1
|
Singh A, Misser S, Allam M, Chan WY, Ismail A, Munhenga G, Oliver SV. The Effect of Larval Exposure to Heavy Metals on the Gut Microbiota Composition of Adult Anopheles arabiensis (Diptera: Culicidae). Trop Med Infect Dis 2024; 9:249. [PMID: 39453276 PMCID: PMC11510740 DOI: 10.3390/tropicalmed9100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Anopheles arabiensis is a highly adaptable member of the An. gambiae complex. Its flexible resting behaviour and diverse feeding habits make conventional vector control methods less effective in controlling this species. Another emerging challenge is its adaptation to breeding in polluted water, which impacts various life history traits relevant to epidemiology. The gut microbiota of mosquitoes play a crucial role in their life history, and the larval environment significantly influences the composition of this bacterial community. Consequently, adaptation to polluted breeding sites may alter the gut microbiota of adult mosquitoes. This study aimed to examine how larval exposure to metal pollution affects the gut microbial dynamics of An. arabiensis adults. Larvae of An. arabiensis were exposed to either cadmium chloride or copper nitrate, with larvae reared in untreated water serving as a control. Two laboratory strains (SENN: insecticide unselected, SENN-DDT: insecticide selected) and F1 larvae sourced from KwaZulu-Natal, South Africa, were exposed. The gut microbiota of the adults were sequenced using the Illumina Next Generation Sequencing platform and compared. Larval metal exposure affected alpha diversity, with a more marked difference in beta diversity. There was evidence of core microbiota shared between the untreated and metal-treated groups. Bacterial genera associated with metal tolerance were more prevalent in the metal-treated groups. Although larval metal exposure led to an increase in pesticide-degrading bacterial genera in the laboratory strains, this effect was not observed in the F1 population. In the F1 population, Plasmodium-protective bacterial genera were more abundant in the untreated group compared to the metal-treated group. This study therefore highlights the importance of considering the larval environment when searching for local bacterial symbionts for paratransgenesis interventions.
Collapse
Affiliation(s)
- Ashmika Singh
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shristi Misser
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa;
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
Zouagui R, Zouagui H, Aurag J, Ibrahimi A, Sbabou L. Functional analysis and comparative genomics of Rahnella perminowiae S11P1 and Variovorax sp. S12S4, two plant growth-promoting rhizobacteria isolated from Crocus sativus L. (saffron) rhizosphere. BMC Genomics 2024; 25:289. [PMID: 38500021 PMCID: PMC10946135 DOI: 10.1186/s12864-024-10088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.
Collapse
Affiliation(s)
- Rahma Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Jamal Aurag
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
3
|
Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A, Malik S, Slama P. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol 2023; 14:1229828. [PMID: 37555069 PMCID: PMC10405491 DOI: 10.3389/fmicb.2023.1229828] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as MerT and MerA of mer operon and czcCBA, ArsR, ArsA, ArsD, ArsB, and ArsC genes are responsible for metal detoxification in bacterial cell. This review gives insights about the potential of rhizospheric bacteria in HM removal from various polluted areas. In addition, it also gives deep insights about different mechanism of action expressed by microorganisms for HM detoxification. The dual-purpose use of biological agent as plant growth enhancement and remediation of HM contaminated site is the most significant future prospect of this article.
Collapse
Affiliation(s)
- Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Geeta Bhandari
- Department of Biosciences, Himalayan School of Bio Sciences, Swami Rama Himalayan University, Dehradun, India
| | | | - Deepa Nainwal
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Anju Rani
- Department of Life Sciences, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
- Department of Applied Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
4
|
Carolin C F, Senthil Kumar P, Mohanakrishna G, Hemavathy RV, Rangasamy G, M Aminabhavi T. Sustainable production of biosurfactants via valorisation of industrial wastes as alternate feedstocks. CHEMOSPHERE 2023; 312:137326. [PMID: 36410507 DOI: 10.1016/j.chemosphere.2022.137326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Globally, the rapid increase in the human population has given rise to a variety of industries, which have produced a variety of wastes. Due to their detrimental effects on both human and environmental health, pollutants from industry have taken centre stage among the various types of waste produced. The amount of waste produced has therefore increased the demand for effective waste management. In order to create valuable chemicals for sustainable waste management, trash must be viewed as valuable addition. One of the most environmentally beneficial and sustainable choices is to use garbage to make biosurfactants. The utilization of waste in the production of biosurfactant provides lower processing costs, higher availability of feedstock and environmental friendly product along with its characteristics. The current review focuses on the use of industrial wastes in the creation of sustainable biosurfactants and discusses how biosurfactants are categorized. Waste generation in the fruit industry, agro-based industries, as well as sugar-industry and dairy-based industries is documented. Each waste and wastewater are listed along with its benefits and drawbacks. This review places a strong emphasis on waste management, which has important implications for the bioeconomy. It also offers the most recent scientific literature on industrial waste, including information on the role of renewable feedstock for the production of biosurfactants, as well as the difficulties and unmet research needs in this area.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580031, India.
| | - R V Hemavathy
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580031, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| |
Collapse
|
5
|
Balu S, Bhunia S, Gachhui R, Mukherjee J. Polycyclic aromatic hydrocarbon sequestration by intertidal phototrophic biofilms cultivated in hydrophobic and hydrophilic biofilm-promoting culture vessels. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129318. [PMID: 35749894 DOI: 10.1016/j.jhazmat.2022.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Phototrophic biofilms collected from intertidal sediments of the world's largest tidal mangrove forest were cultured in two sets of a biofilm-promoting culture vessel having hydrophilic glass surface and hydrophobic polymethyl methacrylate surface wherein 16 priority polycyclic aromatic hydrocarbons (PAHs) were spiked. Biofilms from three locations of the forest were most active in sequestering 98-100% of the spiked pollutants. PAH challenge did not alter the biofilm phototrophic community composition; rather biofilm biomass production and synthesis of photosynthetic pigments and extracellular polymeric substances (EPS) were enhanced. Photosynthetic pigment and EPS synthesis were sensitive to vessel-surface property. The lowest mean residual amounts of PAHs in the liquid medium as well as inside the biofilm were recorded in the very biofilm cultivated in the hydrophobic flask where highest values of biofilm biomass, total chlorophyll, released polysaccharidic (RPS) carbohydrates, RPS uronic acids, capsular polysaccharidic (CPS) carbohydrates, CPS proteins, CPS uronic acids and EPS hydrophobicity were obtained. Ratios of released RPS proteins: polysaccharides increased during PAH sequestration whereas the ratios of CPS proteins: polysaccharides remained constant. Efficacious PAH removal by the overlying phototrophic biofilm will reduce the entry of these contaminants in the sediments underneath and this strategy could be a model for "monitored natural recovery".
Collapse
Affiliation(s)
- Saranya Balu
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Shantanu Bhunia
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Ratan Gachhui
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India.
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
6
|
Ramachandran G, Chackaravarthi G, Rajivgandhi GN, Quero F, Maruthupandy M, Alharbi NS, Kadaikunnan S, Khaled JM, Li WJ. Biosorption and adsorption isotherm of chromium (VI) ions in aqueous solution using soil bacteria Bacillus amyloliquefaciens. ENVIRONMENTAL RESEARCH 2022; 212:113310. [PMID: 35472466 DOI: 10.1016/j.envres.2022.113310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
This study looked at the development of effective biosorbents to recover the most toxic elements from industrial water. B. amyloliquefaciens was isolated from marine soils showing extreme resistance to Chromium (Cr(VI)) ions. During the 60 min of contact time, 79.90% Cr(VI) was adsorbed from the aqueous solution. The impact of important factors such as biomass concentration, pH of the medium, and initial metal ions concentration on biosorption rate was also examined. The desorption study indicated that 1 M HCl (91.24%) was superior to 0.5 M HCl (74.81%), 1 M NaOH (64.96%), and distilled water (3.66%). Based on the Langmuir model, the maximum adsorption capacity of the bio-absorbent was determined to be 48.44 mg/g. The absorption mechanism was identified as monolayer, and 1/n from the Freundlich model falls within 1, thus indicating favorable adsorption. Based on the findings of the present study, the soil bacterium B. amyloliquefaciens was found to be the best alternative and could be used to develop strategies for managing existing environmental pollution through biosorption.
Collapse
Affiliation(s)
- Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | | | - Govindan Nadar Rajivgandhi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago, 8370456, Chile
| | - Muthuchamy Maruthupandy
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago, 8370456, Chile; Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu Busan, 49315, South Korea
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
7
|
Inès M, Mekki S, Ghribi D. Treatment of heavy metals contaminated water: use of B. mojavensis BI2 derived lipopeptide and palm waste flour. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1083-1094. [PMID: 36358047 DOI: 10.2166/wst.2022.247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the present work, we demonstrated the potential use of newly identified lipopeptides produced by B. mojavensis BI2 along with palm waste flour for the bioremediation of heavy metals contaminated water. The enhancement of radish seeds germination was used to evaluate the treatment efficiency. Firstly, better enhancement in the order of 3.8, 2.52, 1.5 and 5 were recorded respectively for 200 mg/L copper, lead, cobalt and mercury with respective lipopeptide quantities of the order of 200, 300, 200 and 400 mg/L. When studying the sequestration of increasing heavy metals concentration, BI2 lipopeptide was effective. Secondly, a mixed bioprocess was evaluated using palm waste flour as heavy metals sequester and BI2 lipopeptides as improver. Optimal biosorption of lead, copper, cobalt and mercury were obtained with 10 g/l waste, 1,000 mg/l metal and 200 mg/l BI2 lipopeptide for 1 hour. The addition of 200 mg/l BI2 lipopeptide improves the efficiency of the treatment significantly.
Collapse
Affiliation(s)
- Mnif Inès
- Laboratoire de Biochimie et Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisie E-mail: ; Laboratoire d'Amélioration des Plantes et de Valorisationdes Agro-ressources, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisie
| | - Salwa Mekki
- Laboratoire d'Amélioration des Plantes et de Valorisationdes Agro-ressources, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisie; Faculté des Sciences de Gabes, Université de Gabes, Gabes, Tunisie
| | - Dhouha Ghribi
- Laboratoire d'Amélioration des Plantes et de Valorisationdes Agro-ressources, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisie; Bioréacteur couplé à un ultra filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
8
|
Akintayo SO, Treinen C, Vahidinasab M, Pfannstiel J, Bertsche U, Fadahunsi I, Oellig C, Granvogl M, Henkel M, Lilge L, Hausmann R. Exploration of surfactin production by newly isolated Bacillus and Lysinibacillus strains from food related sources. Lett Appl Microbiol 2022; 75:378-387. [PMID: 35486075 DOI: 10.1111/lam.13731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
As a lipopeptide (LP), surfactin exhibits properties, such as emulsifying and dispersing ability, which are useful in food industry. Discovery of new LP-producing strains from food sources is an important step towards possible application of surfactin in foods. A total of 211 spore-forming, Gram-positive, and catalase-positive bacterial strains were isolated from fermented African locust beans (iru) and Palm Oil Mill Effluents in a screening process and examined for their ability to produce surfactin. This was achieved by a combination of methods, which included microbiological and molecular classification of strains, along with chemical analysis of surfactin production. Altogether, 29 isolates, positive for oil spreading and emulsification assays, were further identified with 16S rDNA analysis. The strains belonged to nine species including less commonly reported strains of Lysinibacillus, Bacillus flexus, B. tequilensis, and B. aryabhattai. The surfactin production was quantitatively and qualitatively analyzed by high-performance thin-layer chromatography (HPTLC) and liquid chromatography-mass spectrometry (LC-MS). Confirmation of surfactin by MS was achieved in all the 29 strains. Highest surfactin production capability was found in B. subtilis IRB2-A1 with a titer of 1444.1 mg L-1 .
Collapse
Affiliation(s)
- Stephen Olusanmi Akintayo
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.,Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Chantal Treinen
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany
| | - Ute Bertsche
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany
| | | | - Claudia Oellig
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Chen W, Li W, Wang T, Wen Y, Shi W, Zhang W, Guo B, Yang Y. Isolation of functional bacterial strains from chromium-contaminated site and bioremediation potentials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114557. [PMID: 35066197 DOI: 10.1016/j.jenvman.2022.114557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/26/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In this study, two Cr(VI)-reducing functional bacterial strains (TJ-1 and TJ-5) were successfully isolated and screened from the chromium-contaminated soil from a real site. The 16S rRNA gene sequences were analysed, which showed high similarity (>99%) with Stenotrophomonas maltophilia (TJ-1) and Brucella intermedius (TJ-5) species. The optimum growth for the two bacteria to reduce Cr(VI) were achieved at pH 7.0 and initial inoculation amount of 5%. The two strains were applied to real contaminated soil samples and showed better Cr removal when external carbon sources were added. Using sawdust as a solid-phase carbon source supplement, both TJ-1 and TJ-5 showed higher remediation efficiency (99.77% and 93.86%) than using glucose as the carbon source (68.56% and 70.87%). Results of the stability of soil Cr(VI) bioremediation revealed that the water-soluble Cr(VI) content of bioremediated sample remained unchanged, indicating that Cr(VI) is not easily released after death of the strains. Solid-phase carbon source supplements may help the cells to attach and grow into biofilms, creating a better growth condition which improved the remediation efficiency. Column experiments showed that the total remediation efficiencies by the two strains were 34.23% and 20.63%, respectively, within a short time period (76 h). Therefore, the two strains showed great bioremediation potentials for chromium-contaminated sites and can be used in future application of in-situ bioremediation.
Collapse
Affiliation(s)
- Wenfang Chen
- The First Institute of Geo-environment Survey of Henan, Zhengzhou, 450045, PR China
| | - Wenbo Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Changchun, 130021, PR China
| | - Tiankuo Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Changchun, 130021, PR China
| | - Yujuan Wen
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Weiwei Shi
- The First Institute of Geo-environment Survey of Henan, Zhengzhou, 450045, PR China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Changchun, 130021, PR China
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Yuesuo Yang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Changchun, 130021, PR China; Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China.
| |
Collapse
|
10
|
Ao M, Chen X, Deng T, Sun S, Tang Y, Morel JL, Qiu R, Wang S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127233. [PMID: 34592592 DOI: 10.1016/j.jhazmat.2021.127233] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 05/27/2023]
Abstract
Chromium (Cr) is a toxic heavy metal that is heavily discharged into the soil environment due to its widespread use and mining. High Cr levels may pose toxic hazards to plants, animals and humans, and thus have attracted global attention. Recently, much progress has been made in elucidating the mechanisms of Cr uptake, transport and accumulation in soil-plant systems, aiming to reduce the toxicity and ecological risk of Cr in soil; however, these topics have not been critically reviewed and summarised to date. Accordingly, based on available data-especially from the last five years (2017-2021)-this review traces a plausible link among Cr sources, levels, chemical forms, and phytoavailability in soil; Cr accumulation and translocation in plants; and Cr phytotoxicity and detoxification in plants. Additionally, given the toxicity and hazard posed by Cr(VI) in soils and the application of reductant materials to reduce Cr(VI) to Cr(III) for the remediation of Cr(VI)-contaminated soils, the reduction and immobilisation mechanisms by organic and inorganic reductants are summarised. Finally, some priority research challenges concerning the biogeochemical behaviour of Cr in soil-plant systems are highlighted, as well as the environmental impacts resulting from the application of reductive materials and potential research prospects.
Collapse
Affiliation(s)
- Ming Ao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoting Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tenghaobo Deng
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shengsheng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518 Vandoeuvre-lès-Nancy, France
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Satapute P, Jogaiah S. A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. CHEMOSPHERE 2022; 286:131694. [PMID: 34346344 DOI: 10.1016/j.chemosphere.2021.131694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Surfactin is a bacterial lipopeptide and an influential biosurfactant mainly known for excellent surfactant ability. The amphiphilic nature of surfactin helps it to sustain under hydrophobic and hydrophilic conditions. In this investigation, a bacterium strain (BTKU3) that produces biosurfactant were isolated from oil-contaminated soil. Based on the blue agar plate (Bap) assay, the BTKU3 strain was found to be promising for biosurfactant production. This strain was later identified as a Lysinibacillus sp. by 16S rRNA sequencing. The characteristics of extracted bacterial surfactin were evidenced by FTIR with the presence of amine, C-H, CO, CC, esters, thiocarbonyl and asymmetric aliphatic C-H stretch molecular structural groups. Further, the extracted bacterial biosurfactant material was subjected to Liquid Chromatography-Mass Spectroscopy (LCMS), and it was identified and confirmed as surfactin with an elution time of 3.1 min and m/z value of 1034. The emulsification and oil displacement tests further proved the surfactin ability with 83% of coconut oil emulsion index and 80 % oil displacement ability with diesel, respectively. Lysinibacillus sp. BTKU3 strain also proved its efficacy in the degradation of difenoconazole by utilizing a capacity of 9.1 μg ml-1. Thus, it is inferred that the Lysinibacillus sp. BTKU3 strain plays a significant role in the production of surfactin, which positively acts as an antimicrobial agent and reduces contaminants in polluted sites.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
12
|
Paganin P, Alisi C, Dore E, Fancello D, Marras PA, Medas D, Montereali MR, Naitza S, Rigonat N, Sprocati AR, Tasso F, Vacca S, De Giudici G. Microbial Diversity of Bacteria Involved in Biomineralization Processes in Mine-Impacted Freshwaters. Front Microbiol 2021; 12:778199. [PMID: 34880845 PMCID: PMC8645857 DOI: 10.3389/fmicb.2021.778199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
In order to increase the knowledge about geo-bio interactions in extreme metal-polluted mine waters, we combined microbiological, mineralogical, and geochemical analyses to study the indigenous sulfate-reducing bacteria (SRB) involved in the heavy metal (HM) biomineralization processes occurring in Iglesiente and Arburese districts (SW Sardinia, Italy). Anaerobic cultures from sediments of two different mining-affected streams of this regional framework were enriched and analyzed by 16S rRNA next-generation sequencing (NGS) technique, showing sequences closely related to SRB classified in taxa typical of environments with high concentrations of metals (Desulfovibrionaceae, Desulfosporosinus). Nevertheless, the most abundant genera found in our samples did not belong to the traditional SRB groups (i.e., Rahnella, Acinetobacter). The bio-precipitation process mediated by these selected cultures was assessed by anaerobic batch tests performed with polluted river water showing a dramatic (more than 97%) Zn decrease. Scanning electron microscopy (SEM) analysis revealed the occurrence of Zn sulfide with tubular morphology, suggesting a bacteria-mediated bio-precipitation. The inocula represent two distinct communities of microorganisms, each adapted to peculiar environmental conditions. However, both the communities were able to use pollutants in their metabolism and tolerating HMs by detoxification mechanisms. The Zn precipitation mediated by the different enriched cultures suggests that SRB inocula selected in this study have great potentialities for the development of biotechnological techniques to reduce contaminant dispersion and for metal recovery.
Collapse
Affiliation(s)
- Patrizia Paganin
- Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Chiara Alisi
- Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Elisabetta Dore
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Dario Fancello
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Pier Andrea Marras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Daniela Medas
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Maria Rita Montereali
- Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Stefano Naitza
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Nicola Rigonat
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Anna Rosa Sprocati
- Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Flavia Tasso
- Territorial and Production Systems Sustainability Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Salvatore Vacca
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| |
Collapse
|
13
|
Elakkiya VT, Sureshkumar P, Yoha KS, Subhasri D. Studies on antibacterial and chemotaxis properties of Pseudomonas aeruginosa TEN01 biomass-derived sustainable biosurfactant. CHEMOSPHERE 2021; 285:131381. [PMID: 34329147 DOI: 10.1016/j.chemosphere.2021.131381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Biosurfactant producing bacterial strains were isolated from oil-contaminated sites at Chennai Petroleum Corporation Limited, Chennai, the potential strain was selected and identified as Pseudomonas aeruginosa TEN01 by 16 S rRNA sequencing technique. Biosurfactant was produced from cassava solid waste from the sago industry. Further, it was extracted by solvent extraction and partially purified by column chromatography. The partially purified biosurfactant was qualitatively analyzed by Thin Layer Chromatography (TLC), quantitatively analyzed by anthrone assay and characterized by Fourier Transform Infra-Red Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). Rf value and chemical groups confirm the presence of glycolipid in the partially purified biosurfactant. GC-MS results confirmed the presence of long-chain fatty acids and carbohydrate which is found to be mainly present in glycolipids. Biosurfactants are surface-active molecules which have been found to be the best alternative to chemical-based surfactants. The present study focuses on modifying the cell surface using a biosurfactant from P. aeruginosa TEN01 to enhance membrane permeabilization. Antibacterial and chemotaxis properties of biosurfactant from P. aeruginosa TEN01 were found to be better towards Xenorhabdus poinarii, a bio-pesticide producing microbial strain, X. poinarii exhibited 81.7% adhesion to hydrocarbons upon biosurfactant treatment as analyzed by Bacterial Adhesion to Hydrocarbon (BATH) assay. The alteration in the membrane permeability was tested in X. poinarii using biosurfactant and chemical surfactants viz. Sodium dodecyl sulfate (SDS) and toluene by estimating the amount of intracellular protein released. High protein recovery (51.55%) was achieved with a biosurfactant. Cell viability in the biosurfactant-treated cells was also high (93.98%) in comparison to cells treated with chemical surfactants. Increased recovery of intracellular protein along with high cell viability makes the biosurfactant a potential candidate for application in numerous environmental fields.
Collapse
Affiliation(s)
- V Tamil Elakkiya
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| | - P Sureshkumar
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| | - K S Yoha
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| | - D Subhasri
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| |
Collapse
|
14
|
Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126253. [PMID: 34119972 DOI: 10.1016/j.jhazmat.2021.126253] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Heavy metal toxicity has become a pressing ecological problem that affects the ecosystems through bioaccumulation, representing a serious public health hazard. Many conventional strategies have been developed and applied to decontaminate and restore metal-contaminated areas. However, these conventional approaches are not very suitable and environmentally safe for heavy metal remediation because of their high operational costs, high energy requirements, post-waste disposal problems, and secondary pollutant generation. Thus, biosurfactant-based bioremediation of heavy metals is a sustainable and promising approach because of its biodegradation capability, economic effectiveness, and ecofriendly nature. Pseudomonas sp., Bacillus sp., Citrobacter freundii, and Candida tropicalis have been isolated as potential sources of biosurfactants and produce compounds such as surfactin, rhamnolipids, and sophorolipids. Owing to the severity of heavy metal pollution in certain parts of the environment, biosurfactants have garnered great interest and attention as an emerging multi-functional technology of the new century for successful removal of heavy metal pollutants. The present study describes the role of biosurfactants in the bioremediation of heavy metals from contaminated environments. Moreover, the interaction mechanism underlying biosurfactant-metal complexation and metal remediation are discussed. Based on the review of the literature, further research is warranted to elucidate the mechanistic roles and explore the structural characterization and gene regulation of biosurfactants to improve their productivity and expand their applicability in bioremediation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
15
|
Huang J, Liu C, Price GW, Li Y, Wang Y. Identification of a novel heavy metal resistant Ralstonia strain and its growth response to cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125942. [PMID: 34492869 DOI: 10.1016/j.jhazmat.2021.125942] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
A novel Ralstonia Bcul-1 strain was isolated from soil samples that was closest to Ralstonia pickettii. Broad-spectrum resistance was identified to a group of heavy metal ions and tolerance to concentrations of Cd2+ up to 400 mg L-1. Low concentrations of heavy metal ions did not have distinctive impact on heavy metal resistance genes and appeared to induce greater expression. Under exposure to Cd2+, cell wall components were significantly enhanced, and some proteins were also simultaneously expressed allowing the bacteria to adapt to the high Cd2+ living environment. The maximum removal rate of Cd2+ by the Ralstonia Bcul-1 strain was 78.97% in the culture medium supplemented with 100 mg L-1 Cd2+. Ralstonia Bcul-1 was able to survive and grow in a low nutrient and cadmium contaminated (0.42 mg kg-1) vegetable soil, and the cadmium removal rate was up to 65.76% in 9th growth. Ralstonia Bcul-1 mixed with biochar could maintain sustainable growth of this strain in the soil up to 75 d and the adsorption efficiency of cadmium increased by 16.23-40.80% as compared to biochar application alone. Results from this work suggests that Ralstonia Bcul-1 is an ideal candidate for bioremediation of nutrient deficient heavy metal contaminated soil.
Collapse
Affiliation(s)
- Jiaqing Huang
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Cenwei Liu
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - G W Price
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Yanchun Li
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Yixiang Wang
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China.
| |
Collapse
|
16
|
Tailoring Next Generation Plant Growth Promoting Microorganisms as Versatile Tools beyond Soil Desalinization: A Road Map towards Field Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13084422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been the target of intensive research studies toward their efficient use in the field as biofertilizers, biocontrol, and bioremediation agents among numerous other applications. Recent trends in the field of PGPB research led to the development of versatile multifaceted PGPB that can be used in different field conditions such as biocontrol of plant pathogens in metal contaminated soils. Unfortunately, all these research efforts lead to the development of PGPB that failed to perform in salty environments. Therefore, it is urgently needed to address this drawback of these PGPB toward their efficient performance in salinity context. In this paper we provide a review of state-of-the-art research in the field of PGPB and propose a road map for the development of next generation versatile and multifaceted PGPB that can perform in salinity. Beyond soil desalinization, our study paves the way towards the development of PGPB able to provide services in diverse salty environments such as heavy metal contaminated, or pathogen threatened. Smart development of salinity adapted next generation biofertilizers will inevitably allow for mitigation and alleviation of biotic and abiotic threats to plant productivity in salty environments.
Collapse
|
17
|
Singh P, Itankar N, Patil Y. Biomanagement of hexavalent chromium: Current trends and promising perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111547. [PMID: 33190974 DOI: 10.1016/j.jenvman.2020.111547] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Chromium (Cr) is most widely used heavy metal with vast applications in industrial sectors such as metallurgy, automobile, leather, electroplating, etc. Subsequently, these industries discharge large volumes of toxic Cr containing industrial wastewaters without proper treatment/management into the environment, causing severe damage to human health and ecology. This review gives some novel insights on the existing, successful and promising bio-based approaches for Cr remediation. In lieu of the multiple limitations of the physical and chemical methods for remediation, various biological means have been deciphered, wherein dead and live biomass have shown immense capabilities of removing/reducing and/or remediating Cr from polluted environmental niches. Adsorption of Cr by various agro-based waste and reduction/precipitation by different microbial groups have shown promising results in chromium removal/recovery. Various microbial based agents and aquatic plants like duckweeds are emerging as efficient adsorbents of metals and their role in chromium bioremediation is an effective green technology that needs to be harnessed effectively. The role of iron and sulphur reducing bacteria have shown potential for enhanced Cr remediation. Biosurfactants have revealed immense scope as enhancers of microbial metal bioremediation and have been reported to have potential for use in chromium recovery as well. The authors also explore the combined use of biochar and biosurfactants as a potential strategy for chromium bioremediation for the development of technology worth adopting. Cr is non-renewable and finite resource, therefore its safe removal/recovery from wastes is of major significance for achieving social, economic and environmental sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Nilisha Itankar
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Yogesh Patil
- Symbiosis Centre for Research and Innovation, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
18
|
Selvam K, Senthilkumar B, Selvankumar T. Optimization of low-cost biosurfactant produced by Bacillus subtilis SASCBT01 and their environmental remediation potential. Lett Appl Microbiol 2020; 72:74-81. [PMID: 32970874 DOI: 10.1111/lam.13394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/01/2022]
Abstract
The present research aims to enhance the biosurfactant (BS) production using agricultural by-products as a low-cost substrate with the statistical approach. BS production from Bacillus subtilis SASCBT01 was carried out with four different variables such as pH, incubation time, cassava peel waste (CPW) and palmira sprout (PS). The model expected the highest emulsification activity of 65 ± 1·2% after 96-h incubation with 3·0 g l-1 of CPW and PS at pH 7·0. The SASCBT01 strain-based BS was successful at retrieving up to 18% and the highest Pb removal rates were found at 65%. These BS have considered high quality in bioremediation applications.
Collapse
Affiliation(s)
- K Selvam
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, India
| | - B Senthilkumar
- Department of Medical Microbiology, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - T Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, India
| |
Collapse
|
19
|
Domingues VS, de Souza Monteiro A, Júlio ADL, Queiroz ALL, Dos Santos VL. Diversity of Metal-Resistant and Tensoactive-Producing Culturable Heterotrophic Bacteria Isolated from a Copper Mine in Brazilian Amazonia. Sci Rep 2020; 10:6171. [PMID: 32277075 PMCID: PMC7148335 DOI: 10.1038/s41598-020-62780-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial extracellular polymeric substances (EPSs) present diverse properties of biotechnological interest, such as surface modification, metal adsorption and hydrophobic substances solubilization through surface tension reduction. Thus, there is a growing demand for new producing strains and structurally variable biomolecules with different properties. One approach for scanning this biodiversity consists of exploring environments under selective pressures. The aim of this study was to evaluate the composition of culturable heterotrophic bacterial communities from five different sites from a copper mine in the Amazon biome by an enrichment technique to obtain metal resistant bacteria (lead, arsenic, cadmium, copper and zinc) capable of producing EPSs. The bacterial densities at the sites varied from 2.42 × 103 to 1.34 × 108 NMP mL-1 and the 77 bacterial isolates obtained were classified in four divisions, β-Proteobacteria (16.88%), γ-Proteobacteria (7.29%), Firmicutes (61%) and Actinobacteria (12.98%). Bacillus, Alcaligenes, and Lysinibacillus were the most dominant among the 16 observed genera, but the relative frequency of each varied according to the sample and the metal used in the enrichment culture. 58% of the bacterial strains (45) could produce EPSs. From these, 33 strains showed emulsifying activity (E24), and 9 of them reached values higher than 49%. Only Actinomyces viscosus E3.Pb5 and Bacillus subtilis group E3.As2 reduced the medium surface tension to values lower than 35 mN m-1. It was possible to confirm the high presence of bacteria capable of producing EPSs with tensoactive properties in Amazon copper mines and the evolutionary pressure exerted by the heavy metals during enrichment. These molecules can be tested as an alternative for use in processes that involve the removal of metals, such as the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Vitor Sousa Domingues
- Laboratory of Applied Microbiology, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais. Address: Avenida Presidente Antônio Carlos, 6627 - Pampulha/ICB, Bloco F4, sala 159, C.P. 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Andrea de Souza Monteiro
- Laboratory of Applied Microbiology, Universidade CEUMA, UNICEUMA, Address: Rua Josué Moentello, Jardim Renascença, São Luís, MA, CEP 65075120, Brazil
| | - Aline Daniela Lopes Júlio
- Laboratory of Applied Microbiology, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais. Address: Avenida Presidente Antônio Carlos, 6627 - Pampulha/ICB, Bloco F4, sala 159, C.P. 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Luiza Lemos Queiroz
- Laboratory of Applied Microbiology, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais. Address: Avenida Presidente Antônio Carlos, 6627 - Pampulha/ICB, Bloco F4, sala 159, C.P. 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Vera Lúcia Dos Santos
- Laboratory of Applied Microbiology, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais. Address: Avenida Presidente Antônio Carlos, 6627 - Pampulha/ICB, Bloco F4, sala 159, C.P. 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
20
|
Green Synthesized Silver Nanoparticles and Their Impact on the Antioxidant Response and Histology of Indian Major Carp Labeo rohita, with Combined Response Surface Methodology Analysis. J CLUST SCI 2018. [DOI: 10.1007/s10876-017-1328-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|