1
|
Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants (Basel) 2023; 12:antiox12010196. [PMID: 36671058 PMCID: PMC9854447 DOI: 10.3390/antiox12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic diseases, such as diabetes and non-alcoholic fatty liver disease (NAFLD), have several negative health outcomes on affected humans. Dysregulated energy metabolism is a key component underlying the pathophysiology of these conditions. Adipose tissue is a fundamental regulator of energy homeostasis that utilizes several redox reactions to carry out the metabolism. Brown and beige adipose tissues, in particular, perform highly oxidative reactions during non-shivering thermogenesis to dissipate energy as heat. The appropriate regulation of energy metabolism then requires coordinated antioxidant mechanisms to counterbalance the oxidation reactions. Indeed, non-shivering thermogenesis activation can cause striking changes in concentrations of both oxidants and antioxidants in order to adapt to various oxidative environments. Current therapeutic options for metabolic diseases either translate poorly from rodent models to humans (in part due to the challenges of creating a physiologically relevant rodent model) or tend to have numerous side effects, necessitating novel therapies. As increased brown adipose tissue activity results in enhanced energy expenditure and is associated with beneficial effects on metabolic health, such as decreased obesity, it has gathered great interest as a modulator of metabolic disease. One potential reason for the beneficial health effects may be that although non-shivering thermogenesis is enormously oxidative, it is also associated with decreased oxidant formation after its activation. However, targeting its redox mechanisms specifically to alter metabolic disease remains an underexplored area. Therefore, this review will discuss the role of adipose tissue in energy homeostasis, non-shivering thermogenesis in adults, and redox mechanisms that may serve as novel therapeutic targets of metabolic disease.
Collapse
|
2
|
Kalezic A, Korac A, Korac B, Jankovic A. l-Arginine Induces White Adipose Tissue Browning-A New Pharmaceutical Alternative to Cold. Pharmaceutics 2022; 14:pharmaceutics14071368. [PMID: 35890263 PMCID: PMC9324995 DOI: 10.3390/pharmaceutics14071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The beneficial effects of l-arginine supplementation in obesity and type II diabetes involve white adipose tissue (WAT) reduction and increased substrate oxidation. We aimed to test the potential of l-arginine to induce WAT browning. Therefore, the molecular basis of browning was investigated in retroperitoneal WAT (rpWAT) of rats exposed to cold or treated with 2.25% l-arginine for 1, 3, and 7 days. Compared to untreated control, levels of inducible nitric oxide (NO) synthase protein expression and NO signaling increased in both cold-exposed and l-arginine-treated groups. These increases coincided with the appearance of multilocular adipocytes and increased expression levels of uncoupling protein 1 (UCP1), thermogenic and beige adipocyte-specific genes (Cidea, Cd137, and Tmem26), mitochondriogenesis markers (peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α, mitochondrial DNA copy number), nuclear respiratory factor 1, PPARα and their respective downstream lipid oxidation enzymes after l-arginine treatment. Such browning phenotype in the l-arginine-treated group was concordant with end-course decreases in leptinaemia, rpWAT mass, and body weight. In conclusion, l-arginine mimics cold-mediated increases in NO signaling in rpWAT and induces molecular and structural fingerprints of rpWAT browning. The results endorse l-arginine as a pharmaceutical alternative to cold exposure, which could be of great interest in obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11060 Belgrade, Serbia;
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
- Correspondence: ; Tel.: +381-11-2078-307
| |
Collapse
|
3
|
The Unity of Redox and Structural Remodeling of Brown Adipose Tissue in Hypothyroidism. Antioxidants (Basel) 2021; 10:antiox10040591. [PMID: 33921249 PMCID: PMC8068806 DOI: 10.3390/antiox10040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Brown adipose tissue (BAT) is important for maintaining whole-body metabolic and energy homeostasis. However, the effects of hypothyroidism, one of the most common diseases worldwide, which increases the risk of several metabolic disorders, on BAT redox and metabolic homeostasis remain mostly unknown. We aimed to investigate the dynamics of protein expression, enzyme activity, and localization of antioxidant defense (AD) enzymes in rat interscapular BAT upon induction of hypothyroidism by antithyroid drug methimazole for 7, 15, and 21 days. Our results showed an increased protein expression of CuZn- and Mn-superoxide dismutase, catalase, glutamyl-cysteine ligase, thioredoxin, total glutathione content, and activity of catalase and thioredoxin reductase in hypothyroid rats, compared to euthyroid control. Concomitant with the increase in AD, newly established nuclear, mitochondrial, and peroxisomal localization of AD enzymes was found. Hypothyroidism also potentiated associations between mitochondria, peroxisomes, and lipid bodies, creating specific structural-functional units. Moreover, hypothyroidism induced protein expression and nuclear translocation of a master regulator of redox-metabolic homeostasis, nuclear factor erythroid 2-related factor 2 (Nrf2), and an increased amount of 4-hydroxynonenal (4-HNE) protein adducts. The results indicate that spatiotemporal overlap in the remodeling of AD is orchestrated by Nrf2, implicating the role of 4-HNE in this process and suggesting the potential mechanism of redox-structural remodeling during BAT adaptation in hypothyroidism.
Collapse
|
4
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Yau WW, Singh BK, Lesmana R, Zhou J, Sinha RA, Wong KA, Wu Y, Bay BH, Sugii S, Sun L, Yen PM. Thyroid hormone (T 3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 2019; 15:131-150. [PMID: 30209975 PMCID: PMC6287687 DOI: 10.1080/15548627.2018.1511263] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
The thyroid hormone triiodothyronine (T3) activates thermogenesis by uncoupling electron transport from ATP synthesis in brown adipose tissue (BAT) mitochondria. Although T3 can induce thermogenesis by sympathetic innervation, little is known about its cell autonomous effects on BAT mitochondria. We thus examined effects of T3 on mitochondrial activity, autophagy, and metabolism in primary brown adipocytes and BAT and found that T3 increased fatty acid oxidation and mitochondrial respiration as well as autophagic flux, mitophagy, and mitochondrial biogenesis. Interestingly, there was no significant induction of intracellular reactive oxygen species (ROS) despite high mitochondrial respiration and UCP1 induction by T3. However, when cells were treated with Atg5 siRNA to block autophagy, induction of mitochondrial respiration by T3 decreased, and was accompanied by ROS accumulation, demonstrating a critical role for autophagic mitochondrial turnover. We next generated an Atg5 conditional knockout mouse model (Atg5 cKO) by injecting Ucp1 promoter-driven Cre-expressing adenovirus into Atg5Flox/Flox mice to examine effects of BAT-specific autophagy on thermogenesis in vivo. Hyperthyroid Atg5 cKO mice exhibited lower body temperature than hyperthyroid or euthyroid control mice. Metabolomic analysis showed that T3 increased short and long chain acylcarnitines in BAT, consistent with increased β-oxidation. T3 also decreased amino acid levels, and in conjunction with SIRT1 activation, decreased MTOR activity to stimulate autophagy. In summary, T3 has direct effects on mitochondrial autophagy, activity, and turnover in BAT that are essential for thermogenesis. Stimulation of BAT activity by thyroid hormone or its analogs may represent a potential therapeutic strategy for obesity and metabolic diseases. Abbreviations: ACACA: acetyl-Coenzyme A carboxylase alpha; AMPK: AMP-activated protein kinase; Acsl1: acyl-CoA synthetase long-chain family member 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; BAT: brown adipose tissue; cKO: conditional knockout; COX4I1: cytochrome c oxidase subunit 4I1; Cpt1b: carnitine palmitoyltransferase 1b, muscle; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; DIO2: deiodinase, iodothyronine, type 2; DMEM: Dulbecco's modified Eagle's medium; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; Fabp4: fatty acid binding protein 4, adipocyte; FBS: fetal bovine serum; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FGF: fibroblast growth factor; FOXO1: forkhead box O1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; Gpx1: glutathione peroxidase 1; Lipe: lipase, hormone sensitive; MAP1LC3B: microtubule-associated protein 1 light chain 3; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; NAD: nicotinamide adenine dinucleotide; Nrf1: nuclear respiratory factor 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; Pnpla2: patatin-like phospholipase domain containing 2; Prdm16: PR domain containing 16; PRKA: protein kinase, AMP-activated; RPS6KB: ribosomal protein S6 kinase; RFP: red fluorescent protein; ROS: reactive oxygen species; SD: standard deviation; SEM: standard error of the mean; siRNA: small interfering RNA; SIRT1: sirtuin 1; Sod1: superoxide dismutase 1, soluble; Sod2: superoxide dismutase 2, mitochondrial; SQSTM1: sequestosome 1; T3: 3,5,3'-triiodothyronine; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); ULK1: unc-51 like kinase 1; VDAC1: voltage-dependent anion channel 1; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Winifred W. Yau
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Ronny Lesmana
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Physiology Division, Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Central laboratory, Universitas Padjadjaran, Bandung, Indonesia
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Rohit A. Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kiraely A. Wong
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shigeki Sugii
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Lei Sun
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Buzadzic B, Vucetic M, Jankovic A, Stancic A, Korac A, Korac B, Otasevic V. New insights into male (in)fertility: the importance of NO. Br J Pharmacol 2014; 172:1455-67. [PMID: 24601995 DOI: 10.1111/bph.12675] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Infertility is a global problem that is on the rise, especially during the last decade. Currently, infertility affects approximately 10-15% of the population worldwide. The frequency and origin of different forms of infertility varies. It has been shown that reactive oxygen and nitrogen species (ROS and RNS) are involved in the aetiology of infertility, especially male infertility. Various strategies have been designed to remove or decrease the production of ROS and RNS in spermatozoa, in particular during in vitro fertilization. However, in recent years it has been shown that spermatozoa naturally produce a variety of ROS/RNS, including superoxide anion radical (O2 (⋅-)), hydrogen peroxide and NO. These reactive species, in particular NO, are essential in regulating sperm capacitation and the acrosome reaction, two processes that need to be acquired by sperm in order to achieve fertilization potential. In addition, it has recently been shown that mitochondrial function is positively correlated with human sperm fertilization potential and quality and that NO and NO precursors increase sperm motility by increasing energy production in mitochondria. We will review the new link between sperm NO-driven redox regulation and infertility herein. A special emphasis will be placed on the potential implementation of new redox-active substances that modulate the content of NO in spermatozoa to increase fertility and promote conception.
Collapse
Affiliation(s)
- B Buzadzic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
7
|
Vucetic M, Stancic A, Otasevic V, Jankovic A, Korac A, Markelic M, Velickovic K, Golic I, Buzadzic B, Storey KB, Korac B. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update. Free Radic Biol Med 2013; 65:916-924. [PMID: 24013092 DOI: 10.1016/j.freeradbiomed.2013.08.188] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/14/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
Any alteration in oxidative metabolism is coupled with a corresponding response by an antioxidant defense (AD) in appropriate subcellular compartments. Seasonal hibernators pass through circannual metabolic adaptations that allow them to either maintain euthermy (cold acclimation) or enter winter torpor with body temperature falling to low values. The present study aimed to investigate the corresponding pattern of AD enzyme protein expressions associated with these strategies in the main tissues involved in whole animal energy homeostasis: brown and white adipose tissues (BAT and WAT, respectively), liver, and skeletal muscle. European ground squirrels (Spermophilus citellus) were exposed to low temperature (4 ± 1 °C) and then divided into two groups: (1) animals fell into torpor (hibernating group) and (2) animals stayed active and euthermic for 1, 3, 7, 12, or 21 days (cold-exposed group). We examined the effects of cold acclimation and hibernation on the tissue-dependent protein expression of four enzymes which catalyze the two-step detoxification of superoxide to water: superoxide dismutase 1 and 2 (SOD 1 and 2), catalase (CAT), and glutathione peroxidase (GSH-Px). The results showed that hibernation induced an increase of AD enzyme protein expressions in BAT and skeletal muscle. However, AD enzyme contents in liver were largely unaffected during torpor. Under these conditions, different WAT depots responded by elevating the amounts of specific enzymes, as follows: SOD 1 in retroperitoneal WAT, GSH-Px in gonadal WAT, and CAT in subcutaneous WAT. Similar perturbations of AD enzymes contents were seen in all tissues during cold acclimation, often in a time-dependent manner. It can be concluded that BAT and muscle AD capacity undergo the most dramatic changes during both cold acclimation and hibernation, while liver is relatively unaffected by either condition. Additionally, this study provides a basis for further metabolic study that will illuminate the causes of these tissue-specific AD responses, particularly the novel finding of distinct responses by different WAT depots in hibernators.
Collapse
Affiliation(s)
- Milica Vucetic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Vesna Otasevic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Jankovic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Milica Markelic
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Ksenija Velickovic
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Igor Golic
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Biljana Buzadzic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Kenneth B Storey
- Carleton University, Department of Biology, Ottawa, Ontario, Canada
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
8
|
Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: Interplay of HIF-1α and AMPKα. Biochim Biophys Acta Gen Subj 2011; 1810:1252-61. [DOI: 10.1016/j.bbagen.2011.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/25/2011] [Accepted: 09/09/2011] [Indexed: 11/16/2022]
|
9
|
Mailloux RJ, Adjeitey CNK, Xuan JY, Harper ME. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J 2011; 26:363-75. [PMID: 21940996 DOI: 10.1096/fj.11-189639] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reduced glutathione (GSH) is the major determinant of redox balance in mitochondria and as such is fundamental in the control of cellular bioenergetics. GSH is also the most important nonprotein antioxidant molecule in cells. Surprisingly, the effect of redox environment has never been examined in skeletal muscle and brown adipose tissue (BAT), two tissues that have exceptional dynamic range and that are relevant to the development of obesity and related diseases. Here, we show that the redox environment plays crucial, yet divergent, roles in modulating mitochondrial bioenergetics in skeletal muscle and BAT. Skeletal muscle mitochondria were found to naturally have a highly reduced environment (GSH/GSSG≈46), and this was associated with fairly high (∼40%) rates of state 4 (nonphosphorylating) respiration and decreased reactive oxygen species (ROS) emission. The deglutathionylation of uncoupling protein 3 (UCP3) following an increase in the reductive potential of mitochondria results in a further increase in nonphosphorylating respiration (∼20% in situ). BAT mitochondria were found to have a much more oxidized status (GSH/GSSG≈13) and had basal reactive oxygen species emission that was higher (∼250% increase in ROS generation) than that in skeletal muscle mitochondria. When redox status was subsequently increased (i.e., more reduced), UCP1-mediated uncoupling was more sensitive to GDP inhibition. Surprisingly, BAT was found to be devoid of glutaredoxin-2 (Grx2) expression, while there was abundant expression in skeletal muscle. Taken together, these findings reveal the importance of redox environment in controlling bioenergetic functions in both tissues, and the highly unique characteristics of BAT in this regard.
Collapse
Affiliation(s)
- Ryan J Mailloux
- University of Ottawa, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
10
|
Otašević V, Buzadžić B, Korać A, Stančić A, Janković A, Vučetić M, Korać B. Effects of l-arginine and l-NAME supplementation on mRNA, protein expression and activity of catalase and glutathione peroxidase in brown adipose tissue of rats acclimated to different temperatures. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 2010; 39:349-57. [PMID: 20437186 DOI: 10.1007/s00726-010-0598-z] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/09/2010] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, growing interest in the biochemistry, nutrition, and pharmacology of L-arginine has led to extensive studies to explore its nutritional and therapeutic roles in treating and preventing human metabolic disorders. Emerging evidence shows that dietary L-arginine supplementation reduces adiposity in genetically obese rats, diet-induced obese rats, finishing pigs, and obese human subjects with Type-2 diabetes mellitus. The mechanisms responsible for the beneficial effects of L-arginine are likely complex, but ultimately involve altering the balance of energy intake and expenditure in favor of fat loss or reduced growth of white adipose tissue. Recent studies indicate that L-arginine supplementation stimulates mitochondrial biogenesis and brown adipose tissue development possibly through the enhanced synthesis of cell-signaling molecules (e.g., nitric oxide, carbon monoxide, polyamines, cGMP, and cAMP) as well as the increased expression of genes that promote whole-body oxidation of energy substrates (e.g., glucose and fatty acids) Thus, L-arginine holds great promise as a safe and cost-effective nutrient to reduce adiposity, increase muscle mass, and improve the metabolic profile in animals and humans.
Collapse
Affiliation(s)
- Jason R McKnight
- Department of Animal Science, Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|