1
|
Chu LY, Wu FC, Guo HP, Xie JJ, Qu QQ, Li XH, Xu YW, Peng YH, Qiu B. Combined detection of serum EFNA1 and MMP13 as diagnostic biomarker for gastric cancer. Sci Rep 2024; 14:15957. [PMID: 38987376 PMCID: PMC11237037 DOI: 10.1038/s41598-024-65839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
We previously identified that serum EFNA1 and MMP13 were potential biomarker for early detection of esophageal squamous cell carcinoma. In this study, our aim is to explore the diagnostic value of serum EFNA1 and MMP13 for gastric cancer. We used enzyme-linked immunosorbent assay (ELISA) to detect the expression levels of serum EFNA1 and MMP13 in 210 GCs and 223 normal controls. The diagnostic value of EFNA1 and MMP13 was evaluated in an independent cohorts of GC patients and normal controls (n = 238 and 195, respectively). Receiver operating characteristics were used to calculate diagnostic accuracy. In training and validation cohorts, serum EFNA1 and MMP13 levels in the GC groups were significantly higher than those in the normal controls (P < 0.001). The area under the curve (AUC) of the combined detection of serum EFNA1 and MMP13 for GC was improved (0.794), compared with single biomarker used. Similar results were observed in the validation cohort. Importantly, the combined measurement of serum EFNA1 and MMP13 to detect early-stage GC also had acceptable diagnostic accuracy in training and validation cohort. Combined detection of serum EFNA1 and MMP13 could help identify early-stage GC, suggesting that it may be a promising tool for the early detection of GC.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Pathology, Medical College of Jiaying University, No. 146 Huangtang Road, Meizhou, China
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Institute, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Fang-Cai Wu
- Department of Head and Neck Surgery, Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Hai-Peng Guo
- Department of Radiation Oncology, Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Qi-Qi Qu
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
- Guangdong Esophageal Cancer Institute, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xin-Hao Li
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
- Guangdong Esophageal Cancer Institute, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China.
- Guangdong Esophageal Cancer Institute, The Cancer Hospital of Shantou University Medical College, Shantou, China.
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, the Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China.
- Guangdong Esophageal Cancer Institute, The Cancer Hospital of Shantou University Medical College, Shantou, China.
| | - Bo Qiu
- Department of Pathology, Medical College of Jiaying University, No. 146 Huangtang Road, Meizhou, China.
| |
Collapse
|
2
|
Li Y, Jiang M, Wei Y, He X, Li G, Lu C, Ge D. Integrative Analyses of Pyrimidine Salvage Pathway-Related Genes Revealing the Associations Between UPP1 and Tumor Microenvironment. J Inflamm Res 2024; 17:101-119. [PMID: 38204987 PMCID: PMC10777732 DOI: 10.2147/jir.s440295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Background The pyrimidine salvage pathway plays a critical role in tumor progression and patient outcomes. The roles of pyrimidine salvage pathway-related genes (PSPGs) in cancer, however, are not fully understood. This study aims to depict the characteristics of PSPGs across various cancers. Methods An integrative pan-cancer analysis of six PSPGs (CDA, UCK1, UCK2, UCKL1, UPP1, and UPP2) was conducted using TCGA data, single-cell RNA sequencing datasets, and patient samples. Single-cell transcriptome analysis and RT-qPCR were used to validate the relation between UPP1 and cytokines. Flow cytometry was performed to validate the role of UPP1 in immune checkpoint regulation. The correlation between UPP1 and tumor associated neutrophils (TAN) were investigated and validated by single-cell transcriptome analysis and tissue microarrays (TMAs). Results PSPGs showed low mutation rates but significant copy number variations, particularly amplifications in UCKL1, UPP1, and UCK2 across various cancers. DNA methylation patterns varied, with notable negative correlations between methylation and gene expression in UPP1. PSPGs were broadly up-regulated in multiple cancers, with correlations to clinical staging and prognosis. Proteomic data further confirmed these findings. Functional analysis revealed PSPGs' associations with tumor proliferation, metastasis, and various signaling pathways. UPP1 showed strong correlations with the tumor microenvironment (TME), particularly with cytokines, immune checkpoints, and various immune cells. Single-cell transcriptome analysis confirmed these associations, highlighting UPP1's influence on cytokine expression and immune checkpoint regulation. In esophageal squamous cell carcinoma (ESCC), UPP1-high tumor cells were significantly associated with immunosuppressive cells in the TME. Spatial analysis using TMAs revealed that UPP1+ tumor cells were predominantly located at the invasive margin and closely associated with neutrophils, correlating with poorer patient prognosis. Conclusion Our study depicted the multi-dimensional view of PSPGs in cancer, with a particular focus on UPP1's role in the TME. Targeting UPP1 holds promise as a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Taipa, Macao Special Administrative Region of China
| | - Yongqi Wei
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, People’s Republic of China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, People’s Republic of China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Martin‐Morales L, Manzano S, Rodrigo‐Faus M, Vicente‐Barrueco A, Lorca V, Núñez‐Moreno G, Bragado P, Porras A, Caldes T, Garre P, Gutierrez‐Uzquiza A. Germline gain-of-function MMP11 variant results in an aggressive form of colorectal cancer. Int J Cancer 2023; 152:283-297. [PMID: 36093604 PMCID: PMC9827992 DOI: 10.1002/ijc.34289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinase-11 (MMP11) is an enzyme with proteolytic activity against matrix and nonmatrix proteins. Although most MMPs are secreted as inactive proenzymes and are later activated extracellularly, MMP11 is activated intracellularly by furin within the constitutive secretory pathway. It is a key factor in physiological tissue remodeling and its alteration may play an important role in the progression of epithelial malignancies and other diseases. TCGA colon and colorectal adenocarcinoma data showed that upregulation of MMP11 expression correlates with tumorigenesis and malignancy. Here, we provide evidence that a germline variant in the MMP11 gene (NM_005940: c.232C>T; p.(Pro78Ser)), identified by whole exome sequencing, can increase the tumorigenic properties of colorectal cancer (CRC) cells. P78S is located in the prodomain region, which is responsible for blocking MMP11's protease activity. This variant was detected in the proband and all the cancer-affected family members analyzed, while it was not detected in healthy relatives. In silico analyses predict that P78S could have an impact on the activation of the enzyme. Furthermore, our in vitro analyses show that the expression of P78S in HCT116 cells increases tumor cell invasion and proliferation. In summary, our results show that this variant could modify the structure of the MMP11 prodomain, producing a premature or uncontrolled activation of the enzyme that may contribute to an early CRC onset in these patients. The study of this gene in other CRC cases will provide further information about its role in CRC development, which might improve patient treatment in the future.
Collapse
Affiliation(s)
- Lorena Martin‐Morales
- Molecular Oncology LaboratoryHospital Clínico San CarlosMadridSpain,Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain,Laboratory of Cancer Stemness, GIGA‐InstituteUniversity of LiegeLiegeBelgium
| | - Sara Manzano
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain,Department of Biochemistry and Molecular Biology, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain,Biodonostia Health Research InstituteSan Sebastian/DonostiaSpain
| | - Maria Rodrigo‐Faus
- Department of Biochemistry and Molecular Biology, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
| | - Adrian Vicente‐Barrueco
- Department of Biochemistry and Molecular Biology, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain,Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Victor Lorca
- Molecular Oncology LaboratoryHospital Clínico San CarlosMadridSpain,Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Gonzalo Núñez‐Moreno
- Department of Genetics, Health Research Institute‐Fundación Jiménez Díaz University HospitalUniversidad Autónoma de Madrid (IIS‐FJD, UAM)MadridSpain,Bioinformatics Unit, Health Research Institute‐Fundación Jiménez Díaz University HospitalUniversidad Autónoma de Madrid (IIS‐FJD, UAM)MadridSpain
| | - Paloma Bragado
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain,Department of Biochemistry and Molecular Biology, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
| | - Almudena Porras
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain,Department of Biochemistry and Molecular Biology, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
| | - Trinidad Caldes
- Molecular Oncology LaboratoryHospital Clínico San CarlosMadridSpain,Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Pilar Garre
- Molecular Oncology LaboratoryHospital Clínico San CarlosMadridSpain,Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain,Clinical Analysis Service, Molecular Diagnostic UnitIML, Hospital Clínico San CarlosMadridSpain
| | - Alvaro Gutierrez‐Uzquiza
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain,Department of Biochemistry and Molecular Biology, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
| |
Collapse
|
4
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
5
|
Chen L, Zhu D, Huang J, Zhang H, Zhou G, Zhong X. Identification of Hub Genes Associated with COPD Through Integrated Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:439-456. [PMID: 35273447 PMCID: PMC8901430 DOI: 10.2147/copd.s353765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/20/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, LiuZhou, Guangxi, People’s Republic of China
| | - Donglan Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jinfu Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Guang Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Correspondence: Xiaoning Zhong, Tel +86 13607881203, Fax +86 771-5356702, Email
| |
Collapse
|
6
|
Raskov H, Orhan A, Gaggar S, Gögenur I. Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in Cancer and Cancer Immunotherapy. Front Oncol 2021; 11:668731. [PMID: 34094963 PMCID: PMC8172975 DOI: 10.3389/fonc.2021.668731] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the tumor microenvironment (TME), including the interplay between tumor cells, stromal cells, immune cells, and extracellular matrix components, is mandatory for the innovation of new therapeutic approaches in cancer. The cell-cell communication within the TME plays a pivotal role in the evolution and progression of cancer. Cancer-associated fibroblasts (CAF) and tumor-associated macrophages (TAM) are major cell populations in the stroma of all solid tumors and often exert protumorigenic functions; however, the origin and precise functions of CAF and TAM are still incompletely understood. CAF and TAM hold significant potential as therapeutic targets to improve outcomes in oncology when combined with existing therapies. The regulation of CAF/TAM communication and/or their differentiation could be of high impact for improving the future targeted treatment strategies. Nevertheless, there is much scope for research and innovation in this field with regards to the development of novel drugs. In this review, we elaborate on the current knowledge on CAF and TAM in cancer and cancer immunotherapy. Additionally, by focusing on their heterogenous functions in different stages and types of cancer, we explore their role as potential therapeutic targets and highlight certain aspects of their functions that need further research.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Fonseca AS, Ramão A, Bürger MC, de Souza JES, Zanette DL, de Molfetta GA, de Araújo LF, de Barros E Lima Bueno R, Aguiar GM, Plaça JR, Alves CDP, Dos Santos ARD, Vidal DO, Silva GEB, Panepucci RA, Peria FM, Feres O, da Rocha JJR, Zago MA, Silva WA. ETV4 plays a role on the primary events during the adenoma-adenocarcinoma progression in colorectal cancer. BMC Cancer 2021; 21:207. [PMID: 33648461 PMCID: PMC7919324 DOI: 10.1186/s12885-021-07857-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide; it is the fourth leading cause of death in the world and the third in Brazil. Mutations in the APC, DCC, KRAS and TP53 genes have been associated with the progression of sporadic CRC, occurring at defined pathological stages of the tumor progression and consequently modulating several genes in the corresponding signaling pathways. Therefore, the identification of gene signatures that occur at each stage during the CRC progression is critical and can present an impact on the diagnosis and prognosis of the patient. In this study, our main goal was to determine these signatures, by evaluating the gene expression of paired colorectal adenoma and adenocarcinoma samples to identify novel genetic markers in association to the adenoma-adenocarcinoma stage transition. METHODS Ten paired adenoma and adenocarcinoma colorectal samples were subjected to microarray gene expression analysis. In addition, mutations in APC, KRAS and TP53 genes were investigated by DNA sequencing in paired samples of adenoma, adenocarcinoma, normal tissue, and peripheral blood from ten patients. RESULTS Gene expression analysis revealed a signature of 689 differentially expressed genes (DEG) (fold-change> 2, p< 0.05), between the adenoma and adenocarcinoma paired samples analyzed. Gene pathway analysis using the 689 DEG identified important cancer pathways such as remodeling of the extracellular matrix and epithelial-mesenchymal transition. Among these DEG, the ETV4 stood out as one of the most expressed in the adenocarcinoma samples, further confirmed in the adenocarcinoma set of samples from the TCGA database. Subsequent in vitro siRNA assays against ETV4 resulted in the decrease of cell proliferation, colony formation and cell migration in the HT29 and SW480 colorectal cell lines. DNA sequencing analysis revealed KRAS and TP53 gene pathogenic mutations, exclusively in the adenocarcinomas samples. CONCLUSION Our study identified a set of genes with high potential to be used as biomarkers in CRC, with a special emphasis on the ETV4 gene, which demonstrated involvement in proliferation and migration.
Collapse
Affiliation(s)
- Aline Simoneti Fonseca
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil.
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil.
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil.
- Research Institute Pelé Pequeno Príncipe, Av Silva Jardim, 1632, CEP: 80250-060, Água Verde, Curitiba, PR, Brazil.
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Matheus Carvalho Bürger
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Jorge Estefano Santana de Souza
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Dalila Lucíola Zanette
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil
- Laboratory of Applied Science and Technology in Health (LASTH), Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Greice Andreotti de Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil
| | - Luiza Ferreira de Araújo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil
| | - Rafaela de Barros E Lima Bueno
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Graziela Moura Aguiar
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Jessica Rodrigues Plaça
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Cleidson de Pádua Alves
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Anemari Ramos Dinarte Dos Santos
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Daniel Onofre Vidal
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Gyl Eanes Barros Silva
- Laboratory of Immunofluorescence and Electron Microscopy (LIME), Presidente Dutra University Hospital (HUUFMA), São Luís, MA, Brazil
| | - Rodrigo Alexandre Panepucci
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Fernanda Maris Peria
- Departament of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Omar Feres
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo, Brazil
| | | | - Marco Antonio Zago
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil.
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil.
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
9
|
Su H, Chang C, Hao J, Xu X, Bao M, Luo S, Zhao C, Liu Q, Wang X, Zhou Z, Zhou H. Identification of Genomic Alterations of Perineural Invasion in Patients with Stage II Colorectal Cancer. Onco Targets Ther 2020; 13:11571-11582. [PMID: 33204110 PMCID: PMC7667198 DOI: 10.2147/ott.s264616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The molecular mechanism of perineural invasion (PNI) in stage II colorectal cancer (CRC) remains not to be defined clearly. This study aims to identify the genomic aberrations related to PNI in stage II CRC. Patients and Methods Using array-based comparative genomic hybridization (array-CGH), primary tumor tissues and paracancerous normal tissues of stage II CRC with PNI and without PNI were analyzed. We identified genomic aberrations by using Genomic Workbench and MD-SeeGH and validated the aberrations of selected genes by real-time polymerase chain reaction (PCR). Gene ontology (GO) and pathway analysis were performed to determine the most likely biological effects of these genes. Results The most frequent gains in stage II CRC were at 7q11.21-q11.22, 8p11.21, 8p12-p11.23, 8q11.1-q11.22, 13q12.13-q12.2, and 20q11.21-q11.23 and the most frequent losses were at 17p13.1-p12, 8p23.2, and 118q11.2-q23. Four high-level amplifications at 8p11.23-p11.22, 18q21.1, 19q11-q12, and 20q11.21-q13.32 and homozygous deletions at 20p12.1 were discovered in Stage II CRC. Gains at 7q11.21-q22.1, 16p11.2, 17q23.3-q25.3, 19p13.3-p12, and 20p13-p11.1, and losses at 11q11-q12.1, 11p15.5-p15.1, 18p11.21, and 18q21.1-q23 were more commonly found in patients with PNI by frequency plot comparison together with detailed genomic analysis. It is also observed that gains at 8q11.1-q24.3, 9q13-q34.3, and 13q12.3-q13.1, and losses at 8p23.3-p12, 17p13.3-p11.2, and 21q22.12 occurred more frequently in patients without PNI. Further validation showed that the expression of FLT1, FBXW7, FGFR1, SLC20A2 and SERPINI1 was significantly up-regulated in the NPNI group compared to the PNI group. GO and pathway analysis revealed some genes enriched in specific pathways. Conclusion These involved genomic changes in the PNI of stage II CRC may be useful to reveal the mechanisms underlying PNI and provide candidate biomarkers.
Collapse
Affiliation(s)
- Hao Su
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Mandula Bao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Shou Luo
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chuanduo Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhixiang Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|