1
|
Gu J, Chen Y, Tang H, Chen X, Xing S. Impaired glymphatic system is associated with secondary neuronal injury in the thalamus following cerebral cortical infarction. Brain Res Bull 2025; 224:111330. [PMID: 40180189 DOI: 10.1016/j.brainresbull.2025.111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Focal cerebral infarction leads to abnormal amyloid-β (Aβ) deposits, which relates to secondary neuronal injury in the ipsilateral thalamus and hinders post-stroke functional recovery. However, the mechanisms underlying Aβ-pathology in the thalamus remain unclear. This study was designed to investigate the potential associations of glymphatic system with Aβ deposits and delayed neuronal damage of the ipsilateral thalamus secondary to cerebral infarction. Cortical infarction was induced with middle cerebral artery occlusion (MCAO). Secondary neuronal damage, Aβ deposits and aquaporin 4 (AQP4) polarity in the thalamus were examined by Nissl staining, immunochemistry and immunoblotting analyses. Glymphatic function was evaluated using fluorescent tracers. The effects of glymphatic system on Aβ deposits and secondary neuronal damage were determined by shRNA-mediated AQP4 knockdown. The results showed that AQP4 polarization and the clearance of tracers were obviously decreased in the ipsilateral thalamus at seven days after MCAO when compared to the sham-operated group. In parallel, there were increases in Aβ deposits, neuronal loss and astrogliosis in the ipsilateral thalamus at seven days after MCAO. Additionally, AQP4 knockdown further reduced the degree of AQP4 polarity and efflux function of tracers, coinciding with marked increases in Aβ deposits and neuronal loss in the ipsilateral thalamus at seven days after MCAO. This effect was associated with exacerbated somatosensory and cognitive deficits. These findings suggest that impaired glymphatic system was associated with secondary neuronal damage in the thalamus after cerebral infarction by possibly suppressing Aβ clearance.
Collapse
Affiliation(s)
- Jinmin Gu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yuqian Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huijia Tang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xinran Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| |
Collapse
|
2
|
Kim MJ, Youn J, Lee HJ, Lee S, Kim T, Jung Y, Shin Y, Choi BT, Jeong J, Shin HK. Hybrid Electro-optical Stimulation Improves Ischemic Brain Damage by Augmenting the Glymphatic System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417449. [PMID: 39927473 PMCID: PMC11967803 DOI: 10.1002/advs.202417449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Ischemic brain injury not only results in significant neurological, motor, and cognitive impairment but also contributes to the accumulation of toxic solutes and proinflammatory cytokines in the infarction region, exacerbating ischemic brain damage. The glymphatic system, which is crucial for brain waste clearance and homeostasis, is impaired by ischemic injury, highlighting the importance of developing therapeutic strategies for poststroke complications. Herein, a novel hybrid electro-optical stimulation device is proposed that integrates near-infrared micro-light-emitting diode with transparent microneedles, enabling efficient noninvasive stimulation of the cortical area for ischemic stroke treatment. This study investigates whether this hybrid electro-optical stimulation enhances the glymphatic system function and ameliorates ischemic brain injury in the middle cerebral artery occlusion and reperfusion (MCAO/R) mice model. The results demonstrate that hybrid stimulation improves the neurological, motor, and cognitive functions and reduces brain atrophy following MCAO/R. Moreover, hybrid stimulation restores impaired glymphatic system function by modulation of aquaporin-4 (AQP4) polarization and alleviates the accumulation of proinflammatory cytokines such as IL-1β. Notably, AQP4 inhibition partly reverses the improved functional outcomes of hybrid stimulation. The findings suggest that targeting glymphatic drainage using hybrid electro-optical stimulation is a promising therapeutic approach for treating ischemic brain injury.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Jiman Youn
- Department of Information Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Hong Ju Lee
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Seo‐Yeon Lee
- Department of PharmacologyWonkwang University School of MedicineIksan54538Republic of Korea
| | - Tae‐Gyu Kim
- School of Healthcare and Biomedical EngineeringChonnam National UniversityYeosu59626Republic of Korea
| | - Young‐Jin Jung
- School of Healthcare and Biomedical EngineeringChonnam National UniversityYeosu59626Republic of Korea
| | - Yong‐Il Shin
- Department of Rehabilitation MedicineSchool of MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Joonsoo Jeong
- Department of Information Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| |
Collapse
|
3
|
Tang W, Cheng R, Gao MY, Hu MJ, Zhang L, Wang Q, Li XY, Yan W, Wang XY, Yang HM, Cheng J, Hua ZC. A novel annexin dimer targets microglial phagocytosis of astrocytes to protect the brain-blood barrier after cerebral ischemia. Acta Pharmacol Sin 2025; 46:852-866. [PMID: 39663418 PMCID: PMC11950206 DOI: 10.1038/s41401-024-01432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
Despite the vital role of astrocytes in preserving blood-brain barrier (BBB) integrity, their therapeutic potential as targets in ischemic stroke-induced barrier disruption remains underexplored. We previously reported externalization of phosphatidylserine (PS) on astrocytic membranes concurrent with the emergence of PS externalization in neurons. PS externalization of astrocytes induced microglial phagocytosis of astrocytes, resulting in reduced astrocyte-vascular coupling and subsequent BBB breakdown. Annexin A5 (ANXA5) belongs to the superfamily of calcium (Ca2+)- and phospholipid-binding proteins. Here, we report two X-ray structures of human ANXA5, including monomeric ANXA5 (1.42 Å) and dimeric ANXA5 (1.80 Å). Through the combination of molecular docking and functional analysis, we explored the mechanism of action of ANXA5 in stroke treatment. In addition, we observed a clear increase in therapeutic efficacy corresponding to the increased affinity of ANXA5 for PS. In summary, the phagocytosis of PS-externalized astrocytes by microglia has emerged as a critical mechanism driving BBB breakdown after ischemia. Our findings offer valuable structural insight into ANXA5 as an innovative pharmacological target for safeguarding blood-brain barrier integrity after cerebral ischemia. These insights may facilitate the development of novel PS-targeting medications aimed at achieving enhanced efficacy with minimal side effects.
Collapse
Affiliation(s)
- Wei Tang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rong Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Meng-Yue Gao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Min-Jin Hu
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qiang Wang
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Xin-Yu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wei Yan
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Xiao-Ying Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hai-Mei Yang
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Jian Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
- Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Mannan A, Mohan M, Gulati A, Dhiman S, Singh TG. Aquaporin proteins: A promising frontier for therapeutic intervention in cerebral ischemic injury. Cell Signal 2024; 124:111452. [PMID: 39369758 DOI: 10.1016/j.cellsig.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Cerebral ischemic injury is characterized by reduced blood flow to the brain, remains a significant cause of morbidity and mortality worldwide. Despite improvements in therapeutic approaches, there is an urgent need to identify new targets to lessen the effects of ischemic stroke. Aquaporins, a family of water channel proteins, have recently come to light as promising candidates for therapeutic intervention in cerebral ischemic injury. There are 13 aquaporins identified, and AQP4 has been thoroughly involved with cerebral ischemia as it has been reported that modulation of AQP4 activity can offers a possible pathway for therapeutic intervention along with their role in pH, osmosis, ions, and the blood-brain barrier (BBB) as possible therapeutic targets for cerebral ischemia injury. The molecular pathways which can interacts with particular cellular pathways, participation in neuroinflammation, and possible interaction with additional proteins thought to be involved in the etiology of a stroke. Understanding these pathways offers crucial information on the diverse role of AQPs in cerebral ischemia, paving the door for the development of focused/targeted therapeutics.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anshika Gulati
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
5
|
Forró T, Manu DR, Barbu-Tudoran L, Bălașa R. Astrocyte Dysfunction Reflected in Ischemia-Induced Astrocyte-Derived Extracellular Vesicles: A Pilot Study on Acute Ischemic Stroke Patients. Int J Mol Sci 2024; 25:12471. [PMID: 39596535 PMCID: PMC11594292 DOI: 10.3390/ijms252212471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) secreted by astrocytes (ADEVs) mediate numerous biological processes, providing insights into damage, repair, and protection following ischemic stroke (IS). This pilot study aimed to broaden the current knowledge on the astrocyte response to ischemia by dynamically assessing the aquaporin-4 (AQP4) and glial cell line-derived neurotrophic factor (GDNF) as cargo proteins of these vesicles in eighteen acute IS patients and nine controls. EV proteins were detected by Western blotting and followed 24 h (D1), 7 days (D7), and one month (M1) after symptoms onset. The post-ischemic ADEV AQP4 and GDNF levels were higher at D1 compared to the control group (p = 0.006 and p = 0.023). Significant differences were observed in ADEV AQP4 during the three evaluated time points (n = 12, p = 0.013) and between D1 and D7 (z = 2.858, p = 0.012), but not in EV GDNF. There was a positive relationship between the severity of stroke at D1 according to the National Institutes of Health Stroke Scale, and ADEV AQP4 at D1 (r = 0.50, p = 0.031), as well as ADEV GDNF at D1 and D7 (r = 0.49, p = 0.035 and r = 0.53, p = 0.021, respectively). The release of EVs with distinct protein profiles can be an attractive platform for the development of biomarkers in IS.
Collapse
Affiliation(s)
- Timea Forró
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Bălașa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- 1st Neurology Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
6
|
Yuan Y, Peng W, Lei J, Zhao Y, Zhao B, Li Y, Wang J, Qu Q. AQP4 Endocytosis-Lysosome Degradation Mediated by MMP-9/β-DG Involved in Diabetes Cognitive Impairment. Mol Neurobiol 2024; 61:8438-8453. [PMID: 38512439 DOI: 10.1007/s12035-024-04085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Cognitive impairment is considered to be one of the important comorbidities of diabetes, but the underlying mechanisms are widely unknown. Aquaporin-4 (AQP4) is the most abundant water channel in the central nervous system, which plays a neuroprotective role in various neurological diseases by maintaining the function of glymphatic system and synaptic plasticity. However, whether AQP4 is involved in diabetes-related cognitive impairment remains unknown. β-dystroglycan (β-DG), a key molecule for anchoring AQP4 on the plasma membrane of astrocytes and avoiding its targeting to lysosomes for degradation, can be cleaved by matrix metalloproteinase-9 (MMP-9). β-DG deficiency can cause a decline in AQP4 via regulating its endocytosis. However, whether cleavage of β-DG can affect the expression of AQP4 remains unreported. In this study, we observed that diabetes mice displayed cognitive disorder accompanied by reduction of AQP4 in prefrontal cortex. And we found that bafilomycin A1, a widely used lysosome inhibitor, could reverse the downregulation of AQP4 in diabetes, further demonstrating that the reduction of AQP4 in diabetes is a result of more endocytosis-lysosome degradation. In further experiments, we found diabetes caused the excessive activation of MMP-9/β-DG which leaded to the loss of connection between AQP4 and β-DG, further inducing the endocytosis of AQP4. Moreover, inhibition of MMP-9/β-DG restored the endocytosis-lysosome degradation of AQP4 and partially alleviated cognitive dysfunction in diabetes. Our study sheds new light on the role of AQP4 in diabetes-associated cognitive disorder. And we provide a promising therapeutic target to reverse the endocytosis-lysosome degradation of AQP4 in diabetes, such as MMP-9/β-DG.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wei Peng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Jingna Lei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Beiyu Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Yaghoobi Z, Seyed Bagher Nazeri SS, Asadi A, Derafsh E, Talebi Taheri A, Tamtaji Z, Dadgostar E, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-coding RNAs and Aquaporin 4: Their Role in the Pathogenesis of Neurological Disorders. Neurochem Res 2024; 49:583-596. [PMID: 38114727 DOI: 10.1007/s11064-023-04067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.
Collapse
Affiliation(s)
- Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | | | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, School of Medicine, Addiction Institute, and Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, St Kitts and Nevis
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
8
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
9
|
Madden N, Mei YZJ, Jakubiak K, Li J, Hargus G, Goldman JE, Al-Dalahmah O. The link between SARS-CoV-2 related microglial reactivity and astrocyte pathology in the inferior olivary nucleus. Front Neurosci 2023; 17:1198219. [PMID: 37483351 PMCID: PMC10359900 DOI: 10.3389/fnins.2023.1198219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The pathological involvement of the central nervous system in SARS-CoV2 (COVID-19) patients is established. The burden of pathology is most pronounced in the brain stem including the medulla oblongata. Hypoxic/ischemic damage is the most frequent neuropathologic abnormality. Other neuropathologic features include neuronophagia, microglial nodules, and hallmarks of neurodegenerative diseases: astrogliosis and microglial reactivity. It is still unknown if these pathologies are secondary to hypoxia versus a combination of inflammatory response combined with hypoxia. It is also unknown how astrocytes react to neuroinflammation in COVID-19, especially considering evidence supporting the neurotoxicity of certain astrocytic phenotypes. This study aims to define the link between astrocytic and microglial pathology in COVID-19 victims in the inferior olivary nucleus, which is one of the most severely affected brain regions in COVID-19, and establish whether COVID-19 pathology is driven by hypoxic damage. Here, we conducted neuropathologic assessments and multiplex-immunofluorescence studies on the medulla oblongata of 18 COVID-19, 10 pre-pandemic patients who died of acute respiratory distress syndrome (ARDS), and 7-8 control patients with no ARDS or COVID-19. The comparison of ARDS and COVID-19 allows us to identify whether the pathology in COVID-19 can be explained by hypoxia alone, which is common to both conditions. Our results showed increased olivary astrogliosis in ARDS and COVID-19. However, microglial density and microglial reactivity were increased only in COVID-19, in a region-specific manner. Also, olivary hilar astrocytes increased YKL-40 (CHI3L1) in COVID-19, but to a lesser extent than ARDS astrocytes. COVID-19 astrocytes also showed lower levels of Aquaporin-4 (AQP4), and Metallothionein-3 in subsets of COVID-19 brain regions. Cluster analysis on immunohistochemical attributes of astrocytes and microglia identified ARDS and COVID-19 clusters with correlations to clinical history and disease course. Our results indicate that olivary glial pathology and neuroinflammation in the COVID-19 cannot be explained solely by hypoxia and suggest that failure of astrocytes to upregulate the anti-inflammatory YKL-40 may contribute to the neuroinflammation. Notwithstanding the limitations of retrospective studies in establishing causality, our experimental design cannot adequately control for factors external to our design. Perturbative studies are needed to confirm the role of the above-described astrocytic phenotypes in neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
10
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wang H, Li J, Zhang H, Wang M, Xiao L, Wang Y, Cheng Q. Regulation of microglia polarization after cerebral ischemia. Front Cell Neurosci 2023; 17:1182621. [PMID: 37361996 PMCID: PMC10285223 DOI: 10.3389/fncel.2023.1182621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Stroke ranks second as a leading cause of death and permanent disability globally. Microglia, innate immune cells in the brain, respond rapidly to ischemic injury, triggering a robust and persistent neuroinflammatory reaction throughout the disease's progression. Neuroinflammation plays a critical role in the mechanism of secondary injury in ischemic stroke and is a significant controllable factor. Microglia activation takes on two general phenotypes: the pro-inflammatory M1 type and the anti-inflammatory M2 type, although the reality is more complex. The regulation of microglia phenotype is crucial to controlling the neuroinflammatory response. This review summarized the key molecules and mechanisms of microglia polarization, function, and phenotypic transformation following cerebral ischemia, with a focus on the influence of autophagy on microglia polarization. The goal is to provide a reference for the development of new targets for the treatment for ischemic stroke treatment based on the regulation of microglia polarization.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jingjing Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Han Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Mengyao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Lifang Xiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
12
|
Gono R, Sugimoto K, Yang C, Murata Y, Nomura R, Shirazaki M, Harada K, Harada T, Miyashita Y, Higashisaka K, Katada R, Matsumoto H. Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats. J Cereb Blood Flow Metab 2023; 43:812-827. [PMID: 36651110 PMCID: PMC10108195 DOI: 10.1177/0271678x231151569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cerebral edema following cerebral infarction can be severe and directly affect mortality and mobility. Exercise therapy after cerebral infarction is an effective therapeutic approach; however, the molecular mechanism remains unclear. Myokines such as interleukin-1 receptor antagonist (IL-1RA) are released during skeletal muscle contraction with effects on other organs. We hypothesized that myokine release during exercise might improve brain edema and confirmed the hypothesis using transient middle cerebral artery occlusion (tMCAO) model rats. Rats subjected to tMCAO were divided according to the severity of illness and further assigned to exercise and non-exercise groups. Treadmill exercises were performed at a speed of 2-8 m/min for 10 min from 1-6 days post-reperfusion after tMCAO. Exercise significantly reduced edema and neurological deficits in severely ill rats, with a reduction in aquaporin-4 (AQP4) expression in the ischemic core and increased blood IL-1RA release from the stroke-unaffected hindlimb muscle after tMCAO. Administration of IL-1RA into the lateral ventricles significantly reduced edema and AQP4 expression in the ischemic core. In conclusion, treadmill exercise performed in the early phase of stroke onset alleviated the decrease in blood IL-1RA following ischemic stroke. IL-1RA administration decreased astrocytic AQP4 expression in the ischemic core, suppressing brain edema.
Collapse
Affiliation(s)
- Rina Gono
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kana Sugimoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chihpin Yang
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yukie Murata
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Reiko Nomura
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mai Shirazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kazuo Harada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teiji Harada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Miyashita
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuma Higashisaka
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuichi Katada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Matsumoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
13
|
Zhang Y, Zhao X, Zhang Y, Zeng F, Yan S, Chen Y, Li Z, Zhou D, Liu L. The role of circadian clock in astrocytes: From cellular functions to ischemic stroke therapeutic targets. Front Neurosci 2022; 16:1013027. [PMID: 36570843 PMCID: PMC9772621 DOI: 10.3389/fnins.2022.1013027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that astrocytes, the abundant cell type in the central nervous system (CNS), play a critical role in maintaining the immune response after cerebral infarction, regulating the blood-brain barrier (BBB), providing nutrients to the neurons, and reuptake of glutamate. The circadian clock is an endogenous timing system that controls and optimizes biological processes. The central circadian clock and the peripheral clock are consistent, controlled by various circadian components, and participate in the pathophysiological process of astrocytes. Existing evidence shows that circadian rhythm controls the regulation of inflammatory responses by astrocytes in ischemic stroke (IS), regulates the repair of the BBB, and plays an essential role in a series of pathological processes such as neurotoxicity and neuroprotection. In this review, we highlight the importance of astrocytes in IS and discuss the potential role of the circadian clock in influencing astrocyte pathophysiology. A comprehensive understanding of the ability of the circadian clock to regulate astrocytes after stroke will improve our ability to predict the targets and biological functions of the circadian clock and gain insight into the basis of its intervention mechanism.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yao Chen
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhong Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,Desheng Zhou,
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Lijuan Liu,
| |
Collapse
|
14
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
15
|
Yılmaz H, Şengelen A, Demirgan S, Paşaoğlu HE, Çağatay M, Erman İE, Bay M, Güneyli HC, Önay-Uçar E. Acutely increased aquaporin-4 exhibits more potent protective effects in the cortex against single and repeated isoflurane-induced neurotoxicity in the developing rat brain. Toxicol Mech Methods 2022; 33:279-292. [PMID: 36127839 DOI: 10.1080/15376516.2022.2127389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Damage to hippocampus, cerebellum, and cortex associated with cognitive functions due to anesthetic-induced toxicity early in life may cause cognitive decline later. Aquaporin 4 (AQP4), a key protein in waste clearance pathway of brain, is involved in synaptic plasticity and neurocognition. We investigated the effects of single and repeated isoflurane (Iso) anesthesia on AQP4 levels and brain damage. Postnatal-day (P)7 Wistar albino rats were randomly assigned to Iso or Control (C) groups. For single-exposure, pups were exposed to 1.5% Iso in 30% oxygenated-air for 3-h at P7 (Iso1). For repeated-exposure, pups were exposed to Iso for 3 days, 3-h each day, at 1-day intervals (P7 + 9+11) starting at P7 (Iso3). C1 and C3 groups received only 30% oxygenated-air. Based on HE-staining and immunoblotting (Bax/Bcl-2, cleaved-caspase3 and PARP1) analyses, Iso exposures caused a higher degree of apoptosis in hippocampus. Anesthesia increased 4HNE, oxidative stress marker; the highest ROS accumulation was determined in cerebellum. Increased inflammation (TNF-α, NF-κB) was detected. Multiple Iso-exposures caused more significant damage than single exposure. Moreover, 4HNE and TNF-α contributed synergistically to Iso-induced neurotoxicity. After anesthesia, higher expression of AQP4 was detected in cortex than hippocampus and cerebellum. There was an inverse correlation between increased AQP4 levels and apoptosis/ROS/inflammation. Correlation analysis indicated that AQP4 had a more substantial protective profile against oxidative stress than apoptosis. Remarkably, acutely increased AQP4 against Iso exhibited a more potent neuroprotective effect in cortex, especially frontal cortex. These findings promote further research to understand better the mechanisms underlying anesthesia-induced toxicity in the developing brain.
Collapse
Affiliation(s)
- Habip Yılmaz
- Department of Public Hospital Services, Istanbul Health Directorate, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Serdar Demirgan
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hüsniye Esra Paşaoğlu
- Department of Pathology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Melike Çağatay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Emre Erman
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Bay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hasan Cem Güneyli
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Rana T, Behl T, Shamsuzzaman M, Singh S, Sharma N, Sehgal A, Alshahrani AM, Aldahish A, Chidambaram K, Dailah HG, Bhatia S, Bungau S. Exploring the role of astrocytic dysfunction and AQP4 in depression. Cell Signal 2022; 96:110359. [PMID: 35597427 DOI: 10.1016/j.cellsig.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Aquaporin-4 (AQP4) is the water regulating channel found in the terminal processes of astrocytes in the brain and is implicated in regulating the astrocyte functions, whereas in neuropathologies, AQP4 performs an important role in astrocytosis and release of proinflammatory cytokines. However, several findings have revealed the modulation of the AQP4 water channel in the etiopathogenesis of various neuropsychiatric diseases. In the current article, we have summarized the recent studies and highlighted the implication of astrocytic dysfunction and AQP4 in the etiopathogenesis of depressive disorder. Most of the studies have measured the AQP4 gene or protein expression in the brain regions, particularly the locus coeruleus, choroid plexus, prefrontal cortex, and hippocampus, and found that in these brain regions, AQP4 gene expression decreased on exposure to chronic mild stress. Few studies also measured the peripheral AQP4 mRNA expression in the blood and AQP4 autoantibodies in the blood serum and revealed no change in the depressed patients in comparison with normal individuals.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
17
|
Genel O, Pariante CM, Borsini A. The role of AQP4 in the pathogenesis of depression, and possible related mechanisms. Brain Behav Immun 2021; 98:366-377. [PMID: 34474133 DOI: 10.1016/j.bbi.2021.08.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Modulation of the aquaporin 4 (AQP4) water-regulatory channel or production of autoantibodies against this protein have been implicated in a variety of neuropsychiatric conditions, and possible mechanisms have been proposed. However, the nature of the interaction between AQP4 expression and its implications in depression remain elusive. To our knowledge, this is the first review summarising data for the involvement of AQP4 in the context of depression and related mechanisms across a wide range of experimental studies: pre-clinical (KO and wild-type), post-mortem, ex vivo, and clinical studies in depression. Overall, preclinical AQP4 wild-type studies showed that exposure to stress or inflammation, used as models of depression, decreased AQP4 protein and gene expression in various brain regions, including prefrontal cortex (PFC), choroid plexus and, especially, hippocampus. In preclinical AQP4 KO studies, AQP4 expression is necessary to prevent the effect of stress and inflammation on reduced neurogenesis and gliogenesis, and increased apoptosis and depressive-like behaviours. While in post-mortem and ex vivo studies of depression AQP4 expression was usually decreased in the hippocampus, prefrontal cortex and locus coeruleus, in clinical studies, where mRNA AQP4 expression or serum AQP4 autoantibodies were measured, there were no differences in depressed patients when compared with controls. In the future, studies should further investigate the mechanisms underlying the action of AQP4, and continue exploring if AQP4 autoantibodies are either contributing or underlying mechanisms of depression, or whether they are simply a mechanism underlying other autoimmune conditions where depression is present.
Collapse
Affiliation(s)
- Oktay Genel
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; School of Medicine, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| |
Collapse
|
18
|
Urushihata T, Takuwa H, Takahashi M, Kershaw J, Tachibana Y, Nitta N, Shibata S, Yasui M, Higuchi M, Obata T. Exploring cell membrane water exchange in aquaporin-4-deficient ischemic mouse brain using diffusion-weighted MRI. Eur Radiol Exp 2021; 5:44. [PMID: 34617156 PMCID: PMC8494869 DOI: 10.1186/s41747-021-00244-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aquaporin-4 is a membrane channel protein that is highly expressed in brain astrocytes and facilitates the transport of water molecules. It has been suggested that suppression of aquaporin-4 function may be an effective treatment for reducing cellular edema after cerebral infarction. It is therefore important to develop clinically applicable measurement systems to evaluate and better understand the effects of aquaporin-4 suppression on the living body. METHODS Animal models of focal cerebral ischemia were created by surgically occluding the middle cerebral artery of wild-type and aquaporin-4 knockout mice, after which multi-b-value multi-diffusion-time diffusion-weighted imaging measurements were performed. Data were analyzed with both the apparent diffusion coefficient (ADC) model and a compartmental water-exchange model. RESULTS ADCs were estimated for five different b value ranges. The ADC of aquaporin-4 knockout mice in the contralateral region was significantly higher than that of wild-type mice for each range. In contrast, aquaporin-4 knockout mice had significantly lower ADC than wild-type mice in ischemic tissue for each b-value range. Genotype-dependent differences in the ADC were particularly significant for the lowest ranges in normal tissue and for the highest ranges in ischemic tissue. The ADCs measured at different diffusion times were significantly different for both genotypes. Fitting of the water-exchange model to the ischemic region data found that the water-exchange time in aquaporin-4 knockout mice was approximately 2.5 times longer than that in wild-type mice. CONCLUSIONS Multi-b-value multi-diffusion-time diffusion-weighted imaging may be useful for in vivo research and clinical diagnosis of aquaporin-4-related diseases.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Jeff Kershaw
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Yasuhiko Tachibana
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Nobuhiro Nitta
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Sayaka Shibata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Masato Yasui
- Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, 160-0016, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan.
| |
Collapse
|
19
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Li B, Yuan H, Li H, Luo B, Yu X, Wang Y, Liu W. Mechanism of Aquaporin-4 Up-Regulation After Traumatic Brain Injury and Preventative Action of Astragalus Polysaccharides in Mice. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here, we aimed to clarify the anti-inflammatory function of Astragalus Polysaccharides (APS), a chemical compound derived from Astragalus membranaceus, and the action of AQP4 on brain injury. We hypothesized that APS could improve the traumatic brain injury (TBI) outcome via
inhibiting expression of AQP4 in astrocytes. The present study elucidated that AQP4 was up-regulated and was effectively blocked by APS in mice with severe controlled cortical impact (CCI). Pre-treatment with APS effectively inhibited the up-regulation of AQP4 and diminished the neurological
deficits in mice. Additionally, primary astrocytes treated with mechanically-injured astrocyte supernatant, to mimic TBI in vitro, showed a significant up-regulation in swelling. We confirmed various signal molecules (NF-ĸB, MAPKs, and ERK) to have a role in astrocyte
swelling, after activation in trauma, and to be involved in the up-regulation of AQP4. These signal molecules also significantly decreased with APS treatment. In conclusion, our study suggests that APS attenuated neurological deficits and brain edema by decreasing AQP4 up-regulation in astrocytes
following TBI in mice, via reducing NF-ĸB, MAPKs, and the ERK signal molecules.
Collapse
Affiliation(s)
- Bin Li
- Department of Neurosurgery, The People’s Hospital of Hanchuan, Xiaogan 431600, Hubei, PR China
| | - Honggang Yuan
- Department of Neurosurgery, The People’s Hospital of Hanchuan, Xiaogan 431600, Hubei, PR China
| | - Huibing Li
- Department of Neurosurgery, The People’s Hospital of Hanchuan, Xiaogan 431600, Hubei, PR China
| | - Baochang Luo
- Department of Neurosurgery, The People’s Hospital of Hanchuan, Xiaogan 431600, Hubei, PR China
| | - Xiaoping Yu
- Department of Neurosurgery, The People’s Hospital of Hanchuan, Xiaogan 431600, Hubei, PR China
| | - Yanhua Wang
- Department of Neurosurgery, The People’s Hospital of Hanchuan, Xiaogan 431600, Hubei, PR China
| | - Wen Liu
- Department of Neurosurgery, The People’s Hospital of Hanchuan, Xiaogan 431600, Hubei, PR China
| |
Collapse
|
21
|
Dadgostar E, Tajiknia V, Shamsaki N, Naderi-Taheri M, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 and brain-related disorders: Insights into its apoptosis roles. EXCLI JOURNAL 2021; 20:983-994. [PMID: 34267610 PMCID: PMC8278210 DOI: 10.17179/excli2021-3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Brain-related disorders are leading global health problems. Various internal and external factors are involved in the progression of brain-related disorders. Inflammatory pathways, oxidative stresses, apoptosis, and deregulations of various channels are critical players in brain-related disorder pathogenesis. Among these players, aquaporins (AQP) have critical roles in various physiological and pathological conditions. AQPs are water channel molecules that permit water to cross the hydrophobic lipid bilayers of cellular membranes. AQP4 is one of the important members of AQP family. AQPs are involved in controlling apoptosis pathways in brain-related disorders. In this regard, several reports have evaluated the pathological effects of AQP4 by targeting the apoptosis-related processes in brain-related disorders. Here, for the first time, we highlight the impact of AQP4 on apoptosis-related processes in brain-related disorders.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Shamsaki
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Naderi-Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging 2019; 87:1-10. [PMID: 31986345 DOI: 10.1016/j.neurobiolaging.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is a complex biological process and has been known to play an important role in age-related cerebrovascular and neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Cysteinyl leukotrienes (CysLTs) are potent inflammatory lipid mediators that exhibit actions mainly through activating type 1 and type 2 CysLT receptors (CysLT1 and CysLT2). Accumulating evidence shows that CysLT1 and CysLT2 are activated at different stages of pathological process in various cell types in the brain such as vascular endothelial cells, astrocytes, microglia, and neurons in response to insults. However, the precise roles and mechanisms of CysLT1 and CysLT2 in regulating the pathogenesis of cerebral ischemia, Alzheimer's disease, and Parkinson's disease are not fully understood. In this article, we focus on current advances that link activation of CysLT1 and CysLT2 to the pathological process during brain ischemia and neurodegeneration and discuss mechanisms by which CysLT1 and CysLT2 mediate inflammatory process and brain injury. Multitarget anti-inflammatory potentials of CysLT1 and CysLT2 antagonism for neuroinflammation and brain injury will also be reviewed.
Collapse
|
23
|
Circulating Aquaporin-4 as A biomarker of early neurological improvement in stroke patients: A pilot study. Neurosci Lett 2019; 714:134580. [PMID: 31672489 DOI: 10.1016/j.neulet.2019.134580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022]
Abstract
Patients' outcome prediction after ischemic stroke is still challenging. Aquaporin-4 (AQP4) is a water channel that is up-regulated in the brain after the ischemic event, but its presence in bloodstream of stroke patients has not been previously studied. The aim of this pilot study was to investigate circulating AQP4 levels after stroke and its correlation with infarct growth and neurological outcome. AQP4 level was determined by ELISA in serum from 42 t-PA-treated ischemic stroke patients at admission (before t-PA) and 13 healthy subjects. To assess infarct growth, serial brain diffusion-weighted magnetic resonance images were performed at hospital admission and 1-3 days after. Neurological improvement was defined as a ≥4-point decrease in NIHSS score compared to baseline score. Despite stroke patients and healthy controls had similar baseline circulating AQP4 levels, among strokes AQP4 level negatively correlated with NIHSS score at admission (R= -0.34, p = 0.029) and with infarct growth after 1-3 days of stroke onset (R=-0.36; p = 0.018). Furthermore, baseline AQP4 level was higher in those stroke patients showing a neurological improvement 48 h after stroke onset (p = 0.030) and at hospital discharge (p = 0.037). Baseline AQP4 levels also resulted to be an independent predictor of good neurological outcome at both studied time points (ORadj: 14.33[1.82-112.92], p = 0.012 at 48 h; ORadj: 4.86[0.98-24.12], p = 0.053 at discharge) in logistic regression analysis, adjusted by age, sex, baseline NIHSS and significant variables in the univariate analysis. Overall, we have explored circulating AQP4 levels, and our data suggest that AQP4 could be used as a biomarker of neurological recovery in the acute-subacute phase of ischemic stroke.
Collapse
|
24
|
Tamtaji OR, Behnam M, Pourattar MA, Jafarpour H, Asemi Z. Aquaporin 4: A key player in Parkinson's disease. J Cell Physiol 2019; 234:21471-21478. [PMID: 31127615 DOI: 10.1002/jcp.28871] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases which occur in aged people worldwide. Given that a sequence of cellular and molecular mechanisms, including oxidative stresses, apoptosis, inflammatory pathways, microglia, astrocyte activation, and aquaporin 4 (AQP4) are associated with initiation and the progression of PD. AQP4 may affect various pathways (i.e., α-synuclein, inflammatory pathways, and microglia and astrocyte activation). Few reports have evaluated the relationship between AQP4 and PD-related cellular and molecular pathways. Here, for the first time, we highlighted the relationship between AQP4 and molecular mechanisms involved in PD pathogenesis.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Hamed Jafarpour
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proc Natl Acad Sci U S A 2019; 116:11010-11019. [PMID: 31097598 DOI: 10.1073/pnas.1817347116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous waves of cortical spreading depolarization (CSD) are induced in the setting of acute focal ischemia. CSD is linked to a sharp increase of extracellular K+ that induces a long-lasting suppression of neural activity. Furthermore, CSD induces secondary irreversible damage in the ischemic brain, suggesting that K+ homeostasis might constitute a therapeutic strategy in ischemic stroke. Here we report that adrenergic receptor (AdR) antagonism accelerates normalization of extracellular K+, resulting in faster recovery of neural activity after photothrombotic stroke. Remarkably, systemic adrenergic blockade before or after stroke facilitated functional motor recovery and reduced infarct volume, paralleling the preservation of the water channel aquaporin-4 in astrocytes. Our observations suggest that AdR blockers promote cerebrospinal fluid exchange and rapid extracellular K+ clearance, representing a potent potential intervention for acute stroke.
Collapse
|
26
|
Safflower Yellow B Protects Brain against Cerebral Ischemia Reperfusion Injury through AMPK/NF-kB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7219740. [PMID: 30854014 PMCID: PMC6378026 DOI: 10.1155/2019/7219740] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/15/2019] [Indexed: 11/24/2022]
Abstract
Inflammation had showed its important role in the pathogenesis of cerebral ischemia and secondary damage. Safflower yellow B (SYB) had neuroprotective effects against oxidative stress-induced brain injuries, but the mechanisms were still largely unknown to us. In this study, we tried to investigate the anti-inflammation effects of SYB and the possible roles of AMPK/NF-κB signaling pathway on these protective effects. In vivo, brain ischemia/reperfusion (I/R) was induced by transient middle cerebral artery occlusion for 2 h and reperfusion for 20 h. Neurofunctional evaluation, infarction area, and brain water contents were measured. Brain injury markers and inflammatory cytokines levels were measured by ELISA kits. In vitro, cell viability, apoptosis, and LDH leakage were measured after I/R in PC12 cells. The expression and phosphorylation levels of AMPK, NF-κB p65, and P-IκB-α in cytoplasm and nuclear were measured by Western blotting. SiRNA experiment was performed to certify the role of AMPK. The results showed SYB reduced infarct size, improved neurological outcomes, and inhibited brain injury after I/R. In vitro test, SYB treatment alleviated PC12 cells injury and apoptosis and inhibited the inflammatory cytokines (IL-1, IL-6, TNF-α, and COX-2) in a dose-dependent manner. SYB treatment induced AMPK phosphorylation and inhibited NF-κB p65 nuclear translocation both in brain and in PC12 cells. Further studies also showed that the inhibition of NF-κB activity of SYB was through AMPK. In conclusion, SYB protected brain I/R injury through reducing expression of inflammatory cytokines and this effect might be partly due to the inhibition of NF-κB mediated by AMPK.
Collapse
|
27
|
Duan L, Di Q. Acetazolamide Suppresses Multi-Drug Resistance-Related Protein 1 and P-Glycoprotein Expression by Inhibiting Aquaporins Expression in a Mesial Temporal Epilepsy Rat Model. Med Sci Monit 2017; 23:5818-5825. [PMID: 29217817 PMCID: PMC5731216 DOI: 10.12659/msm.903855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Mesial temporal epilepsy (MTLE) is the most common type of focal epilepsy in adults, and is often drug-resistant. This study investigated the effects of aquaporins (AQP) inhibitor on multi-drug-resistant protein expression in an MTLE rat model. Material/Methods The MTLE rat model was established by injecting pilocarpine into rats. The MTLE rats were divided into an MTLE-6 h group, an MTLE-12 h group, and an MTLE-24 h group, together with a normal saline group (NS), to examine the AQP4 expression by using Western blot assay and immunohistochemistry assay. The other 18 MTLE model rats were used to observe the effects of the AQP4 inhibitor, acetazolamide, on the multi-drug-resistant protein 1 (MRP1) and P-glycoprotein (Pgp) by using Western blot and immunohistochemistry assays, respectively. Results AQP4 expression was enhanced in hippocampal tissues of MTLE model rats compared to NS rats (P<0.05). More positively stained AQP4 was discovered in hippocampal tissues of MTLE model rats. AQP4 inhibitor significantly decreased multi-drug-resistant protein MRP1 and Pgp expression in the AQP4 inhibitor Interfere group and the AQP4 inhibitor Therapy group compared to the TMLE model group (P<0.05). Conclusions The present findings confirm that the AQP4 inhibitor, acetazolamide, effectively inhibits the multi-drug-resistant protein, MRP1, and Pgp, in the MTLE rat model.
Collapse
Affiliation(s)
- Lei Duan
- Nanjing Brain Hospital Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qing Di
- Nanjing Brain Hospital Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
28
|
Qi XT, Zhan JS, Xiao LM, Li L, Xu HX, Fu ZB, Zhang YH, Zhang J, Jia XH, Ge G, Chai RC, Gao K, Yu ACH. The Unwanted Cell Migration in the Brain: Glioma Metastasis. Neurochem Res 2017; 42:1847-1863. [PMID: 28478595 DOI: 10.1007/s11064-017-2272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.
Collapse
Affiliation(s)
- Xue Tao Qi
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Li Ming Xiao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| | - Han Xiao Xu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Zi Bing Fu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hao Zhang
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University Health Science Center and Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
29
|
Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators Inflamm 2017; 2017:3454212. [PMID: 28607533 PMCID: PMC5451784 DOI: 10.1155/2017/3454212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.
Collapse
|
30
|
Chu H, Yang X, Huang C, Gao Z, Tang Y, Dong Q. Apelin-13 Protects against Ischemic Blood-Brain Barrier Damage through the Effects of Aquaporin-4. Cerebrovasc Dis 2017; 44:10-25. [PMID: 28402976 DOI: 10.1159/000460261] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Apelin-13 has been found to have protective effects on many neurological diseases, including cerebral ischemia. However, whether Apelin-13 acts on blood-brain barrier (BBB) disruption following cerebral ischemia is largely unknown. Aquaporin-4 (AQP4) has a close link with BBB due to the high concentration in astrocyte foot processes and regulation of astrocytes function. Here, we aimed to test Apelin-13's effects on ischemic BBB injury and examine whether the effects were dependent on AQP4. METHODS We detected the expression of AQP4 induced by Apelin-13 injection at 1, 3, and 7 days after middle cerebral artery occlusion. Meanwhile, we examined the effects of Apelin-13 on neurological function, infarct volume, and BBB disruption owing to cerebral ischemia in wild type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the possible signal transduction pathways activated by Apelin-13 to regulate AQP4 expression via astrocyte cultures. RESULTS It was found that Apelin-13 highly increased AQP4 expression as well as reduced neurological scores and infarct volume. Importantly, Apelin-13 played a role of BBB protection in both types of mice by reducing BBB permeability, increased vascular endothelial growth factor, upregulated endothelial nitric oxide synthase, and downregulated inducible NOS. In morphology, we demonstrated Apelin-13 suppressed tight junction opening and endothelial cell swelling via electron microscopy detection. Meanwhile, Apelin-13 also alleviated apoptosis of astrocytes and promoted angiogenesis. Interestingly, effects of AQP4 on neurological function and infarct volume varied with time course, while AQP4 elicited protective effects on BBB at all time points. Statistical analysis of 2-way analysis of variance with replication indicated that AQP4 was required for these effects. In addition, Apelin-13 upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt as well as AQP4 protein in cultured astrocytes. The latter was inhibited by ERK and phosphatidylinositol 3'-kinase (PI3K) inhibitors. CONCLUSION Our data suggest that Apelin-13 protects BBB from disruption after cerebral ischemia both morphologically and functionally, which is highly associated with the increased levels of AQP4, possibly through the activation of ERK and PI3K/Akt pathways. This study provides double targets to protection of ischemic BBB damage, which can present new insights to drugs development.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
31
|
Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017; 136:118-129. [PMID: 28274814 DOI: 10.1016/j.brainresbull.2017.02.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of aquaporins, it has become clear that the various mammalian aquaporins play critical physiological roles in water and ion balance in multiple tissues. Aquaporin-4 (AQP4), the principal aquaporin expressed in the central nervous system (CNS, brain and spinal cord), has been shown to mediate CNS water homeostasis. In this review, we summarize new and exciting studies indicating that AQP4 also plays critical and unanticipated roles in synaptic plasticity and memory formation. Next, we consider the role of AQP4 in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), neuromyelitis optica (NMO), epilepsy, traumatic brain injury (TBI), and stroke. Each of these conditions involves changes in AQP4 expression and/or distribution that may be functionally relevant to disease physiology. Insofar as AQP4 is exclusively expressed on astrocytes, these data provide new evidence of "astrocytopathy" in the etiology of diverse neurological diseases.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States.
| |
Collapse
|
32
|
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci Ther 2016; 22:943-951. [PMID: 27542570 DOI: 10.1111/cns.12596] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Cysteinyl leukotrienes are a group of the inflammatory lipid molecules well known as mediators of inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic asthma, allergic rhinitis, and others, recent advances in the field of biomedical research highlighted the role of these inflammatory mediators in a broader range of diseases such as in the inflammation associated with the central nervous system (CNS) disorders, vascular inflammation (atherosclerotic), and in cancer. Among the CNS diseases, they, along with their synthesis precursor enzyme 5-lipoxygenase and their receptors, have been shown to be associated with brain injury, Multiple sclerosis, Alzheimer's disease, Parkinson's disease, brain ischemia, epilepsy, and others. However, a lot more remains elusive as the research in these areas is emerging and only a little has been discovered. Herein, through this review, we first provided a general up-to-date information on the synthesis pathway and the receptors for the molecules. Next, we summarized the current findings on their role in the brain disorders, with an insight given to the future perspectives.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Hong
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
33
|
Aquaporin-4 and Cerebrovascular Diseases. Int J Mol Sci 2016; 17:ijms17081249. [PMID: 27529222 PMCID: PMC5000647 DOI: 10.3390/ijms17081249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target.
Collapse
|
34
|
Vella J, Zammit C, Di Giovanni G, Muscat R, Valentino M. The central role of aquaporins in the pathophysiology of ischemic stroke. Front Cell Neurosci 2015; 9:108. [PMID: 25904843 PMCID: PMC4389728 DOI: 10.3389/fncel.2015.00108] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022] Open
Abstract
Stroke is a complex and devastating neurological condition with limited treatment options. Brain edema is a serious complication of stroke. Early edema formation can significantly contribute to infarct formation and thus represents a promising target. Aquaporin (AQP) water channels contribute to water homeostasis by regulating water transport and are implicated in several disease pathways. At least 7 AQP subtypes have been identified in the rodent brain and the use of transgenic mice has greatly aided our understanding of their functions. AQP4, the most abundant channel in the brain, is up-regulated around the peri-infarct border in transient cerebral ischemia and AQP4 knockout mice demonstrate significantly reduced cerebral edema and improved neurological outcome. In models of vasogenic edema, brain swelling is more pronounced in AQP4-null mice than wild-type providing strong evidence of the dual role of AQP4 in the formation and resolution of both vasogenic and cytotoxic edema. AQP4 is co-localized with inwardly rectifying K(+)-channels (Kir4.1) and glial K(+) uptake is attenuated in AQP4 knockout mice compared to wild-type, indicating some form of functional interaction. AQP4-null mice also exhibit a reduction in calcium signaling, suggesting that this channel may also be involved in triggering pathological downstream signaling events. Associations with the gap junction protein Cx43 possibly recapitulate its role in edema dissipation within the astroglial syncytium. Other roles ascribed to AQP4 include facilitation of astrocyte migration, glial scar formation, modulation of inflammation and signaling functions. Treatment of ischemic cerebral edema is based on the various mechanisms in which fluid content in different brain compartments can be modified. The identification of modulators and inhibitors of AQP4 offer new therapeutic avenues in the hope of reducing the extent of morbidity and mortality in stroke.
Collapse
Affiliation(s)
| | | | | | | | - Mario Valentino
- Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
35
|
Kong H, Zeng XN, Fan Y, Yuan ST, Ge S, Xie WP, Wang H, Hu G. Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS Neurosci Ther 2014; 20:391-402. [PMID: 24422972 DOI: 10.1111/cns.12222] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
AIMS The predominant expression of aquaporin-4 (AQP4) in the brain implies that this water channel may be involved in a range of brain disorders. This study was designed to investigate the role of AQP4 in the pathogenesis of depression, and related possible biological mechanism. METHODS AND RESULTS Wild-type (AQP4(+/+) ) and AQP4 knockout (AQP4(-/-) ) mice were given daily subcutaneous injections of corticosterone (20 mg/kg) for consecutive 21 days. Forced swimming test (FST) and tail suspension test (TST) showed longer immobility times in corticosterone-treated AQP4(-/-) genotype, indicating AQP4 knockout exacerbated depressive-like behaviors in mice. Using immunohistological staining, western blot, and enzyme-linked immunosorbent assay (ELISA), we found a significant loss of astrocytes, aggravated downregulation of excitatory amino acid transporter 2 (EAAT2), synapsin-1, and glial cell line-derived neurotrophic factor (GDNF) in the hippocampus of AQP4(-/-) mice. Moreover, even less hippocampal neurogenesis was identified in corticosterone-treated AQP4(-/-) mice in vivo and hippocampus-derived adult neural stem cells (ANSCs) in vitro. CONCLUSIONS The present findings suggest AQP4 involves the pathogenesis of depression by modulating astrocytic function and adult neurogenesis, highlighting a novel profile of AQP4 as a potential target for the treatment for depression.
Collapse
Affiliation(s)
- Hui Kong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ni NC, Ballantyne LL, Mewburn JD, Funk CD. Multiple-site activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2013; 34:321-30. [PMID: 24285579 DOI: 10.1161/atvbaha.113.302536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Transgenic overexpression of the human cysteinyl leukotriene receptor 2 (CysLT2R) in murine endothelium exacerbates vascular permeability and ischemia/reperfusion injury. Here, we explore the underlying mechanisms of CysLT2R activation-mediated inflammation and delineate the relative contributions of endogenous murine CysLT2R and the transgene-derived receptor. APPROACH AND RESULTS We created a novel mouse with only endothelial-expressed CysLT2R (endothelium-targeted overexpression mice [EC]/CysLT2R-knockout mice [KO]) by crossing EC with KO to dissect the role of endothelial CysLT2R in tissue injury. Surprisingly, we discovered that damage in EC/KO mice was not elevated (24% versus 47% EC) after ischemia/reperfusion. We examined vascular permeability and leukocyte recruitment/rolling responses in the cremaster vasculature after cysteinyl leukotriene (cysLT) stimulation. Mice possessing transgenic endothelial CysLT2R overexpression, whether EC or EC/KO, when stimulated with cysLTs, exhibited vascular hyperpermeability, declining leukocyte flux, and a transient increase in slow-rolling leukocyte fraction. Mice lacking endogenous CysLT2R (both KO [20 ± 3 cells/min] EC/KO [24 ± 3]) showed lower-rolling leukocyte flux versus wild-type (38 ± 6) and EC (35 ± 6) mice under unstimulated conditions. EC/KO mice differed from EC counterparts in that vascular hyperpermeability was not present in the absence of exogenous cysLTs. CONCLUSIONS These results indicate that endothelial and nonendothelial CysLT2R niches have separate roles in mediating inflammatory responses. Endothelial receptor activation results in increased vascular permeability and leukocyte slow-rolling, facilitating leukocyte transmigration. Nonendothelial receptors, likely located on resident/circulating leukocytes, facilitate endothelial receptor activation and leukocyte transit. Activation of both receptor populations is required for injury exacerbation.
Collapse
Affiliation(s)
- Nathan C Ni
- From the Department of Biomedical and Molecular Sciences (N.C.N., L.L.B., C.D.F.) and Cancer Research Institute (J.D.M.), Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
37
|
Chai RC, Jiang JH, Wong AYK, Jiang F, Gao K, Vatcher G, Hoi Yu AC. AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia 2013; 61:1748-65. [PMID: 23922257 DOI: 10.1002/glia.22555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/30/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
Water movement plays vital roles in both physiological and pathological conditions in the brain. Astrocytes are responsible for regulating this water movement and are the major contributors to brain edema in pathological conditions. Aquaporins (AQPs) in astrocytes play critical roles in the regulation of water movement in the brain. AQP1, 3, 4, 5, 8, and 9 have been reported in the brain. Compared with AQP1, 4, and 9, AQP3, 5, and 8 are less studied. Among the lesser known AQPs, AQP5, which has multiple functions identified outside the central nervous system, is also indicated to be involved in hypoxia injury in astrocytes. In our study, AQP5 expression could be detected both in primary cultures of astrocytes and neurons, and AQP5 expression in astrocytes was confirmed in 1- to 4-week old primary cultures of astrocytes. AQP5 was localized on the cytoplasmic membrane and in the cytoplasm of astrocytes. AQP5 expression was downregulated during ischemia treatment and upregulated after scratch-wound injury, which was also confirmed in a middle cerebral artery occlusion model and a stab-wound injury model in vivo. The AQP5 increased after scratch injury was polarized to the migrating processes and cytoplasmic membrane of astrocytes in the leading edge of the scratch-wound, and AQP5 over-expression facilitated astrocyte process elongation after scratch injury. Taken together, these results indicate that AQP5 might be an important water channel in astrocytes that is differentially expressed during various brain injuries.
Collapse
Affiliation(s)
- Rui Chao Chai
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|