ T cells in the OB group when compared with healthy controls, while it was decreased significantly in the OD group. The TIM3+CD8+ T cells of the OB group were positively correlated with risk factors including BMI, body fat rate, and hipline. The concentration of galectin-9 of the OD group in plasma was significantly higher than that of healthy donors and the OB group. Moreover, the level of galectin-9 of the OD group was positively correlated with fasting insulin and C-peptide, which were two clinical features that represented pancreatic islet function in T2DM. CONCLUSIONS Our results suggested that TIM3 and galectin-9 may be potential biomarkers related to the pathogenesis of obesity-related T2DM.
Collapse
Affiliation(s)
- Lili Sun
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Shengyi Zou
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Sisi Ding
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Xuan Du
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Bimin Shi
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| |
Collapse
|