1
|
Hernández J, Mesa F, Riveros A, Fayad R, Nisperuza J. Extraction and Optical Analysis of the Extracellular Fluid from the Body Segments of Apis mellifera Bees. Integr Org Biol 2025; 7:obaf018. [PMID: 40438523 PMCID: PMC12117329 DOI: 10.1093/iob/obaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 06/01/2025] Open
Abstract
This study developed and optimized a methodology based on controlled centrifugation for the segmented extraction of extracellular fluid in Apis mellifera bees. Three critical variables were analyzed: relative centrifugal force, centrifugation time, and the number of individuals processed, ensuring the reproducibility and efficiency of the procedure. The results demonstrated significant differences in the volume of fluid recovered from different body segments, with the abdomen yielding the highest volumes, followed by the thorax and the head. UV-Vis spectroscopic characterization revealed distinct optical features for the samples, identifying specific absorbance peaks unique to each segment. Furthermore, biochemical analysis using Benedict's reagent confirmed the presence of reducing sugars, with head samples displaying the most intense coloration. These findings underscore the importance of segment-specific analysis to gain deeper insights into the physiology and metabolism of bees. The proposed methodology offers a novel and robust tool for physiological, metabolic, and ecotoxicological studies, facilitating the assessment of environmental and contaminant impacts on pollinator health.
Collapse
Affiliation(s)
- J Hernández
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - F Mesa
- NanoTech Group, Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria Los, Libertadores, Cra 16 No. 63a-68, Bogotá 111221, Colombia
| | - A Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - R Fayad
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - J Nisperuza
- NanoTech Group, Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria Los, Libertadores, Cra 16 No. 63a-68, Bogotá 111221, Colombia
| |
Collapse
|
2
|
Kim M, Jang H, Park JH. Balloon Flower Root-Derived Extracellular Vesicles: In Vitro Assessment of Anti-Inflammatory, Proliferative, and Antioxidant Effects for Chronic Wound Healing. Antioxidants (Basel) 2023; 12:1146. [PMID: 37371876 DOI: 10.3390/antiox12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) in wound lesions can lead to oxidative stress and failure of normal wound healing processes, eventually resulting in chronic skin wounds. A multitude of researchers have investigated various natural products with physiological activities, including antioxidant effects, for healing chronic skin wounds. Balloon flower root (BFR), which contains bioactive components such as platycodins, is known for its anti-inflammatory and antioxidant effects. In this study, we isolated BFR-derived extracellular vesicles (BFR-EVs) that possess anti-inflammatory, proliferative, and antioxidant activities via a combination of polyethylene glycol-based precipitation and ultracentrifugation. Our objective was to investigate the potential of BFR-EVs in treating chronic wounds caused by ROS. Despite efficient intracellular delivery, BFR-EVs showed no significant cytotoxicity. In addition, BFR-EVs inhibited the expression of pro-inflammatory cytokine genes in lipopolysaccharide-stimulated RAW 264.7 cells. Furthermore, water-soluble tetrazolium salt-8 assay showed that BFR-EVs had a proliferation-promoting effect on human dermal fibroblasts (HDFs). Scratch closure and transwell migration assays indicated that BFR-EVs could promote the migration of HDFs. When the antioxidant effect of BFR-EVs was evaluated through 2',7'-dichlorodihydrofluorescein diacetate staining and quantitative real-time polymerase chain reaction, the results revealed that BFR-EVs significantly suppressed ROS generation and oxidative stress induced by H2O2 and ultraviolet irradiation. Our findings suggest that BFR-EVs hold the potential as a natural candidate for healing chronic skin wounds.
Collapse
Affiliation(s)
- Manho Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Hyejun Jang
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| |
Collapse
|
3
|
Xu J, Zhang X, Song Y, Zheng B, Wen Z, Gong M, Meng L. Heat-Killed Lacticaseibacillus paracasei Ameliorated UVB-Induced Oxidative Damage and Photoaging and Its Underlying Mechanisms. Antioxidants (Basel) 2022; 11:1875. [PMID: 36290598 PMCID: PMC9598452 DOI: 10.3390/antiox11101875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet B (UVB) radiation is a major environmental causative factor of skin oxidative damage and photoaging. Lacticaseibacillus paracasei is a well-known probiotic strain that can regulate skin health. The present study investigated the effects of heat-killed Lacticaseibacillus paracasei (PL) on UVB linked oxidative damage and photoaging in skin cells (Normal human dermal fibroblast (NHDF) cells and B16F10 murine melanoma cells). Results demonstrated that: (1) PL prevented UVB-induced cytotoxicity relating to decreased DNA damage in NHDF and B16F10 cells; (2) PL alleviated UVB-induced oxidative damage through increasing GSH content, as well as antioxidant enzyme activities and mRNA levels (except MnSOD activity and mRNA levels as well as CAT mRNA level) relating to the activation of Sirt1/PGC-1α/Nrf2 signaling in NHDF cells; (3) PL attenuated UVB-induced photoaging was noticed with a decrease in the percentage of SA-β-gal positive cells in NHDF cells model. Moreover, PL attenuated UVB-induced photoaging through exerting an anti-wrinkling effect by enhancing the type I collagen level relating to the inhibition (JNK, p38)/(c-Fos, c-Jun) of signaling in NHDF cells, and exerting an anti-melanogenic effect by suppressing tyrosinase and TYRP-1 activity and/or expressions relating to the inhibition of PKA/CREB/MITF signaling in B16F10 cells. In conclusion, PL could ameliorate UVB-induced oxidative damage and photoaging. Therefore, PL may be a potential antioxidant and anti-photoaging active ingredient for the cosmetic industry.
Collapse
Affiliation(s)
| | | | - Yan Song
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhengshun Wen
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|
4
|
Filipczak N, Yalamarty SSK, Li X, Khan MM, Parveen F, Torchilin V. Lipid-Based Drug Delivery Systems in Regenerative Medicine. MATERIALS 2021; 14:ma14185371. [PMID: 34576594 PMCID: PMC8467523 DOI: 10.3390/ma14185371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
The most important goal of regenerative medicine is to repair, restore, and regenerate tissues and organs that have been damaged as a result of an injury, congenital defect or disease, as well as reversing the aging process of the body by utilizing its natural healing potential. Regenerative medicine utilizes products of cell therapy, as well as biomedical or tissue engineering, and is a huge field for development. In regenerative medicine, stem cells and growth factor are mainly used; thus, innovative drug delivery technologies are being studied for improved delivery. Drug delivery systems offer the protection of therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. Similarly, the delivery systems in combination with stem cells offer improvement of cell survival, differentiation, and engraftment. The present review summarizes the significance of biomaterials in tissue engineering and the importance of colloidal drug delivery systems in providing cells with a local environment that enables them to proliferate and differentiate efficiently, resulting in successful tissue regeneration.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Zhang C, Lu Y, Ai Y, Xu X, Zhu S, Zhang B, Tang M, Zhang L, He T. Glabridin Liposome Ameliorating UVB-Induced Erythema and Lethery Skin by Suppressing Inflammatory Cytokine Production. J Microbiol Biotechnol 2021; 31:630-636. [PMID: 33526759 PMCID: PMC9706034 DOI: 10.4014/jmb.2011.11006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Glabridin, a compound of the flavonoid, has shown outstanding skin-whitening and anti-aging properties, but its water insolubility limits its wide application. Therefore, glabridin liposome (GL) has been developed to improve its poor bioavailability, while there are few studies to evaluate its amelioration of UVB- induced photoaging. This study is performed to investigate the amelioration of GL against UVB- induced cutaneous photoaging. The prepared GL has a spheroidal morphology with an average diameter of 200 nm. The GL shows lower cytotoxicity than glabridin, but it has a more effective role in inhibition of melanin. Moreover, the application of GL can effectively relieve UV radiation induced erythema and leathery skin, associated with the down-regulated expression of inflammatory cytokines (TNF-α, IL-6 and IL-10). Taken together, these results demonstrate that GL has potentials as topical therapeutic agents against UVB radiation induced skin damage through inhibiting inflammation.
Collapse
Affiliation(s)
- Chijian Zhang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Yong Ai
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Xian Xu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Siyang Zhu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Bing Zhang
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Minghui Tang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Tinggang He
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| |
Collapse
|
6
|
Min MW, Kim CE, Chauhan S, Park HJ, Park CS, Yoo TH, Kang TJ. Identification of peptide inhibitors of matrix metalloproteinase 1 using an in-house assay system for the enzyme. Enzyme Microb Technol 2019; 127:65-69. [DOI: 10.1016/j.enzmictec.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/19/2019] [Indexed: 11/30/2022]
|
7
|
Ameliorative effects of snake (Deinagkistrodon acutus) oil and its main fatty acids against UVB-induced skin photodamage in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111538. [PMID: 31247385 DOI: 10.1016/j.jphotobiol.2019.111538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
The effects of topically administered snake (Deinagkistrodon acutus) oil and its main fatty acid components on skin photodamage were explored. Epidermal thickness, mice body weight, antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase), inflammatory cytokines (tumor necrosis factor alpha and interleukin-6), skin histology, collagen content, and metalloproteinase-1 indicators were analyzed. The results show that topical application of both snake oil and its main fatty acids recovered ultraviolet B (UVB) irradiation induced antioxidant enzymes depletion, prevented metalloproteinase-1. Snake oil and its main fatty acids suppressed dermal infiltration of inflammatory cells and reduced inflammatory cytokines levels. Notably, there was no significant difference in the antioxidant activity but a significant difference in the anti-inflammatory activity between fatty acids and snake oil under the same dose. Finally, snake oil and its main fatty acids inhibited UVB-induced histological damage such as epidermal thickening, collagen fiber and elastic fiber destruction. Our study demonstrated for the first time in KM mice that snake oil exhibited prominent photoprotection activity by protecting the activity of antioxidant enzymes and inhibiting inflammatory factors, as well as reducing the generation of MMP-1. What's more, the main fatty acids in snake oil play an important role in preventing photo-damage especially in protecting antioxidant enzyme activity.
Collapse
|
8
|
Polypeptides extracted from Eupolyphaga sinensis walker via enzymic digestion alleviate UV radiation-induced skin photoaging. Biomed Pharmacother 2019; 112:108636. [DOI: 10.1016/j.biopha.2019.108636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/20/2022] Open
|
9
|
|
10
|
Effect of thiazolidinedione phenylacetate derivatives on wound-healing activity. Arch Pharm Res 2018; 42:790-814. [PMID: 29948772 DOI: 10.1007/s12272-018-1041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/20/2018] [Indexed: 10/14/2022]
Abstract
The aim of this work was to evaluate the synthesis and structure-activity relationship of 4-((2,4-dioxothiazolidin-5-ylidene)methyl)phenyl 2-phenylacetate derivatives as potential wound-healing agents. The IC50 values of the lead compounds ranged from 0.01 to 0.05 µM. These compounds also increased the levels of extracellular prostaglandin E2 (PGE2) in A549 cells. Among the synthesized compounds, compounds 66, 67, 69, and 86 increased PGE2 levels 3- to 4-fold of those achieved with the negative control. Introduction of a halogen at the intermediate phenyl ring, compounds 66, 67, 69, and 86 resulted in higher IC50 values, which indicated lower cytotoxicity than that observed upon the introduction of other substituents at the same position. In particular, cells exposed to compound 69 showed significantly improved wound healing, and the wound closure rate achieved was approximately 3.2-fold higher than that of the control. Therefore, compound 69 can be used for tissue regeneration and treatment of diverse diseases caused by PGE2 deficiency. Overall, our findings suggested that compound 69 might be a novel candidate for skin wound therapy.
Collapse
|
11
|
Kong SZ, Li DD, Luo H, Li WJ, Huang YM, Li JC, Hu Z, Huang N, Guo MH, Chen Y, Li SD. Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin. Exp Gerontol 2017; 103:27-34. [PMID: 29275159 DOI: 10.1016/j.exger.2017.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Skin photoaging (SP) is a premature skin-aging damage after repeated exposure to ultraviolet (UV) radiation, mainly characterized by oxidative stress and inflammatory disequilibrium, which makes skin show the typical symptoms of photoaging such as coarse wrinkling, dryness, irregular pigmentation and laxity. Chitosan oligosaccharide (COS), a natural polysaccharide with good humectant property, is the depolymerized product of chitosan with various biological activities, among which the antioxidant and anti-inflammatory effects have been frequently reported in recent years. However, no existing invivo study indicates whether COS has direct protective effect on UV-induced SP. In the current research, we investigated the potential preventive effect of COS against UV-caused damage in hairless mouse dorsal skin. The data showed that COS, by topical application after each UV-radiation for 10weeks, effectively inhibited the undesirable changes on the skin induced by UV. To be specific, COS obviously alleviated the macroscopic and histopathological damages of mice skin, via mitigating the disrupted collagenous fibers, as well as improving the relative content of type I collagen and the amount of total collagen. Furthermore, COS effectively inhibited the levels of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6, and markedly improved the activities of antioxidant enzymes (SOD, GSH-Px, CAT), as well as the content of skin hydroxyproline and moisture. These findings demonstrated that this natural polysaccharide attenuated UV-induced SP, at least in part, by virtue of favorable regulation of antioxidant and anti-inflammatory status, which presumably worked in concert to maintain the morphology and level of dermal collagen.
Collapse
Affiliation(s)
- Song-Zhi Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Dong-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hui Luo
- Guangdong Medical University, Zhanjiang 524023, China
| | - Wen-Jie Li
- Affiliated hospital of Guangdong Medical University, Zhanjiang 524001, China
| | | | - Ji-Cheng Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Na Huang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min-Hui Guo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yao Chen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Si-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|