1
|
A Review of Biohydrogen Production from Saccharina japonica. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Saccharina japonica (known as Laminaria japonica or Phaeophyta japonica), one of the largest macroalgae, has been recognized as food and medicine for a long time in some Asian countries, such as China, South Korea, Japan, etc. In recent years, S. japonica has also been considered the most promising third-generation biofuel feedstock to replace fossil fuels, contributing to solving the challenges people face regarding energy and the environment. In particular, S. japonica-derived biohydrogen (H2) is expected to be a major fuel source in the future because of its clean, high-yield, and sustainable properties. Therefore, this review focuses on recent advances in bio-H2 production from S. japonica. The cutting-edge biological technologies with suitable operating parameters to enhance S. japonica’s bio-H2 production efficiency are reviewed based on the Scopus database. In addition, guidelines for future developments in this field are discussed.
Collapse
|
2
|
Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
3
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
4
|
Khan SZ, Zaidi AA, Naseer MN, AlMohamadi H. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Front Bioeng Biotechnol 2022; 10:868454. [PMID: 36118570 PMCID: PMC9478561 DOI: 10.3389/fbioe.2022.868454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010–20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials’ size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.
Collapse
Affiliation(s)
- Sohaib Z. Khan
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia
- *Correspondence: Sohaib Z. Khan,
| | - Asad A. Zaidi
- Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Pugazhendi A, Jamal MT, Al-Mur BA, Jeyakumar RB, Kumar G. Macroalgae (Ulva reticulata) derived biohydrogen recovery through mild surfactant induced energy and cost efficient dispersion pretreatment technology. CHEMOSPHERE 2022; 288:132463. [PMID: 34619256 DOI: 10.1016/j.chemosphere.2021.132463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Currently identification of alternate fuel is the key area of research under progress to overcome the depletion of fossil fuels, meet the domestic and industrial requirements. Generation of hydrogen, which is a clean fuel gas can solve various environmental related problems. Extensive research is being carried out to increase production of hydrogen through different substrates. This study aims to increase the production of hydrogen from Ulva reticulata (a macroalgal biomass). Initially, the biomass is pretreated mechanically with disperser and a biosurfactant, namely rhamnolipid in order to increase the solubilization of the biomass. The rate of COD liquefaction increased from 14% to 25% with the addition of biosurfactant to the macroalgal biomass, which is further treated mechanically using a disperser. The disperser rotor speed of 12,000 rpm and the specific energy input of 1175 kJ/kg TS (Total Solids) with the disintegration time of 30 min and biosurfactant dosage of 0.075 g/g TS were considered as the optimum parameters for the effective liquefaction of the macroalgal biomass. Approximately 3500 mg/L of the biopolymers were released after the combinative pretreatment (using disperser and biosurfactant). About 80 mL biohydrogen/g COD (Chemical Oxygen Demand) was generated when the biomass was pretreated with both the disperser and biosurfactant while the biomass pretreated with the disperser alone generated just 30 mL biohydrogen/g COD and the untreated biomass generated 5 mL biohydrogen/g COD. Thus, it can be concluded that Ulva reticulata can be utilized effectively to generate biohydrogen.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajesh Banu Jeyakumar
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Thiruvarur-610005, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway
| |
Collapse
|
6
|
Snehya AV, Sundaramahalingam MA, Rajeshbanu J, Anandan S, Sivashanmugam P. Studies on evaluation of surfactant coupled sonication pretreatment on Ulva fasciata (marine macroalgae) for enhanced biohydrogen production. ULTRASONICS SONOCHEMISTRY 2021; 81:105853. [PMID: 34861557 PMCID: PMC8640538 DOI: 10.1016/j.ultsonch.2021.105853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen production from marine macroalgal biomass by advanced pre-treatment strategies is considered a clean energy technology. The present study focuses on investigating the effects of sonication pre-treatment (SP) and saponin coupled sonic pre-treatment (SSP) on Ulva fasciata for enhancing the production of biohydrogen. The SP and SSP were optimized to improve the hydrolysis process during digestion. The optimized time and sonication power were found respectively as 30 min and 200 W. A high concentration of biopolymer release was noticed in SSP than SP at optimized conditions. The surfactant dosage in SSP was optimized at 0.0036 g/g TS. The effect of SSP process was assessed by estimation of COD (Chemical Oxygen Demand) and SCOD (Soluble Chemical Oxygen Demand) release. The study revealed that, at a specific energy of 36,000 KJ/Kg TS, the SCOD release was higher in SSP (1900 mg/L) than SP (1050 mg/L). The SSP process could improve the COD solubilization to 15 % more than the SP. Carbohydrate and protein release are also more in SSP than SP. The use of biosurfactants significantly reduced the energy utilization in the hydrolysis process. The SSP pre-treated Ulva fasciata biomass has yielded a higher biohydrogen of 91.7 mL/g COD which is higher compared to SP (40.5 mL/g COD) and Control (9 mL/g COD).
Collapse
Affiliation(s)
- A V Snehya
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu, India
| | - S Anandan
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tamilnadu, India.
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamilnadu, India.
| |
Collapse
|
7
|
Gebreslassie TR, Nguyen PKT, Yoon HH, Kim J. Co-production of hydrogen and electricity from macroalgae by simultaneous dark fermentation and microbial fuel cell. BIORESOURCE TECHNOLOGY 2021; 336:125269. [PMID: 34049167 DOI: 10.1016/j.biortech.2021.125269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
In this study, a hybrid process of dark fermentation (DF) and microbial fuel cell (MFC), sDFMFC, was investigated for simultaneous H2 and electricity production from Saccharina japonica in a single reactor. The sDFMFC exhibited a considerably enhanced energy recovery owing to simultaneous H2/carboxylic acids (CAs) production by DF and electricity production by MFC consuming CAs. The co-production of H2 and electricity was confirmed by a time course of CAs concentration in sDFMFC. An excellent energy recovery of 17.3% was obtained from S. japonica with H2 yield of 110 mL/g-VS and maximum power density of 1.82 W/m2. The sDFMFC showed a diverse microbial community for a desirable microbial conversion of organic substrates. The results indicate that sDFMFC can be a promising single reactor process to produce H2 and electricity from various biomass feedstock with considerable cost savings while ensuring the strength of the individual DF and MFC process.
Collapse
Affiliation(s)
- Tamirat Redae Gebreslassie
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea; Department of Chemical Engineering, School of Mechanical, Chemical and Material Engineering, Adama Science and Technology University, P.O.box 1888, Adama, Ethiopia
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Hyon Hee Yoon
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Jihyeon Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
8
|
Nguyen PKT, Kim J, Das G, Yoon HH, Lee DH. Optimization of simultaneous dark fermentation and microbial electrolysis cell for hydrogen production from macroalgae using response surface methodology. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Moriya H, Takita Y, Matsumoto A, Yamahata Y, Nishimukai M, Miyazaki M, Shimoi H, Kawai SJ, Yamada M. Cobetia sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Front Bioeng Biotechnol 2020; 8:974. [PMID: 32984275 PMCID: PMC7479843 DOI: 10.3389/fbioe.2020.00974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
We isolated the Cobetia sp. strains IU 180733JP01 (5-11-6-3) and 190790JP01 (5-25-4-2) from seaweeds and showed that both strains accumulate poly(3-hydroxybutyrate) [P(3HB)] homopolymer in a nitrogen-limiting mineral salt medium containing alginate as a sole carbon source. Genome sequence analysis of the isolated strains showed that they have putative genes which encode enzymes relevant to alginate assimilation and P(3HB) synthesis, and the putative alginate-assimilating genes formed a cluster. Investigation of the optimum culture conditions for high accumulation of P(3HB) showed that when the 5-11-6-3 strain was cultured in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and 3% (w/v) alginate as a sole carbon source for 2 days, the P(3HB) content and P(3HB) production reached 62.1 ± 3.4 wt% and 3.11 ± 0.16 g/L, respectively. When the 5-25-4-2 strain was cultured in a nitrogen-limiting mineral salt medium (pH 4.0) containing 5% NaCl and 3% (w/v) alginate for 2 days, the P(3HB) content and P(3HB) production reached 56.9 ± 2.1 wt% and 2.67 ± 0.11 g/L, respectively. Moreover, the 5-11-6-3 strain also produced P(3HB) in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and freeze-dried and crushed waste Laminaria sp., which is classified into brown algae and contains alginate abundantly. The resulting P(3HB) content and P(3HB) productivity were 13.5 ± 0.13 wt% and 3.99 ± 0.15 mg/L/h, respectively. Thus, we demonstrated the potential application of the isolated strains to a simple P(3HB) production process from seaweeds without chemical hydrolysis and enzymatic saccharification.
Collapse
Affiliation(s)
- Hiroki Moriya
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Yuto Takita
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Akira Matsumoto
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Yuki Yamahata
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Hitoshi Shimoi
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
| | - Sung-Jin Kawai
- New Field Pioneering Division, New Value Creation Center, Toyota Boshoku Corporation, Kariya, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Science, Iwate University, Morioka, Japan
- Education and Research on Sanriku Fishery Industry Department, Organization for Revitalization of the Sanriku Region and Regional Development, Iwate University, Morioka, Japan
| |
Collapse
|
10
|
Ulva lactuca, A Source of Troubles and Potential Riches. Mar Drugs 2019; 17:md17060357. [PMID: 31207947 PMCID: PMC6627311 DOI: 10.3390/md17060357] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023] Open
Abstract
Ulva lactuca is a green macro alga involved in devastating green tides observed worldwide. These green tides or blooms are a consequence of human activities. Ulva blooms occur mainly in shallow waters and the decomposition of this alga can produce dangerous vapors. Ulva lactuca is a species usually resembling lettuce, but genetic analyses demonstrated that other green algae with tubular phenotypes were U. lactuca clades although previously described as different species or even genera. The capacity for U. lactuca to adopt different phenotypes can be due to environment parameters, such as the degree of water salinity or symbiosis with bacteria. No efficient ways have been discovered to control these green tides, but the Mediterranean seas appear to be protected from blooms, which disappear rapidly in springtime. Ulva contains commercially valuable components, such as bioactive compounds, food or biofuel. The biomass due to this alga collected on beaches every year is beginning to be valorized to produce valuable compounds. This review describes different processes and strategies developed to extract these different valuable components.
Collapse
|
11
|
Yin Y, Wang J. Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. BIORESOURCE TECHNOLOGY 2018; 268:52-59. [PMID: 30071413 DOI: 10.1016/j.biortech.2018.07.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Suitable pretreatment can effectively enhance the fermentative hydrogen production from algae biomass. In this study, combined microwave-acid pretreatment was applied to disintegrate the biomass of macroalgae L. japonica, and dark fermentation in batch mode was conducted for hydrogen production. The results showed that combining microwave pretreatment at 140 °C and 2450 MHz with 1% H2SO4 for 15 min could effectively disrupt macroalgal cells and release the organic matters, and soluble chemical oxygen demand (SCOD) concentration increased by 1.92-fold and achieved 5.12 g/L. During the fermentation process, both polysaccharides and proteins were consumed. Hydrogen production process was dominated by acetate-type fermentation, and the dominance of genus Clostridium contributed to more efficient hydrogen production. After the pretreatment, hydrogen yield increased from 15 mL/g TSadded to 28 mL/g TSadded, and energy conversion efficiency increased from 9.5% to 23.8%. Combined microwave-acid pretreatment is potential in enhancing hydrogen production from the biomass of L. japonica.
Collapse
Affiliation(s)
- Yanan Yin
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
12
|
Prajapati KB, Singh R. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste. BIORESOURCE TECHNOLOGY 2018; 263:491-498. [PMID: 29775905 DOI: 10.1016/j.biortech.2018.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C.
Collapse
Affiliation(s)
- Kalp Bhusan Prajapati
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Rajesh Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
13
|
Membere E, Sallis P. Effect of temperature on kinetics of biogas production from macroalgae. BIORESOURCE TECHNOLOGY 2018; 263:410-417. [PMID: 29772502 DOI: 10.1016/j.biortech.2018.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 05/18/2023]
Abstract
An assessment was carried out on the effect of temperature on the anaerobic digestion of Laminaria digitata biomass, in batch reactors (25, 35, 45 and 55 °C) with a hydraulic retention time of 40 days. The first order, modified Gompertz and logistics models were used to obtain the kinetic parameters of the biogas production process. Results indicate the chemical composition of the algae substrate could be written as C316H613O289N13S1, with a theoretical methane yield of 336 ± 0.86 L CH4 kg VS-1. Experimental methane yield obtained from the reactors for 25, 35, 45, and 55 °C were 318 ± 1.58, 293 ± 1.11, 271 ± 0.98 and 352 ± 0.63 mL CH4/gVS respectively. Their R2 > 0.90 indicate both models fits well for predicating kinetics of methane production. The lowest kh (0.31), high biodegradability index (0.96) and lag time (9.3-11.7 days) were obtained for 55 °C.
Collapse
Affiliation(s)
- Edward Membere
- School of Civil and Geosciences, Newcastle University, Upon Tyne NE1 7RU, United Kingdom; University of Port Harcourt, Choba, Rivers State, Nigeria.
| | - Paul Sallis
- School of Civil and Geosciences, Newcastle University, Upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
14
|
Sun C, Zhang S, Xin F, Shanmugam S, Wu YR. Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:42. [PMID: 29467820 PMCID: PMC5815214 DOI: 10.1186/s13068-018-1044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance of fermentable sugars (e.g., galactose). Previous studies focused on the enhancement of biofuels production from different Clostridium species; however, there has been limited investigation into their metabolic pathways, especially on the conversion of biofuels from galactose, via whole genomic comparison and evolutionary analysis. RESULTS Two galactose-utilizing Clostridial strains were examined and identified as Clostridium acetobutylicum strain WA and C. beijerinckii strain WB. Via the genomic sequencing of both strains, the comparison of the whole genome together with the relevant protein prediction of 33 other Clostridium species was established to reveal a clear genome profile based upon various genomic features. Among them, five representative strains, including C. beijerinckii NCIMB14988, C. diolis DSM 15410, C. pasteurianum BC1, strain WA and WB, were further discussed to demonstrate the main differences among their respective metabolic pathways, especially in their carbohydrate metabolism. The metabolic pathways involved in the generation of biofuels and other potential products (e.g., riboflavin) were also reconstructed based on the utilization of marine biomass. Finally, a batch fermentation process was performed to verify the fermentative products from strains WA and WB using 60 g/L of galactose, which is the main hydrolysate from algal biomass. It was observed that strain WA and WB could produce up to 16.98 and 12.47 g/L of biobutanol, together with 21,560 and 10,140 mL/L biohydrogen, respectively. CONCLUSIONS The determination of the production of various biofuels by both strains WA and WB and their genomic comparisons with other typical Clostridium species on the analysis of various metabolic pathways was presented. Through the identification of their metabolic pathways, which are involved in the conversion of galactose into various potential products, such as biobutanol, the obtained results extend the current insight into the potential capability of utilizing marine red algal biomass and provide a systematic investigation into the relationship between this genus and the generation of sustainable bioenergy.
Collapse
Affiliation(s)
- Chongran Sun
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Shuangfei Zhang
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Fengxue Xin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 Guangdong China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | | | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 Guangdong China
- STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, 515063 Guangdong China
| |
Collapse
|
15
|
Shobana S, Kumar G, Bakonyi P, Saratale GD, Al-Muhtaseb AH, Nemestóthy N, Bélafi-Bakó K, Xia A, Chang JS. A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. BIORESOURCE TECHNOLOGY 2017; 244:1341-1348. [PMID: 28602665 DOI: 10.1016/j.biortech.2017.05.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/28/2023]
Abstract
(Red, green and brown) macroalgal biomass is a propitious candidate towards covenant alternative energy resources to be converted into biofuels i.e. hydrogen. The application of macroalgae for hydrogen fermentation (promising route in advancing the biohydrogen generation process) could be accomplished by the transformation of carbohydrates, which is a topic receiving broad attention in recent years. This article overviews the variety of marine algal biomass available in the coastal system, followed by the analyses of their pretreatment methods, inhibitor formation and possible detoxification, which are key-aspects to achieve subsequent H2 fermentation in a proper way.
Collapse
Affiliation(s)
- Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Tirchendur, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group (GPBAE), Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Ala'a Hamed Al-Muhtaseb
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Karray R, Karray F, Loukil S, Mhiri N, Sayadi S. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:171-178. [PMID: 28038905 DOI: 10.1016/j.wasman.2016.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/20/2016] [Accepted: 11/30/2016] [Indexed: 05/18/2023]
Abstract
Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g-1 VSadded was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene.
Collapse
Affiliation(s)
- Raida Karray
- Laboratoire des Bioprocédés Environnementaux, Laboratoire Mixte International LMI (COSYS-Med), Centre de Biotechnologie de Sfax, B.P. "1177", 3018 Sfax, Tunisia
| | - Fatma Karray
- Laboratoire des Bioprocédés Environnementaux, Laboratoire Mixte International LMI (COSYS-Med), Centre de Biotechnologie de Sfax, B.P. "1177", 3018 Sfax, Tunisia
| | - Slim Loukil
- Laboratoire des Bioprocédés Environnementaux, Laboratoire Mixte International LMI (COSYS-Med), Centre de Biotechnologie de Sfax, B.P. "1177", 3018 Sfax, Tunisia
| | - Najla Mhiri
- Laboratoire des Bioprocédés Environnementaux, Laboratoire Mixte International LMI (COSYS-Med), Centre de Biotechnologie de Sfax, B.P. "1177", 3018 Sfax, Tunisia
| | - Sami Sayadi
- Laboratoire des Bioprocédés Environnementaux, Laboratoire Mixte International LMI (COSYS-Med), Centre de Biotechnologie de Sfax, B.P. "1177", 3018 Sfax, Tunisia.
| |
Collapse
|
17
|
Wang J, Yin Y. Pretreatment of Organic Wastes for Hydrogen Production. BIOHYDROGEN PRODUCTION FROM ORGANIC WASTES 2017. [DOI: 10.1007/978-981-10-4675-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Sharma S, Horn SJ. Enzymatic saccharification of brown seaweed for production of fermentable sugars. BIORESOURCE TECHNOLOGY 2016; 213:155-161. [PMID: 26961713 DOI: 10.1016/j.biortech.2016.02.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Svein Jarle Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
19
|
Xia A, Jacob A, Tabassum MR, Herrmann C, Murphy JD. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. BIORESOURCE TECHNOLOGY 2016; 205:118-25. [PMID: 26820925 DOI: 10.1016/j.biortech.2016.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 05/23/2023]
Abstract
Algae may be fermented to produce hydrogen. However micro-algae (such as Arthrospira platensis) are rich in proteins and have a low carbon/nitrogen (C/N) ratio, which is not ideal for hydrogen fermentation. Co-fermentation with macro-algae (such as Laminaria digitata), which are rich in carbohydrates with a high (C/N) ratio, improves the performance of hydrogen production. Algal biomass, pre-treated with 2.5% dilute H2SO4 at 135°C for 15min, effected a total yield of carbohydrate monomers (CMs) of 0.268g/g volatile solids (VS). The CMs were dominating by glucose and mannitol and most (ca. 95%) were consumed by anaerobic fermentative micro-organisms during subsequent fermentation. An optimal specific hydrogen yield (SHY) of 85.0mL/g VS was obtained at an algal C/N ratio of 26.2 and an algal concentration of 20g VS/L. The overall energy conversion efficiency increased from 31.3% to 54.5% with decreasing algal concentration from 40 to 5 VS g/L.
Collapse
Affiliation(s)
- Ao Xia
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China; School of Engineering, University College Cork, Cork, Ireland
| | - Amita Jacob
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| | - Muhammad Rizwan Tabassum
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| | - Christiane Herrmann
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland; Leibniz Institute for Agricultural Engineering, Potsdam, Germany
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland.
| |
Collapse
|
20
|
Sarat Chandra T, Mudliar SN, Vidyashankar S, Mukherji S, Sarada R, Krishnamurthi K, Chauhan VS. Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics. BIORESOURCE TECHNOLOGY 2015; 184:395-404. [PMID: 25479690 DOI: 10.1016/j.biortech.2014.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 05/23/2023]
Abstract
The present study investigates the use of defatted algal biomass (DAB) as a non-conventional low cost adsorbent. The maximum adsorption capacity of biomass (raw, defatted and sulfuric acid pretreated DAB) was determined by liquid phase adsorption studies in batch mode for the removal of methylene blue present at various concentrations (1, 2, 3, 4, and 5 mg L(-1)) from aqueous solutions. The data was well fitted with Langmuir and Freundlich isotherms. The maximum adsorption capacity for raw, defatted and sulfuric acid pretreated DAB was found to be 6.0, 7.73 and 7.80 mg g(-1), respectively. The specific surface area of raw, defatted and sulfuric acid pretreated DAB was estimated to be 14.70, 18.94, and 19.10 m(2) g(-1), respectively. To evaluate the kinetic mechanism that controls the adsorption process, pseudo-first order, pseudo-second order, intraparticle diffusion and particle diffusion has been tested. The data fitted quite well with pseudo-second order kinetic model.
Collapse
Affiliation(s)
- T Sarat Chandra
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - S N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - S Vidyashankar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - S Mukherji
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - R Sarada
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - K Krishnamurthi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - V S Chauhan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.
| |
Collapse
|
21
|
Effect of sludge treatment on biogas production from Saccharina japonica ethanol fermentation by-products. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chandra TS, Suvidha G, Mukherji S, Chauhan VS, Vidyashankar S, Krishnamurthi K, Sarada R, Mudliar SN. Statistical optimization of thermal pretreatment conditions for enhanced biomethane production from defatted algal biomass. BIORESOURCE TECHNOLOGY 2014; 162:157-165. [PMID: 24747395 DOI: 10.1016/j.biortech.2014.03.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/12/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
The present study analyzes the effect of thermal pretreatment for enhancing the biomethane potential of defatted algal biomass of Scenedesmus dimorphus through statistically guided experimental design. To this end, defatted microalgal biomass at various concentrations (1, 3 and 5 g L(-1)) was pretreated at elevated temperatures (100, 120 and 150°C) for 20, 40 and 60 min. The solubilised TOC was favourably enhanced up to 71 mg L(-1) after pretreatment at a temperature of 150°C for reaction time of 60 min. The methane yield was substantially enhanced (up to 60%) and could be correlated with an increase in organic matter solubilisation and enhanced biodegradability via thermal pretreatment. The optimisation of the integrated thermal pretreatment-biomethanation process resulted in up to 1.6-fold increase in methane yield.
Collapse
Affiliation(s)
- T Sarat Chandra
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Centre for Environmental Science and Engineering, Indian Institute of Technology, Mumbai, Maharashtra, India; Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - G Suvidha
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - S Mukherji
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Mumbai, Maharashtra, India
| | - V S Chauhan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - S Vidyashankar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - K Krishnamurthi
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - R Sarada
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - S N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.
| |
Collapse
|
23
|
Mazumdar S, Bang J, Oh MK. L-lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl Biochem Biotechnol 2014; 172:1938-52. [PMID: 24297185 DOI: 10.1007/s12010-013-0653-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/22/2013] [Indexed: 10/26/2022]
Abstract
Renewable and carbon neutral, marine algal biomass could be an attractive alternative substrate for the production of biofuel and various biorefinery products. Thus, the feasibility of brown seaweed (Laminaria japonica) hydrolysate as a carbon source was investigated here for L-lactate production. This work reports the homofermentative route for L-lactate production by introducing Streptococcus bovis/equinus L-lactate dehydrogenase in an engineered Escherichia coli strain where synthesis of the competing by-product was blocked. The engineered strain utilized both glucose and mannitol present in the hydrolysate under microaerobic condition and produced 37.7 g/L of high optical purity L-lactate at 80 % of the maximum theoretical value. The result shown in this study implies that algal biomass would be as competitive with lignocellulosic biomass in terms of lactic acid production and that brown seaweed can be used as a feedstock for the industrial production of other chemicals.
Collapse
Affiliation(s)
- Suman Mazumdar
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | | | |
Collapse
|
24
|
Zhai Q, Li X, Yang Y, Yu L, Yao Y. Antitumor activity of a polysaccharide fraction from Laminaria japonica on U14 cervical carcinoma-bearing mice. Tumour Biol 2014; 35:117-22. [PMID: 23922174 DOI: 10.1007/s13277-013-1014-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022] Open
Abstract
In the present study, we investigated the in vitro and in vivo antitumor effects of a sulfated polysaccharide fraction from the brown alga Laminaria japonica (LJSP) on cervical carcinoma. In vitro, the results showed that LJSP exhibited the highest cell growth inhibitory effect on cervical carcinoma U14 cells among five tumor cell lines. In vivo, the results showed that LJSP could not only inhibit the growth of the tumor but also enhance the spleen and thymus indexes, as well as the body weight of U14 tumor-bearing mice. Moreover, the white blood cell count of H22 tumor-bearing mice showed no change in the LJSP-treated groups and little toxicological effects were observed on hepatic function and renal function in LJSP-treated mice bearing U14 tumor cells. Besides, LJSP induced apoptosis of transplanted tumor tissues by increasing the ratio of Bax/Bcl-2. These data showed that LJSP exhibited prominent antitumor activities and low toxic effects; thus, it could be developed to a safe and effective anticancer agent.
Collapse
Affiliation(s)
- Qingzhi Zhai
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, 100853, China
| | | | | | | | | |
Collapse
|
25
|
Shi X, Kim DH, Shin HS, Jung KW. Effect of temperature on continuous fermentative hydrogen production from Laminaria japonica by anaerobic mixed cultures. BIORESOURCE TECHNOLOGY 2013; 144:225-31. [PMID: 23871924 DOI: 10.1016/j.biortech.2013.06.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The temperature effect on continuous dark fermentative hydrogen production from non-pretreated Laminaria japonica was investigated in the present study. In a preliminary step, the fermentors were continuously operated as an inoculation process at three different temperatures, 35, 50 and 65°C, to respectively represent mesophilic, thermophilic, and hyperthermophilic conditions. An optimization process was subsequently conducted with a range of organic loading rate (OLR) and cultivation pH. Among the various operation conditions, the maximum H2 yield, 61.3±2.0 mL H2/g TS, was observed under a mesophilic condition at OLR of 3.4 g COD/L/d and pH 5.5. From a PCR-DGGE analysis, it was found that an increase of temperature can reduce the microbial diversity and change the predominant species. Finally, total cellulase activity was measured, to investigate the effect of temperature on hydrolysis of L. japonica. The highest cellulase activity was 0.19±0.02 FPU/mL, observed at 35°C, coinciding with the maximum H2 yield.
Collapse
Affiliation(s)
- Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, Singapore 119077, Singapore
| | | | | | | |
Collapse
|
26
|
Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol--comparison of five pretreatment technologies. BIORESOURCE TECHNOLOGY 2013; 140:36-42. [PMID: 23672937 DOI: 10.1016/j.biortech.2013.04.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 05/23/2023]
Abstract
A qualified estimate for pretreatment of the macroalgae Chaetomorpha linum for ethanol production was given, based on the experience of pretreatment of land-based biomass. C. linum was subjected to hydrothermal pretreatment (HTT), wet oxidation (WO), steam explosion (STEX), plasma-assisted pretreatment (PAP) and ball milling (BM), to determine effects of the pretreatment methods on the conversion of C. linum into ethanol by simultaneous saccharification and fermentation (SSF). WO and BM showed the highest ethanol yield of 44 g ethanol/100g glucan, which was close to the theoretical ethanol yield of 57 g ethanol/100g glucan. A 64% higher ethanol yield, based on raw material, was reached after pretreatment with WO and BM compared with unpretreated C. linum, however 50% of the biomass was lost during WO. Results indicated that the right combination of pretreatment and marine macroalgae, containing high amounts of glucan and cleaned from salts, enhanced the ethanol yield significantly.
Collapse
Affiliation(s)
- Nadja Schultz-Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, DK-2800 Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lü F, Ji J, Shao L, He P. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:92. [PMID: 23815806 PMCID: PMC3699423 DOI: 10.1186/1754-6834-6-92] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/26/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The recalcitrant cell walls of microalgae may limit their digestibility for bioenergy production. Considering that cellulose contributes to the cell wall recalcitrance of the microalgae Chlorella vulgaris, this study investigated bioaugmentation with a cellulolytic and hydrogenogenic bacterium, Clostridium thermocellum, at different inoculum ratios as a possible method to improve CH4 and H2 production of microalgae. RESULTS Methane production was found to increase by 17?~?24% with the addition of C. thermocellum, as a result of enhanced cell disruption and excess hydrogen production. Furthermore, addition of C. thermocellum enhanced the bacterial diversity and quantities, leading to higher fermentation efficiency. A two-step process of addition of C. thermocellum first and methanogenic sludge subsequently could recover both hydrogen and methane, with a 9.4% increase in bioenergy yield, when compared with the one-step process of simultaneous addition of C. thermocellum and methanogenic sludge. The fluorescence peaks of excitation-emission matrix spectra associated with chlorophyll can serve as biomarkers for algal cell degradation. CONCLUSIONS Bioaugmentation with C. thermocellum improved the degradation of C. vulgaris biomass, producing higher levels of methane and hydrogen. The two-step process, with methanogenic inoculum added after the hydrogen production reached saturation, was found to be an energy-efficiency method for hydrogen and methane production.
Collapse
Affiliation(s)
- Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Jiaqi Ji
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Liming Shao
- Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–rural Development of PR. China (MOHURD), Beijing, China
| | - Pinjing He
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
- Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–rural Development of PR. China (MOHURD), Beijing, China
| |
Collapse
|
28
|
Şentürk İ, Büyükgüngör H. Evaluation of Biohydrogen Production Potential from Marine Macro Algae. BLACK SEA ENERGY RESOURCE DEVELOPMENT AND HYDROGEN ENERGY PROBLEMS 2013. [DOI: 10.1007/978-94-007-6152-0_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Kim JY, Lee SM, Lee JH. Biogas production from moon jellyfish (Aurelia aurita) using of the anaerobic digestion. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2012.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Zha XQ, Xiao JJ, Zhang HN, Wang JH, Pan LH, Yang XF, Luo JP. Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.129] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
|
32
|
Efremenko EN, Nikolskaya AB, Lyagin IV, Senko OV, Makhlis TA, Stepanov NA, Maslova OV, Mamedova F, Varfolomeev SD. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. BIORESOURCE TECHNOLOGY 2012; 114:342-348. [PMID: 22483558 DOI: 10.1016/j.biortech.2012.03.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 05/31/2023]
Abstract
The purpose of this work was to study the possible use of pretreated biomass of various microalgae and cyanobacteria as substrates for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum cells immobilized into poly(vinyl alcohol) cryogel. To this end, the biochemical composition of photosynthetic microorganisms cultivated under various conditions was studied. The most efficient technique for pretreating microalgal biomass for its subsequent conversion into biofuels appeared to be thermal decomposition at 108 °C. For the first time the maximum productivity of the ABE fermentation in terms of hydrogen (8.5 mmol/L medium/day) was obtained using pretreated biomass of Nannochloropsis sp. Maximum yields of butanol and ethanol were observed with Arthrospira platensis biomass used as the substrate. Immobilized Clostridium cells were demonstrated to be suitable for multiple reuses (for a minimum of five cycles) in ABE fermentation for producing biofuels from pretreated microalgal biomass.
Collapse
Affiliation(s)
- E N Efremenko
- Institute of Biochemical Physics, RAS, Kosygin Str. 4, Moscow 119334, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kuwano K, Hashioka T, Nishihara GN, Iima M. DURATIONS OF GAMETE MOTILITY AND CONJUGATION ABILITY OF ULVA COMPRESSA (ULVOPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2012; 48:394-400. [PMID: 27009729 DOI: 10.1111/j.1529-8817.2011.01110.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study was designed to develop a technique for crossing and to gain insight into how sexual reproduction contributes to the maintenance of local populations of Ulva compressa L. To examine the durations of gamete motility and conjugation ability, freshly released gametes were incubated for various periods of time prior to mixing both mating types. The conjugation ability of the gametes gradually declined after being released from the thalli when the gametes were incubated without mixing with the opposite mating type. The ability to conjugate decreased by half after 6 h, although most of the gametes remained motile. The gametes released 4 h later had the same level of conjugation ability when mixed immediately after releasing. When the mature thalli were wrapped in a moist paper towel to prevent gametes from being released, the gametes were preservable for 7 h without a significant decrease in their conjugation ability. Conjugation occurred soon after mixing gametes of both mating types and reached a plateau after 30 s. However, conjugation rates did not exceed a rate of ∼70%, even though freshly released gametes were used. Interestingly, a portion of the gametes newly conjugated 30 min after mixing both mating types, and conjugation rates reached a second plateau at ∼90%. Gametes with delayed conjugation are provided some period of time that allows them to be transported away and increases their chances of mating with more distant populations, thus contributing to the maintenance of genetic variation.
Collapse
Affiliation(s)
- Kazuyoshi Kuwano
- Graduate School of Science and Technology, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan Institute for East China Sea Research, Nagasaki University, Taira-machi 1551-7, Nagasaki 851-2213, Japan Faculty of Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takashi Hashioka
- Graduate School of Science and Technology, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan Institute for East China Sea Research, Nagasaki University, Taira-machi 1551-7, Nagasaki 851-2213, Japan Faculty of Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Gregory N Nishihara
- Graduate School of Science and Technology, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan Institute for East China Sea Research, Nagasaki University, Taira-machi 1551-7, Nagasaki 851-2213, Japan Faculty of Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masafumi Iima
- Graduate School of Science and Technology, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan Institute for East China Sea Research, Nagasaki University, Taira-machi 1551-7, Nagasaki 851-2213, Japan Faculty of Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
34
|
Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:34. [PMID: 21943287 PMCID: PMC3193024 DOI: 10.1186/1754-6834-4-34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 09/26/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. In this study, utilization of Chlorella vulgaris (a fresh water microalga) and Dunaliella tertiolecta (a marine microalga) biomass was tested as a feedstock for anaerobic H2 and CH4 production. RESULTS Anaerobic serum bottle assays were conducted at 37°C with enrichment cultures derived from municipal anaerobic digester sludge. Low levels of H2 were produced by anaerobic enrichment cultures, but H2 was subsequently consumed even in the presence of 2-bromoethanesulfonic acid, an inhibitor of methanogens. Without inoculation, algal biomass still produced H2 due to the activities of satellite bacteria associated with algal cultures. CH4 was produced from both types of biomass with anaerobic enrichments. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling indicated the presence of H2-producing and H2-consuming bacteria in the anaerobic enrichment cultures and the presence of H2-producing bacteria among the satellite bacteria in both sources of algal biomass. CONCLUSIONS H2 production by the satellite bacteria was comparable from D. tertiolecta (12.6 ml H2/g volatile solids (VS)) and from C. vulgaris (10.8 ml H2/g VS), whereas CH4 production was significantly higher from C. vulgaris (286 ml/g VS) than from D. tertiolecta (24 ml/g VS). The high salinity of the D. tertiolecta slurry, prohibitive to methanogens, was the probable reason for lower CH4 production.
Collapse
Affiliation(s)
- Aino-Maija Lakaniemi
- Department of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, FI-33101 Tampere, Finland
| | - Christopher J Hulatt
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - David N Thomas
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
- Finnish Environment Institute, Marine Centre, PO Box 140, FI-00251 Helsinki, Finland
| | - Olli H Tuovinen
- Department of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, FI-33101 Tampere, Finland
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Jaakko A Puhakka
- Department of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, FI-33101 Tampere, Finland
| |
Collapse
|
35
|
Lee SM, Lee JH. The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization. BIORESOURCE TECHNOLOGY 2011; 102:5962-7. [PMID: 21419623 DOI: 10.1016/j.biortech.2011.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 05/30/2023]
Abstract
Brown seaweed contains various carbohydrates, such as alginate, laminaran, and mannitol, therefore ethanol fermentation was attempted with Nuruk and a mixed culture that included Laminaria japonica. Nuruk is used to make Korean traditional alcohol. In the research, four microorganisms that produced ethanol and had the ability to achieve alginate degradation were obtained on the L. japonica medium. Nuruk 4 was found to produce a better result than the other tested microorganisms, and the optimal substrate for ethanol production was found to be mannitol (2.59 g/L at 96 h). Nuruk 4 was more than three times better compared with Candida tropicalis in regards to ethanol production. When alginate lyase activity occurred, it appeared as a clear zone around Nuruk 3. The maximal ethanol production yield conditions were comprised of Nuruk 3 and 4 on the anaerobic culture. In this case, 2.0 g/L of ethanol were efficiently produced under the same conditions.
Collapse
Affiliation(s)
- Sung-Mok Lee
- Department of Bioscience and Biotechnology, Silla University, Busan 617-736, Republic of Korea
| | | |
Collapse
|