1
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Priyadharshini A, Ganesh I, Rangarajalu K, Samuel MS, Ravikumar S. Engineering Whole-Cell Biosensors for Enhanced Detection of Environmental Antibiotics Using a Synthetic Biology Approach. Indian J Microbiol 2024; 64:402-408. [PMID: 39010990 PMCID: PMC11246489 DOI: 10.1007/s12088-024-01259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial Two component systems have evolved with many intricate sensory apparatuses for external stimuli like light, temperature, oxygen, pH and chemical compounds. Recent studies have shown the potential of two-component regulatory systems (TCSs) of bacteria in creating synthetic regulatory circuits for several applications. Antimicrobial resistance is increasing globally in both developing and developed countries and it is one of the foremost global threats to public health. The resistance level to a broad spectrum of antibiotics is rising every year by 5-10%. In this context, TCSs controlling microbial physiology at the transcriptional level could be an appropriate candidate for monitoring the antibiotics present in the environment. This review provided a wide opportunity to gain knowledge about the TCSs available in diverse species to sense the antibiotics. Further, this review explored the EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) based biosensors to repurpose the sensing modules from the microbial TCSs using the synthetic biology approach.
Collapse
Affiliation(s)
- Arunagiri Priyadharshini
- Department of Biochemistry, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | - Irisappan Ganesh
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | - Kumar Rangarajalu
- Department of Biochemistry, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | | | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| |
Collapse
|
3
|
Gan Y, Meng X, Gao C, Song W, Liu L, Chen X. Metabolic engineering strategies for microbial utilization of methanol. ENGINEERING MICROBIOLOGY 2023; 3:100081. [PMID: 39628934 PMCID: PMC11611044 DOI: 10.1016/j.engmic.2023.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 12/06/2024]
Abstract
The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol. However, most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals. Thus, the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications. In this review, we provide an in-depth discussion on the properties of natural and synthetic methylotrophs, and summarize the natural and synthetic methanol assimilation pathways. Further, we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals. Finally, we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.
Collapse
Affiliation(s)
- Yamei Gan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xin Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Lazar JT, Tabor JJ. Bacterial two-component systems as sensors for synthetic biology applications. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100398. [PMID: 34917859 PMCID: PMC8670732 DOI: 10.1016/j.coisb.2021.100398] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among others. New engineering methods including genetic refactoring, DNA-binding domain swapping, detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements of specific applications. There is now potential to combine these methods with large-scale gene synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs and develop a large new family of genetically-encoded sensors that respond to an unrivaled breadth of stimuli.
Collapse
Affiliation(s)
- John T Lazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
5
|
Zhang J, Pang Q, Wang Q, Qi Q, Wang Q. Modular tuning engineering and versatile applications of genetically encoded biosensors. Crit Rev Biotechnol 2021; 42:1010-1027. [PMID: 34615431 DOI: 10.1080/07388551.2021.1982858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Genetically encoded biosensors have a diverse range of detectable signals and potential applications in many fields, including metabolism control and high-throughput screening. Their ability to be used in situ with minimal interference to the bioprocess of interest could revolutionize synthetic biology and microbial cell factories. The performance and functions of these biosensors have been extensively studied and have been rapidly improved. We review here current biosensor tuning strategies and attempt to unravel how to obtain ideal biosensor functions through experimental adjustments. Strategies for expanding the biosensor input signals that increases the number of detectable compounds have also been summarized. Finally, different output signals and their practical requirements for biotechnology and biomedical applications and environmental safety concerns have been analyzed. This in-depth review of the responses and regulation mechanisms of genetically encoded biosensors will assist to improve their design and optimization in various application scenarios.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingxiao Pang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qi Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
6
|
Abstract
Microbially produced indole metabolites serve as a diverse family of interspecies and interkingdom signaling molecules in the context of human health, crop production, and antibiotic resistance. We mined the protein database for sensors of indole metabolites and developed a biosensor for indole-3-aldehyde (I3A). Microbially produced I3A has been associated with reducing inflammation in diseases such as ulcerative colitis by stimulating the aryl hydrocarbon receptor pathway. We engineered an E. coli strain embedded with a single plasmid carrying a chimeric two-component system that detects I3A. Our I3A receptor characterization confirmed binding site residues that contribute to the sensor's I3A detection range of 0.1-10 μM. This new I3A biosensor opens the door to sensing indole metabolites produced at various host-microbe interfaces and provides new parts for synthetic biology applications.
Collapse
Affiliation(s)
- Jiefei Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Chao Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Methylotrophic bacterium-based molecular sensor for the detection of low concentrations of methanol. J Biosci Bioeng 2021; 132:247-252. [PMID: 34092492 DOI: 10.1016/j.jbiosc.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Methylotrophic bacterium Methylorubrum extorquens is a promising microorganism for the production of value-added compounds from methanol. This study focused on the development of a single-cell level biosensor system that detects methanol by using the intrinsic regulatory machinery which responds to the presence of methanol in this bacterium. A green fluorescent protein (GFP) gene located downstream of the promoter region of the serine glyoxylate aminotransferase gene (Psga) or the methanol dehydrogenase subunit 1 precursor gene (PmxaF) was inserted into the chromosome of M. extorquens wild-type strain AM1. The expression of GFP upon methanol exposure was measured by spectrofluorometer and fluorescence-activated cell sorting (FACS). The strain harboring Psga-gfp emitted fluorescence only when methanol was supplied to the culture medium, while the other strain harboring PmxaF-gfp showed high basal fluorescence even in the absence of methanol. The fluorescence intensity of the Psga-gfp strain depended on a methanol concentration higher than 25 μM, and the sensitivity and dose-dependency of this strain were much higher than previous systems using Escherichia coli. The methanol-sensing properties of the engineered M. extorquens strain were comparable to those of a methylotrophic yeast-based biosensor, suggesting the usefulness of methylotrophic microorganisms as platforms for single-cell sensing of C1 compounds. The constructed methanol sensor strain, coupled with flow cytometry techniques, provides a high-throughput and highly sensitive screening method for the selection of functional methanol-producing enzymes.
Collapse
|
8
|
Del Valle I, Fulk EM, Kalvapalle P, Silberg JJ, Masiello CA, Stadler LB. Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Front Microbiol 2021; 11:618373. [PMID: 33633695 PMCID: PMC7901896 DOI: 10.3389/fmicb.2020.618373] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid diversification of synthetic biology tools holds promise in making some classically hard-to-solve environmental problems tractable. Here we review longstanding problems in the Earth and environmental sciences that could be addressed using engineered microbes as micron-scale sensors (biosensors). Biosensors can offer new perspectives on open questions, including understanding microbial behaviors in heterogeneous matrices like soils, sediments, and wastewater systems, tracking cryptic element cycling in the Earth system, and establishing the dynamics of microbe-microbe, microbe-plant, and microbe-material interactions. Before these new tools can reach their potential, however, a suite of biological parts and microbial chassis appropriate for environmental conditions must be developed by the synthetic biology community. This includes diversifying sensing modules to obtain information relevant to environmental questions, creating output signals that allow dynamic reporting from hard-to-image environmental materials, and tuning these sensors so that they reliably function long enough to be useful for environmental studies. Finally, ethical questions related to the use of synthetic biosensors in environmental applications are discussed.
Collapse
Affiliation(s)
- Ilenne Del Valle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
9
|
Castaño-Cerezo S, Fournié M, Urban P, Faulon JL, Truan G. Development of a Biosensor for Detection of Benzoic Acid Derivatives in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 7:372. [PMID: 31970152 PMCID: PMC6959289 DOI: 10.3389/fbioe.2019.00372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/13/2019] [Indexed: 01/14/2023] Open
Abstract
4-hydroxybenzoic acid (pHBA) is an important industrial precursor of muconic acid and liquid crystal polymers whose production is based on the petrochemical industry. In order to decrease our dependency on fossil fuels and improve sustainability, microbial engineering is a particularly appealing approach for replacing traditional chemical techniques. The optimization of microbial strains, however, is still highly constrained by the screening stage. Biosensors have helped to alleviate this problem by decreasing the screening time as well as enabling higher throughput. In this paper, we constructed a synthetic biosensor, named sBAD, consisting of a fusion of the pHBA-binding domain of HbaR from R. palustris, the LexA DNA binding domain at the N-terminus and the transactivation domain B112 at the C-terminus. The response of sBAD was tested in the presence of different benzoic acid derivatives, with cell fluorescence output measured by flow cytometry. The biosensor was found to be activated by the external addition of pHBA in the culture medium, in addition to other carboxylic acids including p-aminobenzoic acid (pABA), salicylic acid, anthranilic acid, aspirin, and benzoic acid. Furthermore, we were able to show that this biosensor could detect the in vivo production of pHBA in a genetically modified yeast strain. A good linearity was observed between the biosensor fluorescence and pHBA concentration. Thus, this biosensor would be well-suited as a high throughput screening tool to produce, via metabolic engineering, benzoic acid derivatives.
Collapse
Affiliation(s)
| | - Mathieu Fournié
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Chemistry School, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
10
|
Kowallis KA, Duvall SW, Zhao W, Childers WS. Manipulation of Bacterial Signaling Using Engineered Histidine Kinases. Methods Mol Biol 2020; 2077:141-163. [PMID: 31707657 DOI: 10.1007/978-1-4939-9884-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-component systems allow bacteria to respond to changes in environmental or cytosolic conditions through autophosphorylation of a histidine kinase (HK) and subsequent transfer of the phosphate group to its downstream cognate response regulator (RR). The RR then elicits a cellular response, commonly through regulation of transcription. Engineering two-component system signaling networks provides a strategy to study bacterial signaling mechanisms related to bacterial cell survival, symbiosis, and virulence, and to develop sensory devices in synthetic biology. Here we focus on the principles for engineering the HK to identify unknown signal inputs, test signal transmission mechanisms, design small molecule sensors, and rewire two-component signaling networks.
Collapse
Affiliation(s)
| | - Samuel W Duvall
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA. .,Chevron Science Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Custom-made transcriptional biosensors for metabolic engineering. Curr Opin Biotechnol 2019; 59:78-84. [DOI: 10.1016/j.copbio.2019.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/20/2023]
|
12
|
Kim SG, Noh MH, Lim HG, Jang S, Jang S, Koffas MAG, Jung GY. Molecular parts and genetic circuits for metabolic engineering of microorganisms. FEMS Microbiol Lett 2019; 365:5059574. [PMID: 30052915 DOI: 10.1093/femsle/fny187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Microbial conversion of biomass into value-added biochemicals is a highly sustainable process compared to petroleum-based production. In this regard, microorganisms have been engineered via simple overexpression or deletion of metabolic genes to facilitate the production. However, the producer microorganisms require complex regulatory circuits to maximize productivity and performance. To address this issue, diverse genetic circuits have been developed that allow cells to minimize their metabolic burden, overcome metabolic imbalances and respond to a dynamically changing environment. In this review, we briefly explain the basic strategy for constructing genetic circuits by assembling molecular parts such as input, operation and output modules. Next, we describe recent applications of the circuits in the metabolic engineering of microorganisms to improve biochemical production. Beyond those achievements, genetic circuits will facilitate more innovative approaches to future strain development through mining and engineering new genetic elements and improving the complexity of genetic circuit design.
Collapse
Affiliation(s)
- Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Myung Hyun Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy 12180, USA
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
13
|
Jang S, Jang S, Im DK, Kang TJ, Oh MK, Jung GY. Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor. ACS Synth Biol 2019; 8:1276-1283. [PMID: 31074964 DOI: 10.1021/acssynbio.8b00452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Caprolactam is a monomer used for the synthesis of nylon-6, and a recombinant microbial strain for biobased production of nylon-6 was recently developed. An intracellular biosensor for caprolactam can facilitate high-throughput metabolic engineering of recombinant microbial strains. Because of the mixed production of caprolactam and valerolactam in the recombinant strain, a caprolactam biosensor should be highly specific for caprolactam. However, a highly specific caprolactam sensor has not been reported. Here, we developed an artificial riboswitch that specifically responds to caprolactam. This riboswitch was prepared using a coupled in vitro- in vivo selection strategy with a heterogeneous pool of RNA aptamers obtained from in vitro selection to construct a riboswitch library used in in vivo selection. The caprolactam riboswitch successfully discriminated caprolactam from valerolactam. Moreover, the riboswitch was activated by 3.36-fold in the presence of 50 mM caprolactam. This riboswitch enabled caprolactam-dependent control of cell growth, which will be useful for improving caprolactam production and is a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-Kyun Im
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, 30 Pildong-Ro 1-Gil, Jung-Gu, Seoul 04620, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
14
|
Engineering Escherichia coli to Sense Non-native Environmental Stimuli: Synthetic Chimera Two-component Systems. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0252-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Jang S, Jang S, Noh MH, Lim HG, Jung GY. Novel Hybrid Input Part Using Riboswitch and Transcriptional Repressor for Signal Inverting Amplifier. ACS Synth Biol 2018; 7:2199-2204. [PMID: 30092633 DOI: 10.1021/acssynbio.8b00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genetic circuits are composed of input, logic, and output parts. Construction of complex circuits for practical applications requires numerous tunable genetic parts. However, the limited diversity and complicated tuning methods used for the input parts hinders the scalability of genetic circuits. Therefore, a new type of input part is required that responds to diverse signals and enables easy tuning. Here, we developed RNA-protein hybrid input parts that combine a riboswitch and orthogonal transcriptional repressors. The hybrid inputs successfully regulated the transcription of an output in response to the input signal detected by the riboswitch and resulted in signal inversion because of the expression of transcriptional repressors. Dose-response parameters including fold-change and half-maximal effective concentration were easily modulated and amplified simply by changing the promoter strength. Furthermore, the hybrid input detected both exogenous and endogenous signals, indicating potential applications in metabolite sensing. This hybrid input part could be highly extensible considering the rich variety of components.
Collapse
Affiliation(s)
- Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myung Hyun Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
16
|
The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Syst 2018; 7:231-244. [DOI: 10.1016/j.cels.2018.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
|
17
|
In vivo biosensors: mechanisms, development, and applications. ACTA ACUST UNITED AC 2018; 45:491-516. [DOI: 10.1007/s10295-018-2004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Abstract
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.
Collapse
|
18
|
Seok JY, Yang J, Choi SJ, Lim HG, Choi UJ, Kim KJ, Park S, Yoo TH, Jung GY. Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metab Eng 2018; 47:113-120. [PMID: 29545147 DOI: 10.1016/j.ymben.2018.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/30/2022]
Abstract
3-Hydroxypropionic acid (3-HP) is an important platform chemical, and biological production of 3-HP from glycerol as a carbon source using glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) has been revealed to be effective because it involves a relatively simple metabolic pathway and exhibits higher yield and productivity than other biosynthetic pathways. Despite the successful attempts of 3-HP production from glycerol, the biological process suffers from problems arising from low activity and inactivation of the two enzymes. To apply the directed evolutionary approach to engineer the 3-HP production system, we constructed a synthetic selection device using a 3-HP-responsive transcription factor and developed a selection approach for screening 3-HP-producing microorganisms. The method was applied to an ALDH library, specifically aldehyde-binding site library of alpha-ketoglutaric semialdehyde dehydrogenase (KGSADH). Only two serial cultures resulted in enrichment of strains showing increased 3-HP production, and an isolated KGSADH variant enzyme exhibited a 2.79-fold higher catalytic efficiency toward its aldehyde substrate than the wild-type one. This approach will provide the simple and efficient tool to engineer the pathway enzymes in metabolic engineering.
Collapse
Affiliation(s)
- Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jina Yang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Sang Jin Choi
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-Ro, Yeongtong-Gu, Suwon 16499, Republic of Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Un Jong Choi
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-Ro, Yeongtong-Gu, Suwon 16499, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-Ro 80, Buk-Ku, Daegu 702-701, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-Gil 50, Eonyang-Eup, Ulju-Gun, Ulsan 449419, Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-Ro, Yeongtong-Gu, Suwon 16499, Republic of Korea.
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|