1
|
Li J, Li X, Tian J, Xu L, Chen Y, Jiang S, Zhang G, Lu J. Effects of supplementation with vitamin D 3 on growth performance, lipid metabolism and cecal microbiota in broiler chickens. Front Vet Sci 2025; 12:1542637. [PMID: 39981311 PMCID: PMC11839666 DOI: 10.3389/fvets.2025.1542637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Lower intramuscular fat (IMF) and excessive abdominal fat reduce carcass quality in broilers. The study aimed to investigate the effects of dietary VD3 on growth performance, lipid metabolism and cecal microbiota in broilers over an 84-d feeding experiment. One-day-old male Luhua broilers (210) were randomly assigned to control (basal diet) and VD group (basal diet supplemented with 3,750 IU/kg VD3). Samples were collected after a 12-h fasted feeding on days 28, 56, and 84. Supplementary VD3 significantly enhanced average daily gain (ADG) in broilers aged 57-84 d and 1-84 d, and increased leg muscle rate and fat content in breast and leg muscles and reduced abdominal fat rate of broilers at 84 d. VD3 increased TG and glycogen content in the liver of 28- and 84-d-old broilers, serum TG and VLDL-C content at 56 and 84 d, and TC, HDL-C and LDL-C at 84 d. VD3 increased mRNA expressions of genes related to de novo lipogenesis (DNL) (mTOR, SREBP-1c, FAS and ACC), lipid oxidation (AMPK, PPARα, CPT-1α and ACO) and lipid transport (ApoB and MTTP), and FAS, ACC and CPT1 enzyme activities in the liver. However, mRNA levels of genes involved in DNL and cellular lipid uptake (LPL and FATP1) and LPL activity were decreased in abdominal adipose tissue, and that of genes involved in lipid oxidation and lipolysis (HSL and ATGL) was increased by VD3. LPL and FATP1 expression in breast and leg muscles was increased by VD3. Moreover, VD3 increased the abundance of cecum Bacteroides at 28 and 84 d, Rikenellaceae_RC9_gut_group and Faecalibacterium at 56 and 84 d, and Lachnoclostridium at 84 d. These bacteria were correlated with increased DNL, lipid oxidation and lipid transport in liver, and cellular lipid uptake in muscle, as well as decreased DNL and cellular lipid uptake, and increased lipid oxidation and lipolysis in abdominal adipose tissue. Altogether, supplementary VD3 in basal diet improved growth performance, increased IMF, and reduced abdominal fat rate, which is significant for enhancing feed utilization and improving the carcass quality of broilers. The regulation of VD3 on lipid metabolism could was associated with variation in cecal microbiota composition.
Collapse
Affiliation(s)
- Jiawei Li
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Ximei Li
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiamin Tian
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Linna Xu
- Gansu Provincial Animal Husbandry Technology Popularization Station, Lanzhou, China
| | - Yan Chen
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jianxiong Lu
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
2
|
Sun Y, Liu J, Pi X, Jiang S, Cheng J, Guo M. Comparison of lipidome profiles in human milk from Chinese Han and Korean ethnic groups based on high-throughput lipidomic techniques. J Dairy Sci 2024; 107:4205-4215. [PMID: 38428489 DOI: 10.3168/jds.2023-23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM. Twenty-eight differentially expressed lipids (DEL) were screened between the 2 milk groups; among these, 6 triacylglycerols (TG), 13 diacylglycerols (DG), 7 free fatty acids (FFA), and 1 monoglyceride (MG) were upregulated in KHM. Carnitine (CAR) was upregulated in HHM. Most DEL showed a single peak distribution in both groups. The correlations, related pathways and diseases of these DEL were further analyzed. The results demonstrated that DG, MG, and FFA showed highly positive correlations with each other (r > 0.8). The most enriched Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.jp/kegg/) and Human Metabolome Database (http://www.hmdb.ca) pathways were inositol phosphate metabolism, and α-linolenic acid and linolenic acid metabolism, respectively. Major depressive disorder-related FFA (20:5) and FFA (22:6) were more abundant in KHM, whereas HHM showed more obesity-related CAR. These data potentially provide lipidome information regarding human milk from different ethnicities in China.
Collapse
Affiliation(s)
- Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiafei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | | | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
3
|
Nofal AE, AboShabaan HS, Fadda WA, Ereba RE, Elsharkawy SM, Hathout HM. L-carnitine and Ginkgo biloba Supplementation In Vivo Ameliorates HCD-Induced Steatohepatitis and Dyslipidemia by Regulating Hepatic Metabolism. Cells 2024; 13:732. [PMID: 38727268 PMCID: PMC11083725 DOI: 10.3390/cells13090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Treatment strategies for steatohepatitis are of special interest given the high prevalence of obesity and fatty liver disease worldwide. This study aimed to investigate the potential therapeutic mechanism of L-carnitine (LC) and Ginkgo biloba leaf extract (GB) supplementation in ameliorating the adverse effects of hyperlipidemia and hepatosteatosis induced by a high-cholesterol diet (HCD) in an animal model. The study involved 50 rats divided into five groups, including a control group, a group receiving only an HCD, and three groups receiving an HCD along with either LC (300 mg LC/kg bw), GB (100 mg GB/kg bw), or both. After eight weeks, various parameters related to lipid and glucose metabolism, antioxidant capacity, histopathology, immune reactivity, and liver ultrastructure were measured. LC + GB supplementation reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, glucose, insulin, HOMA-IR, alanine transaminase, and aspartate transaminase levels and increased high-density lipoprotein cholesterol levels compared with those in the HCD group. Additionally, treatment with both supplements improved antioxidant ability and reduced lipid peroxidation. The histological examination confirmed that the combination therapy reduced liver steatosis and fibrosis while also improving the appearance of cell organelles in the ultrastructural hepatocytes. Finally, the immunohistochemical analysis indicated that cotreatment with LC + GB upregulated the immune expression of GLP-1 and β-Cat in liver sections that were similar to those of the control animals. Mono-treatment with LC or GB alone substantially but not completely protected the liver tissue, while the combined use of LC and GB may be more effective in treating liver damage caused by high cholesterol than either supplement alone by regulating hepatic oxidative stress and the protein expression of GLP-1 and β-Cat.
Collapse
Affiliation(s)
- Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hind S. AboShabaan
- Clinical Pathology Department, National Liver Institute Hospital, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Walaa A. Fadda
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Rafik E. Ereba
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cario 11511, Egypt;
| | | | - Heba M. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Liu X, Fan W, Zhang X, Zhan S, Zhong T, Guo J, Wang Y, Cao J, Li L, Zhang H, Wang L. Maternal L-carnitine supplementation promotes brown adipose tissue thermogenesis of newborn goats after cold exposure. FASEB J 2022; 36:e22461. [PMID: 35838582 DOI: 10.1096/fj.202200637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Brown adipose tissue (BAT) is an important component of energy expenditure and necessary to maintain body temperature for newborn mammals. In the previous study, we found that L-carnitine was enriched in BAT and promoted BAT adipogenesis and thermogenesis in goat brown adipocytes. However, whether dietary L-carnitine regulates BAT heat production and energy expenditure in lambs remains unclear. In this study, maternal L-carnitine supplementation elevated the rectal temperature, as well as the expression of UCP1 and mitochondrial DNA content to promote BAT thermogenesis in newborn goats. Moreover, maternal L-carnitine supplementation increased the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and lactate in plasma, as well as the content of lipid droplet and glycogen in BAT of newborn goats. Lipidomic analysis showed that maternal L-carnitine supplementation remodeled the lipid composition of BAT in newborn goats. L-carnitine significantly increased the levels of TG and diglyceride (DG) and decreased the levels of glycerophospholipids and sphingolipids in BAT. Further studies showed that L-carnitine promoted TG and glycogen deposition in brown adipocytes through AMPKα. Our results indicate that maternal L-carnitine supplementation promotes BAT development and thermogenesis in newborn goats and provides new evidence for newborn goats to maintain body temperature in response to cold exposure.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Wenli Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xujia Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
5
|
Arefhosseini S, Tutunchi H, Nomi-Golzar S, Mahboob S, Pouretedal Z, Ebrahimi-Mameghani M. The effect of hydroxy citric acid supplementation with calorie-restricted diet on metabolic, atherogenic and inflammatory biomarkers in women with non-alcoholic fatty liver disease: a randomized controlled clinical trial. Food Funct 2022; 13:5124-5134. [PMID: 35416190 DOI: 10.1039/d1fo03685h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of the present study was to examine the effects of hydroxy citric acid (HCA) extracts from Garcinia cambogia on metabolic, atherogenic and inflammatory biomarkers in obese women with non-alcoholic fatty liver disease (NAFLD). The present clinical trial was carried out on 40 overweight/obese women with NAFLD. The patients were randomly allocated into either the "HCA group" (receiving calorie-restricted diet (-700 kcal d-1) accompanied by HCA tablets) and the "control group" (receiving only calorie-restricted diet) for eight weeks. Weight, height, body mass index (BMI), and waist circumference (WC) were measured. Fasting blood sugar (FBS), lipid profile, liver enzymes, as well as inflammatory biomarkers were determined at baseline and after the intervention. Dietary intake was assessed at baseline and at the end of the trial and food intake data were analyzed by the Nutritionist IV software. Results showed a decrease in energy and macronutrient intake in both groups (p < 0.05). Weight, BMI, WC, and hip circumference as well as FBS, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) decreased and high-density lipoprotein cholesterol (HDL-C) increased significantly in the HCA group (p < 0.05). There were also significant reductions in WC, FBS, TG, total cholesterol, LDL-C in the control group while inter-group changes in FBS, TG, LDL-C and HDL-C were statistically significant. Although atherogenic indices reduced significantly in both groups, inter-group comparison revealed that the HCA group showed greater decrease in the TG/HDL-C ratio than the control group (p = 0.004). Other atherogenic indices including TC/HDL-C and non-HDL-C/HDL-C ratio showed greater reduction in the control versus HCA group (p < 0.01). Some inflammatory factors were reduced in the HCA group; however, no significant within- or between-group differences were revealed post-intervention. Our results indicated that HCA supplementation plus calorie-restricted diet could improve some metabolic factors without any significant effect on inflammation in patients with NAFLD.
Collapse
Affiliation(s)
- Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Nomi-Golzar
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soltanali Mahboob
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohre Pouretedal
- Standard Research Institute, Food Technology and Agricultural Products Research Center, Microbiology and Biology Group, Tehran, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Nuciferine reduced fat deposition by controlling triglyceride and cholesterol concentration in broiler chickens. Poult Sci 2020; 99:7101-7108. [PMID: 33248627 PMCID: PMC7705000 DOI: 10.1016/j.psj.2020.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to investigate whether dietary nuciferine affects lipid metabolism in broiler chickens. Four treatment groups were made from 120 1-day-old broiler chickens including the base diet group (normal control [NC], supplemented with 0 mg/kg of nuciferine) and groups treated with 25 mg/kg, 100 mg/kg, and 400 mg/kg of dietary nuciferine, which was supplemented for 42 d. The results showed that body weight, average daily weight gain, and absolute and relative fat and liver weight were significantly decreased with nuciferine supplementation. The plasma concentration of triiodothyronine, free triiodothyronine, thyroxine, and free thyroxine was significantly decreased in the nuciferine-supplemented group, but the plasma glucagon concentration was significantly increased. The plasma and hepatic triglyceride (TG) and total cholesterol (TC) concentrations were significantly decreased in the nuciferine group, but plasma and hepatic nonesterified fatty acid concentration, hepatic lipase activity, and hepatic glycogen content were significantly increased. Hepatic histological examination showed that fat cell volume and size in the 100 and 400 mg/kg group were smaller than those in the NC group. The fatty degeneration in the liver was decreased with nuciferine supplementation. The fat cell volume and size were shrunk in the nuciferine group. Dietary nuciferine supplementation significantly decreased the gene expression level of HMGCR, SREBP2, ACC, and SPEBP-1C, but significantly increased the gene expression level of LXR-α, CYP7A1, and CPT-I. The results indicated that nuciferine exhibited strong reduced fat deposition activities and reflected not only by decrease of the concentration of TG and TC but also by reduction in the key gene expression level of HMGCR, SREBP2, ACC, and SPEBP-1c and elevation of the key gene expression level of LXR-α, CYP7A1, and CPT-I. Taken together, our results suggested that the ability of nuciferine on reducing fat deposition in broiler chickens by regulating lipid metabolism was associated with the balance of TG and TC concentration.
Collapse
|
7
|
Li S, Yang Z, Zhang H, Peng M, Ma H. (-)-Hydroxycitric Acid Influenced Fat Metabolism via Modulating of Glucose-6-phosphate Isomerase Expression in Chicken Embryos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7336-7347. [PMID: 31184119 DOI: 10.1021/acs.jafc.9b02330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The current research aimed to explore the impact of (-)-hydroxycitric acid (HCA) on fat metabolism and investigate whether this action of (-)-HCA was associated with modulation of glucose-6-phosphote isomerase (GPI) expression in chicken embryos. We constructed a recombinant plasmid (sh2-GPI) to inhibit GPI expression, and then embryos were treated with (-)-HCA. Results showed that (-)-HCA reduced lipid droplet accumulation, triglyceride content, and lipogenesis factors mRNA level and increased lipolysis factors mRNA expression, while this effect caused by (-)-HCA was markedly reversed when the chicken embryos were pretreated with sh2-GPI. (-)-HCA increased phospho (p)-acetyl-CoA carboxylase, enoyl-CoA hydratase short chain-1, carnitine palmitoyl transferase 1A, p-AMP-activated protein kinase, and peroxisome proliferators-activated receptor α protein expression, and this action of (-)-HCA also dispelled when the chicken embryos were pretreated with sh2-GPI. These data demonstrated that (-)-HCA decreased fat deposition via activation of the AMPK pathway, and the fat-reduction action of (-)-HCA was due to the increasing of GPI expression in chicken embryos.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Mengling Peng
- College of Animal Science and Technology , Anhui Agricultural University , Hefei 230036 , China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
8
|
Li S, Yang Z, Zhang H, Peng M, Ma H. Potential role of ALDH3A2 on the lipid and glucose metabolism regulated by (-)-hydroxycitric acid in chicken embryos. Anim Sci J 2019; 90:961-976. [PMID: 31132807 DOI: 10.1111/asj.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/29/2023]
Abstract
This study aimed to investigate the effect of (-)-hydroxycitric acid ((-)-HCA) on lipid and glucose metabolism, and further analyzed these actions whether associated with modulation of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) expression in chicken embryos. Results showed that (-)-HCA decreased triglyceride content and lipid droplet counts, while these effects induced by (-)-HCA were reversed in chicken embryos pre-transfected with sh4-ALDH3A2. (-)-HCA decreased malic enzyme, acetyl-CoA carboxylase, fatty acid synthase, and sterol regulatory element binding protein-1c mRNA level, while increased carnitine palmitoyl transferase 1A (CPT1A) and peroxisome proliferators-activated receptor α (PPARα) mRNA level; and the action of (-)-HCA on lipid metabolism factors had completely eliminated in embryos pre-transfected with sh4-ALDH3A2. Chicken embryos pre-transfected with sh4-ALDH3A2 had eliminated the increasing of serum glucose and hepatic glycogen content induced by (-)-HCA. (-)-HCA decreased phosphofructokinase-1 and increased G6P, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate carboxylase mRNA level in chicken embryos. Similarly, the effect of (-)-HCA on these key enzyme mRNA level was reversed in embryos pre-transfected with sh4-ALDH3A2. Furthermore, (-)-HCA increased PPAR-γ-coactivator-1α (PGC-1α), PPARα, hepatic nuclear factor-4A, PEPCK, and CPT1A protein level, and these actions of (-)-HCA disappeared in embryos pre-transfected with sh4-ALDH3A2. These results indicated that (-)-HCA reduced fat accumulation and accelerated gluconeogenesis via activation of PGC-1α signaling pathway, and these effects of (-)-HCA might associate with the increasing of ALDH3A2 expression level in chicken embryos.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengling Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Jamila N, Khan N, Hwang IM, Choi JY, Nho EY, Khan SN, Atlas A, Kim KS. Determination of macro, micro, trace essential, and toxic elements in Garcinia cambogia fruit and its anti-obesity commercial products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2455-2462. [PMID: 30367475 DOI: 10.1002/jsfa.9454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Garcinia (Clusiaceae) species are traditionally used as flavoring agents in curries and to cure several human health complications. This study investigated 31 macro, micro, and trace elements in microwave-assisted digested samples of Garcinia cambogia fruit and its anti-obesity commercial products by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-mass spectrometric (ICP-MS) techniques. The methods were also validated using the coefficient of determination (R2 ), limits of detection and quantification (LOD, LOQ), precision (CV%), analysis of certified reference materials, spiking recovery experiments, and participation in an accredited laboratory proficiency test organized by Food Analysis Performance Assessment Scheme (FAPAS). RESULTS Quality assurance confirmed that the methods were efficient and in accordance with criteria set by the Association of Official Analytical Chemists (AOAC). In the elemental analysis, the analyzed macro, micro, and trace essential elements were present in appreciable concentrations, which could meet the human nutritional requirements. Traces of toxic elements were within safe limits. CONCLUSION From the results of the current study, the fruit and its commercial products could be considered potential sources of mineral elements without posing any threats to consumers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Naeem Khan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - In Min Hwang
- Hygienic and Safety Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji Yeon Choi
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Eun Yeong Nho
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, University of Haripur, Haripur, Pakistan
| | - Amir Atlas
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Li L, Zhang H, Yao Y, Yang Z, Ma H. (-)-Hydroxycitric Acid Suppresses Lipid Droplet Accumulation and Accelerates Energy Metabolism via Activation of the Adiponectin-AMPK Signaling Pathway in Broiler Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3188-3197. [PMID: 30827101 DOI: 10.1021/acs.jafc.8b07287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
(-)-Hydroxycitric acid (HCA) inhibits the deposition of fat in animals and humans, while the molecular mechanism is still unclear. The present study investigated the effect and mechanism of (-)-HCA's regulation of lipid, glucose, and energy metabolism in broiler chickens. The current results showed that (-)-HCA decreased the accumulation of lipid droplets and triglyceride content by reducing fatty acid synthase protein level and enhancing phosphorylation of acetyl-CoA carboxylase protein level. (-)-HCA accelerated carbohydrate aerobic metabolisms by increasing the activities of phosphofructokinase-1, pyruvate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase. Furthermore, (-)-HCA increased adiponectin receptor 1 mRNA level and enhanced phospho-AMPKα, peroxisome proliferator-activated receptor gamma coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A protein levels in broiler chickens. These data indicated that (-)-HCA reduced lipid droplet accumulation, improved glucose catabolism, and accelerated energy metabolism in broiler chickens, possibly via activation of adiponectin-AMPK signaling pathway. These results revealed the biochemical mechanism of (-)-HCA-mediated fat accumulation and the prevention of metabolic disorder-related diseases in broiler chickens.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
11
|
Raspberry ketone and Garcinia Cambogia rebalanced disrupted insulin resistance and leptin signaling in rats fed high fat fructose diet. Biomed Pharmacother 2019; 110:500-509. [DOI: 10.1016/j.biopha.2018.11.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
|
12
|
Xie Z, Shen G, Wang Y, Wu C. Curcumin supplementation regulates lipid metabolism in broiler chickens. Poult Sci 2019; 98:422-429. [DOI: 10.3382/ps/pey315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/10/2018] [Indexed: 01/23/2023] Open
|
13
|
Risks associated with fat burners: A toxicological perspective. Food Chem Toxicol 2019; 123:205-224. [DOI: 10.1016/j.fct.2018.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022]
|
14
|
Abd Eldaim MA, Ibrahim FM, Orabi SH, Hassan A, El Sabagh HS. l-Carnitine-induced amelioration of HFD-induced hepatic dysfunction is accompanied by a reduction in hepatic TNF-α and TGF-β1. Biochem Cell Biol 2018; 96:713-725. [PMID: 29677453 DOI: 10.1139/bcb-2018-0074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In this study, we evaluated the possible mechanisms through which l-carnitine ameliorates the adverse effects from obesity in rats, induced with a high-fat diet (HFD). For this, 56 albino Wister rats were randomly assigned to 7 groups. The control group was fed a basal diet and injected with saline. The second group was fed the basal diet and injected with l-carnitine (200 mg/kg body mass, by intraperitoneal injection; i.p.). The third group were fed the HFD. The fourth group was fed the HFD and injected with l-carnitine (200 mg/kg body mass, i.p.) for 8 weeks. The fifth group was fed the HFD for 10 weeks. The sixth group were fed the HFD for 10 weeks and were also injected with l-carnitine (200 mg/kg body mass, i.p.) during the final 2 weeks. The seventh group was fed the HFD diet for 8 weeks then the basal diet for 2 weeks. The HFD induced significantly increased levels of hyperglycemia, lipid peroxidation, pathological changes, TNF-α and TGF-β1 protein expression in hepatic tissue, food intake, body weight gain, serum levels of total and non-high-density lipoprotein cholesterol, ketone bodies, triacylglycerol, urea, creatinine, AST, and ALT. However, the HFD diet significantly decreased serum levels of high-density lipoprotein (HDL) and hepatic levels of reduced glutathione. l-Carnitine ameliorated the effects of the HFD on the above-mentioned parameters. This study indicated that l-carnitine had protective and curative effects against HFD-induced hepatosteatosis by reducing hepatic oxidative stress and protein expression of TNF-α and TGF-β1.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, 606-8502, Japan
| | - Fatma Mohamed Ibrahim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Saher Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hesham Saad El Sabagh
- Department of Toxicology and Fronsic Medicine, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
15
|
Metabolomics reveals the mechanism of (−)-hydroxycitric acid promotion of protein synthesis and inhibition of fatty acid synthesis in broiler chickens. Animal 2018; 12:774-783. [DOI: 10.1017/s175173111700221x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
16
|
XIE X, GUO A, WU T, HU Q, HUANG L, YAO C, ZHAO B, ZHANG W, CHI B, LU P, ZHAO Z, FU Z. Preventive Effect of L-Carnitine on the Disorder of Lipid Metabolism and Circadian Clock of Mice Subjected to Chronic Jet-Lag. Physiol Res 2017; 66:801-810. [DOI: 10.33549/physiolres.933543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circadian clock plays an essential role in orchestrating daily physiology, and its disruption can evoke metabolic diseases such as obesity. L-Carnitine can reduce blood lipid levels, and ameliorate fatty liver through regulating lipid metabolism. However, whether L-Carnitine administration may affect the disturbance of lipid metabolism and circadian rhythm of mice induced by prolonged circadian disruption is still unknown. Herein, we investigated the effects of L-Carnitine on conditions of circadian clock and lipid metabolism through a chronic jet-lag mice model which was developed by reversing 12 h light/12 h dark cycle every 4 days for a continuous 12 weeks. Results showed that L-Carnitine administration significantly decreased levels of serum glutamic-oxaloacetic transaminase (GOT) and triglycerides (TG), which were remarkably elevated by chronic jet-lag. More importantly, quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that L-Carnitine supplementation would effectively counteract the negative alterations in gene expression which related to lipid metabolism (Srebp1, Acaca, Fasn, and Scd1), metabolic regulator (mTOR) and circadian rhythm (Bmal1, Per1, Cry1 and Dec1) in the liver of mice subjected to the chronic jet-lag. As a conclusion, L-Carnitine was partly effective in preventing the disruption of circadian clock and lipid metabolic disorders induced by the chronic jet-lag.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Z. FU
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
17
|
Peng M, Li L, Yu L, Ge C, Ma H. Effects of (−)‐hydroxycitric acid on lipid droplet accumulation in chicken embryos. Anim Sci J 2017; 89:237-249. [DOI: 10.1111/asj.12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/04/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Lei Yu
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Chongyang Ge
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| |
Collapse
|
18
|
Guo YR, Choung SY. Germacrone Attenuates Hyperlipidemia and Improves Lipid Metabolism in High-Fat Diet-Induced Obese C57BL/6J Mice. J Med Food 2017; 20:46-55. [PMID: 28098516 DOI: 10.1089/jmf.2016.3811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously showed that Aster spathulifolius Maxim extract (ASE) reduced body weight gain and serum and liver lipid levels and significantly suppressed serum insulin and leptin concentrations in high-fat diet (HFD)-induced obese rats. Germacrone (GM) was identified as a potent bioactive constituent of ASE. In this study, we hypothesized that GM can attenuate hyperlipidemia by alleviating fatty acid (FA) synthesis/uptake and improve lipid metabolism by stimulating FA β-oxidation in HFD-induced obese C57BL/6J mice. To induce obesity, mice were fed an HFD for 6 weeks, while control mice were fed a commercial standard diet. The mice were allocated to six groups and fed either a normal diet, HFD, HFD with GM (5, 10, and 20 mg/kg), or HFD with 200 mg/kg Garcinia cambogia extract for 30 days. In the GM groups, body weight gain, visceral fat pad weight, fasting plasma glucose, serum insulin and leptin, and serum, as well as hepatic lipid, levels were attenuated. Transcriptional factors related to lipid metabolism, such as AMP-activated protein kinase α, sterol regulatory element-binding protein (SREBP) 1, SREBP 2, acetyl-CoA carboxylase, peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, FA synthase, and carnitine palmitoyltransferase 1, showed higher expression in the GM groups. In summary, GM may help attenuate hyperlipidemia by suppressing FA synthesis and uptake by inhibiting SREBP signaling pathway activation and improve lipid metabolism by stimulating FA β-oxidation by activating the AMPKα signaling pathway in HFD-induced obesity.
Collapse
Affiliation(s)
- Yuan-Ri Guo
- 1 Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University , Seoul, Republic of Korea
| | - Se-Young Choung
- 1 Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University , Seoul, Republic of Korea.,2 Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
19
|
Kim J, Park J, Lim K. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity. J Nutr Sci Vitaminol (Tokyo) 2017; 62:141-61. [PMID: 27465721 DOI: 10.3177/jnsv.62.141] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Athletes make great efforts to increase their endurance capacity in many ways. Using nutrition supplements for stimulating lipolysis is one such strategy to improve endurance performance. These supplements contain certain ingredients that affect fat metabolism; furthermore, in combination with endurance training, they tend to have additive effects. A large body of scientific evidence shows that nutrition supplements increase fat metabolism; however, the usefulness of lipolytic supplements as ergogenic functional foods remains controversial. The present review will describe the effectiveness of lipolytic supplements in fat metabolism and as an ergogenic aid for increasing endurance exercise capacity. There are a number of lipolytic supplements available on the market, but this review focuses on natural ingredients such as caffeine, green tea extract, L-carnitine, Garcinia cambogia (hydroxycitric acid), capsaicin, ginseng, taurine, silk peptides and octacosanol, all of which have shown scientific evidence of enhancing fat metabolism associated with improving endurance performance. We excluded some other supplements owing to lack of data on fat metabolism or endurance capacity. Based on the data in this review, we suggest that a caffeine and green tea extract improves endurance performance and enhances fat oxidation. Regarding other supplements, the data on their practical implications needs to be gathered, especially for athletes.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Physical Education, Konkuk University
| | | | | |
Collapse
|
20
|
Jamila N, Choi JY, Hong JH, Nho EY, Khan N, Jo CH, Chun HS, Kim KS. Identification and quantification of adulteration in Garcinia cambogia commercial products by chromatographic and spectrometric methods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1751-1760. [DOI: 10.1080/19440049.2016.1244733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nargis Jamila
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Ji Yeon Choi
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Joon Ho Hong
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Eun Yeong Nho
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Cheon Ho Jo
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
21
|
Peng M, Han J, Li L, Ma H. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective. Sci Rep 2016; 6:32580. [PMID: 27586962 PMCID: PMC5009311 DOI: 10.1038/srep32580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
(-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens.
Collapse
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Han
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Cats in Positive Energy Balance Have Lower Rates of Adipose Gain When Fed Diets Containing 188 versus 121 ppm L-Carnitine. ScientificWorldJournal 2016; 2016:2649093. [PMID: 27652290 PMCID: PMC5019939 DOI: 10.1155/2016/2649093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022] Open
Abstract
L-carnitine (LC) is included in select adult feline diets for weight management. This study investigated whether feeding adult cats with diets containing either 188 ppm of LC (LC188) or 121 ppm of LC (LC121) and feeding them 120% of maintenance energy requirement (MER) resulted in differences in total energy expenditure (EE), metabolic fuel selection, BW, body composition, and behavior. Cats (n = 20, 4 ± 1.2 yrs) were stratified for BCS and randomly assigned to one of two dietary treatments and fed for 16 weeks. BW was measured weekly, and indirect calorimetry, body composition, physical activity, play motivation, and cognition were measured at baseline and throughout the study. A mixed, repeated measures, ANCOVA model was used. Cats in both treatments gained BW (P < 0.05) throughout the study, with no differences between treatments at any time point (P > 0.05). There were no differences in body composition between groups at baseline; however, body fat (g) and body fat : lean mass ratio were greater in cats fed LC121 in contrast to cats fed LC188 (P < 0.05) on week 16. No other outcomes differed between treatments (P > 0.05). Supplying dietary LC at a dose of at least 188 ppm may be beneficial for the health and well-being of cats fed above MER.
Collapse
|
23
|
Kang J, Ge C, Yu L, Li L, Ma H. Long-Term Administration of Dehydroepiandrosterone Accelerates Glucose Catabolism via Activation of PI3K/Akt-PFK-2 Signaling Pathway in Rats Fed a High-Fat Diet. PLoS One 2016; 11:e0159077. [PMID: 27410429 PMCID: PMC4943648 DOI: 10.1371/journal.pone.0159077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/27/2016] [Indexed: 01/23/2023] Open
Abstract
Dehydroepiandrosterone (DHEA) has a fat-reducing effect, while little information is available on whether DHEA regulates glucose metabolism, which would in turn affect fat deposition. To investigate the effects of DHEA on glucose metabolism, rats were administered a high-fat diet containing either 0 (HCG), 25 (HLG), 50 (HMG), or 100 (HHG) mg·kg-1 DHEA per day via gavage for 8 weeks. Results showed that long-term administration of DHEA inhibited body weight gain in rats on a high-fat diet. No statistical differences in serum glucose levels were observed, whereas hepatic glycogen content in HMG and HHG groups and muscle glycogen content in HLG and HMG groups were higher than those in HCG group. Glucokinase, malate dehydrogenase and phosphofructokinase-2 activities in HMG and HHG groups, pyruvate kinase and succinate dehydrogenase activities in HMG group, and pyruvate dehydrogenase activity in all DHEA treatment groups were increased compared with those in HCG group. Phosphoenolpyruvate carboxykinase and glycogen phosphorylase mRNA levels were decreased in HMG and HHG groups, whereas glycogen synthase-2 mRNA level was increased in HMG group compared with those in HCG. The abundance of Glut2 mRNA in HMG and HHG groups and Glut4 mRNA in HMG group was higher than that in HCG group. DHEA treatment increased serum leptin content in HMG and HHG groups compared with that in HCG group. Serum insulin content and insulin receptor mRNA level in HMG group and insulin receptor substrate-2 mRNA level in HMG and HHG group were increased compared with those in HCG group. Furthermore, Pi3k mRNA level in HMG and Akt mRNA level in HMG and HHG groups were significantly increased than those in HCG group. These data showed that DHEA treatment could enhance glycogen storage and accelerate glucose catabolism in rats fed a high-fat diet, and this effect may be associated with the activation of PI3K/Akt-PFK-2 signaling pathway.
Collapse
Affiliation(s)
- Jian Kang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chongyang Ge
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Yu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
24
|
Han N, Li L, Peng M, Ma H. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats. Phytother Res 2016; 30:1316-29. [PMID: 27145492 DOI: 10.1002/ptr.5630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
(-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ningning Han
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengling Peng
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Han J, Li L, Wang D, Ma H. (-)-Hydroxycitric acid reduced fat deposition via regulating lipid metabolism-related gene expression in broiler chickens. Lipids Health Dis 2016; 15:37. [PMID: 26912252 PMCID: PMC4765117 DOI: 10.1186/s12944-016-0208-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/19/2016] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Chicken as a delicious food for a long history, and it is well known that excess fat deposition in broiler chickens will not only induced metabolic diseases, but also lead to adverse effect in the consumer's health. (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress fat accumulation in animals and humans. While, the precise physiological mechanism of HCA has not yet been full clarified, especially its action in broiler chickens. Thus, this study aimed to assess the effect of (-)-HCA on lipid metabolism in broiler chickens. METHODS A total of 120 1-day-old broiler chickens were randomly allocated to four groups, with each group was repeated three times with 10 birds. Birds received a commercial diet supplemented with (-)-HCA at 0, 1000, 2000 or 3000 mg/kg, respectively, for a period of 4 weeks ad libitum. RESULTS Body weight (BW) in the 2000 and 3000 mg/kg (-)-HCA groups was significantly decreased (P < 0.05) than that in control group. A significantly decreased of serum triglyceride (TG) and density lipoprotein-cholesterol (LDL-C) content were observed in 3000 mg/kg (-)-HCA group (P < 0.05). Broiler chickens supplmented with 2000 and 3000 mg/kg (-)-HCA had pronouncedly higher hepatic lipase (HL) activity, hepatic glycogen and non-esterified fatty acid (NEFA) contents in liver (P < 0.05). Serum free triiodothyronine (FT3) and thyroxin (T4) contents were significantly higher in 3000 mg/kg (-)-HCA group (P < 0.05) compared with the control group. Supplemental (-)-HCA markedly decreased fatty acid synthase (FAS) and sterol regulatory element binding protein-1c (SREBP-1c) (P < 0.05) mRNA levels, while the mRNA abundance of adenosine 5'-monophosphate-activated protein kinaseβ2 (AMPKβ2) (P < 0.05) was significantly increased. In addition, ATP-citrate lyase (ACLY) mRNA level (P < 0.05) was significantly decreased in broiler chickens supplemented with 3000 mg/kg (-)-HCA. No differences was observed on carnitine palmitoyl transferase-I(CPT-I), while peroxisome proliferators-activated receptor α (PPARα) mRNA level (P < 0.05) was significantly increased in broiler chickens supplemented with 2000 and 3000 mg/kg (-)-HCA. CONCLUSIONS Supplemental (-)-HCA inhibited lipogenesis by inhibiting ACLY, SREBP-1c and FAS expression, and accelerated lipolysis through enhancing HL activity and PPARα expression, which eventually led to the reduced abdominal fat deposition in broiler chickens. Graphical abstract Mechanism of (-)-HCA effect on hepatic lipids metabolism.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dian Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Goudarzvand M, Afraei S, Yaslianifard S, Ghiasy S, Sadri G, Kalvandi M, Alinia T, Mohebbi A, Yazdani R, Azarian SK, Mirshafiey A, Azizi G. Hydroxycitric acid ameliorates inflammation and oxidative stress in mouse models of multiple sclerosis. Neural Regen Res 2016; 11:1610-1616. [PMID: 27904492 PMCID: PMC5116840 DOI: 10.4103/1673-5374.193240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydroxycitric acid (HCA) is derived primarily from the Garcinia plant and is widely used for its anti-inflammatory effects. Multiple sclerosis can cause an inflammatory demyelination and axonal damage. In this study, to validate the hypothesis that HCA exhibits therapeutic effects on multiple sclerosis, we established female C57BL/6 mouse models of multiple sclerosis, i.e., experimental autoimmune encephalomyelitis, using Complete Freund's Adjuvant (CFA) emulsion containing myelin oligodendrocyte glycoprotein (35-55). Treatment with HCA at 2 g/kg/d for 3 weeks obviously improved the symptoms of nerve injury of experimental autoimmune encephalomyelitis mice, decreased serum interleulin-6, tumor necrosis factor alpha, nitric oxide, and malondialdehyde levels, and increased superoxide dismutase and glutathione reductase activities. These findings suggest that HCA exhibits neuroprotective effects on multiple sclerosis-caused nerve injury through ameliorating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mahdi Goudarzvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Yaslianifard
- Department of Microbiology and Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Saleh Ghiasy
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Sadri
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mustafa Kalvandi
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Tina Alinia
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Growth and Development Research Centre, Paediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahin Khadem Azarian
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran; Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
A comprehensive scientific overview of Garcinia cambogia. Fitoterapia 2015; 102:134-48. [DOI: 10.1016/j.fitote.2015.02.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/07/2015] [Accepted: 02/12/2015] [Indexed: 12/12/2022]
|
28
|
Liu G, Han N, Han J, Chen D, Kang J, Ma H. Garcinia Cambogia Extracts Prevented Fat Accumulation via Adiponectin-AMPK Signaling Pathway in Developing Obesity Rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Guanxing Liu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Ningning Han
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Jing Han
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Di Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Jian Kang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Haitian Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| |
Collapse
|
29
|
Wu T, Guo A, Shu Q, Qi Y, Kong Y, Sun Z, Sun S, Fu Z. L-Carnitine intake prevents irregular feeding-induced obesity and lipid metabolism disorder. Gene 2014; 554:148-54. [PMID: 25445284 DOI: 10.1016/j.gene.2014.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 01/07/2023]
Abstract
L-Carnitine supplementation has been used to reduce obesity caused by high-fat diet, which is beneficial for lowering blood and hepatic lipid levels, and for ameliorating fatty liver. However, whether l-carnitine may affect irregular feeding-induced obesity and lipid metabolism disorder is still largely unknown. In the present study, we developed a time-delayed pattern of eating, and investigated the effects of l-carnitine on the irregular eating induced adiposity in mice. After an experimental period of 8 weeks with l-carnitine supplementation, l-carnitine significantly inhibited body weight increase and epididymal fat weight gain induced by the time-delayed feeding. In addition, l-carnitine administration decreased levels of serum alanine aminotransferase (GPT), glutamic oxalacetic transaminase (GOT) and triglyceride (TG), which were significantly elevated by the irregular feeding. Moreover, mice supplemented with l-carnitine did not display glucose intolerance-associated hallmarks, which were found in the irregular feeding-induced obesity. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that l-carnitine counteracted the negative alterations of lipid metabolic gene expression (fatty acid synthase, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, cholesterol 7α-hydroxylase, carnitine/acylcarnitine translocase) in the liver and fat of mice caused by the irregular feeding. Therefore, our results suggest that the time-delayed pattern of eating can induce adiposity and lipid metabolic disorders, while l-carnitine supplementation might prevent these negative symptoms.
Collapse
Affiliation(s)
- Tao Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China
| | - Anqi Guo
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China
| | - Qingyu Shu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China
| | - Yangjian Qi
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China
| | - Ying Kong
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China
| | - Zhiping Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China
| | - Shumin Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, China.
| |
Collapse
|
30
|
Updates on Antiobesity Effect of Garcinia Origin (-)-HCA. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:751658. [PMID: 23990846 PMCID: PMC3748738 DOI: 10.1155/2013/751658] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/07/2013] [Indexed: 12/11/2022]
Abstract
Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (−)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid.
Collapse
|
31
|
Molecular mechanisms underlying the anti-obesity potential of prunetin, an O-methylated isoflavone. Biochem Pharmacol 2013; 85:1525-33. [DOI: 10.1016/j.bcp.2013.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/21/2023]
|
32
|
Mathew GE, Mathew B, Shaneeb MM, Nyanthara B. Diuretic activity of leaves of garcinia cambogia in rats. Indian J Pharm Sci 2012; 73:228-30. [PMID: 22303069 PMCID: PMC3267310 DOI: 10.4103/0250-474x.91567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/11/2011] [Accepted: 03/11/2011] [Indexed: 11/04/2022] Open
Abstract
The present study was undertaken to establish the diuretic activity of ethanol and aqueous extract of dried leaves of Garcinia cambogia in rats. Aqueous and ethanol extracts of leaves were administered to experimental rats orally at doses of 100 and 200 mg/kg and compared with furosemide (20 mg/kg, intraperitoneally) as the standard. The parameters measured for diuretic activity were total urine volume, urine concentration electrolytes such as sodium, potassium and chloride have been evaluated . The rats treated with ethanol extract of Garcinia cambogia and aqueous extract of Garcinia cambogia in a dose of 100 and 200 mg/kg showed higher urine output when compared to the respective control. Both ethanol and aqueous extracts have showed a significant dose-dependent increase in the excretion of electrolytes when compared to the control group.
Collapse
Affiliation(s)
- Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad-678 004, India
| | | | | | | |
Collapse
|
33
|
Kang JS, Lee WK, Lee CW, Yoon WK, Kim N, Park SK, Lee HS, Park HK, Han SB, Yun J, Lee K, Lee KH, Park SK, Kim HM. Improvement of high-fat diet-induced obesity by a mixture of red grape extract, soy isoflavone and L-carnitine: implications in cardiovascular and non-alcoholic fatty liver diseases. Food Chem Toxicol 2011; 49:2453-8. [PMID: 21745528 DOI: 10.1016/j.fct.2011.06.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
Abstract
In the present study, we examined the effect of a mixture of dietary components, including red grape extract, soy isoflavone and L-carnitine (RISC), on obesity. RISC substantially inhibited high-fat diet (HFD)-induced increase in body weight in a dose-dependent manner in C57BL/6 mice. The amount of subcutaneous and mesenteric fat was also significantly decreased by RISC treatment in HFD-fed C57BL/6 mice, whereas epididymal fat was not affected. Moreover, HFD-induced plasma leptin levels were down-regulated by RISC treatment. In these mice, RISC treatment significantly increased the plasma level of high density lipoprotein cholesterol without affecting the level of low density lipoprotein cholesterol and triglycerides. In addition, HFD-induced increase in liver weight and lipid accumulation in liver was significantly suppressed by RISC treatment in C57BL/6mice. Plasma level of glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase was also inhibited by RISC treatment. These results demonstrate that RISC suppresses HFD-induced obesity and suggest that RISC supplementation might be a promising adjuvant therapy for the treatment of obesity and its complications, such as cardiovascular and non-alcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Jong Soon Kang
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jadeja RN, Thounaojam MC, Ramani UV, Devkar RV, Ramachandran AV. Anti-obesity potential of Clerodendron glandulosum.Coleb leaf aqueous extract. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:338-343. [PMID: 21397678 DOI: 10.1016/j.jep.2011.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/16/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clerodendron glandulosum.Coleb leaf aqueous extract (CG) is traditionally used by people of North-East India to alleviate symptoms of diabetes, obesity and hypertension. Previous study from our laboratory have documented anti-diabetic and anti-hypertensive properties of CG extract but, till date there are no pharmacological studies available on its anti-obesity potential. This inventory investigates the underlining molecular mechanism/s of CG induced regulation of in vivo HFD induced obesity and in vitro adipocyte differentiation. AIM To evaluate effects of CG extract on (i) expression of genes regulating visceral adiposity and (ii) in vitro adipocyte differentiation and LEP release. MATERIALS AND METHODS Body weight, lee index, plasma lipids and LEP, mRNA expression of PPARγ-2, SREBP1c, FAS, CPT-1 and LEP in epididymal adipose tissue of control and experimental groups were evaluated. Also, potential of CG extract on in vitro adipocyte differentiation and LEP release was assessed. RESULTS Supplementation of CG extract to HFD fed mice significantly prevented HFD induced increment in bodyweight, lee index, plasma lipids and LEP, visceral adiposity and adipocyte hypertrophy. Also, CG extract supplementation resulted in down regulation of PPARγ-2, SREBP1c, FAS and LEP expression along with up-regulation of CPT-1 in epididymal adipose tissue compared to HFD fed mice. In vitro study recorded significant anti-adipogenic effect of CG extract that resulted in decreased adipogenesis, TG accumulation, LEP release, G3PDH activity along with higher glycerol release without significantly altering viability of 3T3L1 pre-adipocytes. CONCLUSIONS Clerodendron glandulosum.Coleb extract prevents adipocyte differentiation and visceral adiposity by down regulation of PPARγ-2 related genes and Lep expression thus validating its traditional therapeutic use in controlling obesity.
Collapse
Affiliation(s)
- Ravirajsinh N Jadeja
- Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, The M.S. University of Baroda, Gujarat, India
| | | | | | | | | |
Collapse
|
35
|
Siegner R, Heuser S, Holtzmann U, Söhle J, Schepky A, Raschke T, Stäb F, Wenck H, Winnefeld M. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle. Nutr Metab (Lond) 2010; 7:66. [PMID: 20687953 PMCID: PMC2922297 DOI: 10.1186/1743-7075-7-66] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/05/2010] [Indexed: 11/13/2022] Open
Abstract
Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1/SREBP-1c signal. Importantly, our results demonstrated that a combination of lotus leaf extract solution and L-carnitine reduced triglyceride accumulation to a greater extent compared to incubation with either substance alone. Conclusions Overall, our data demonstrate that a combination of lotus leaf extract and L-carnitine reduced triglyceride accumulation in human (pre)adipocytes by affecting different processes during the adipocyte life cycle. For this reason, this combination might represent a treatment option for obesity-related diseases.
Collapse
Affiliation(s)
- Ralf Siegner
- Research & Development, Research Special Skincare, Beiersdorf AG, Unnastrasse 48, Bf, 520, 20245 Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Amin KA, Nagy MA. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabetol Metab Syndr 2009; 1:17. [PMID: 19835614 PMCID: PMC2772188 DOI: 10.1186/1758-5996-1-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/16/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. AIM To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. METHOD White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. RESULTS Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR) significantly increased in HFD in comparison with the control group. The treatment with L-carnitine or HMF improved the condition. HFD elevated hepatic MDA and lipid peroxidation associated with reduction in hepatic GSH and catalase activity; whereas administration of L-carnitine or herbal extract significantly ameliorated these hepatic alterations. CONCLUSION HFD induced obesity associated with a disturbed lipid profile, defective antioxidant stability, and high values of IR parameters; this may have implications for the progress of obesity related problems. Treatment with L-carnitine, or HMF extract improved obesity and its associated metabolic problems in different degrees. Also HMF has antioxidant, hypolipidaemic insulin sensitizing effects. Moreover HMF might be a safe combination on the organs whose functions were examined, as a way to surmount the obesity state; and it has a distinct anti-obesity effect.
Collapse
Affiliation(s)
- Kamal A Amin
- Biochemistry Department Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Nagy
- Chemistry Department Faculty of Science Beni-Suef, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|