1
|
Zhang X, Wang Y, Lv J. STAT4 targets KISS1 to inhibit the oxidative damage, inflammation and neuronal apoptosis in experimental PD models by inactivating the MAPK pathway. Neurochem Int 2024; 175:105683. [PMID: 38341034 DOI: 10.1016/j.neuint.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Oxidative stress and neuroinflammation are proven to play critical roles in the pathogenesis of Parkinson's disease (PD). As reported, patients with PD have lower level of STAT4 compared with healthy subjects. However, the biological functions and mechanisms of STAT4 in PD pathogenesis remain uncertain. This study aimed to investigate the roles and related mechanisms of STAT4 in PD development. METHODS The intraperitoneal injection of MPTP (20 mg/kg) dissolved in physiological saline was performed to mimic PD-like conditions in vivo. MPP + solution was prepared for cell model of PD. Cell viability was measured by CCK-8. Griess reaction was conducted to measure NO concentrations. The mRNA and protein levels were evaluated by RT-qPCR and western blotting. ROS generation was assessed by DCFH-DA. The levels of inflammatory cytokines were measured by ELISA. Cell apoptosis was examined by flow cytometry and western blotting. Moreover, the SH-SY5Y cells were treated with conditioned medium from LPS-stimulated microglia and subjected to CCK-8 assays and ELISA. Mechanistically, CHIP assays and luciferase reporter assays were performed to verify the binding relationship between KISS1 and STAT4. For in vivo analysis, the histological changes of midbrain tissues of mice were determined by hematoxylin and eosin staining. The expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry staining. Iba-1 positive microglial cells in the striatum were assessed by immunofluorescence staining. RESULTS For in vitro analysis, STAT4 level was downregulated after MPP+ treatment, and STAT4 upregulation inhibited the oxidative damage, inflammation and apoptosis in SH-SY5Y cells. STAT4 bound at +215-228 region of KISS1, and KISS1 upregulation counteracted the protection of STAT4 upregulation against cell damage. Moreover, STAT4 upregulation inhibited cell viability loss and inflammation induced by conditioned medium from LPS-treated microglia, whereas KISS1 upregulation had the opposite effect. For in vivo analysis, the protective effects of STAT4 upregulation against inflammatory response, oxidative stress, dopaminergic neuronal loss and microglia activation were attenuated by KISS1 upregulation. Moreover, the inactivation of MAPK pathway caused by STAT4 upregulation was reversed by KISS1 upregulation, and MAPK inhibition attenuated the MPP+-induced inflammation, oxidative stress and apoptosis in SH-SY5Y cells. CONCLUSION STAT4 inhibits KISS1 to attenuate the oxidative damage, inflammation and neuronal apoptosis in PD by inactivating the MAPK pathway.
Collapse
Affiliation(s)
- XiaoLei Zhang
- Department of Neurology, Shanxi People's Hospital, Taiyuan 030012, China.
| | - Yu Wang
- Department of Neurology, Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Jia Lv
- Department of Neurology, Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
2
|
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson's disease. Exp Mol Pathol 2023; 129:104846. [PMID: 36436571 DOI: 10.1016/j.yexmp.2022.104846] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease is a common progressive and multifactorial neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons. Numerous pathological processes including, inflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalance, and apoptosis as well as genetic factors may lead to neuronal degeneration. With the emergence of aging population, the health problem and economic burden caused by PD also increase. Phosphatidylinositol 3-kinases-protein kinase B (PI3K-AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K-AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. The current review provides an overview of the PI3K-AKT signaling pathway and review the relationship between this signaling pathway and PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
A Multi-Trait Association Analysis of Brain Disorders and Platelet Traits Identifies Novel Susceptibility Loci for Major Depression, Alzheimer's and Parkinson's Disease. Cells 2023; 12:cells12020245. [PMID: 36672180 PMCID: PMC9856280 DOI: 10.3390/cells12020245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/10/2023] Open
Abstract
Among candidate neurodegenerative/neuropsychiatric risk-predictive biomarkers, platelet count, mean platelet volume and platelet distribution width have been associated with the risk of major depressive disorder (MDD), Alzheimer's disease (AD) and Parkinson's disease (PD) through epidemiological and genomic studies, suggesting partial co-heritability. We exploited these relationships for a multi-trait association analysis, using publicly available summary statistics of genome-wide association studies (GWASs) of all traits reported above. Gene-based enrichment tests were carried out, as well as a network analysis of significantly enriched genes. We analyzed 4,540,326 single nucleotide polymorphisms shared among the analyzed GWASs, observing 149 genome-wide significant multi-trait LD-independent associations (p < 5 × 10-8) for AD, 70 for PD and 139 for MDD. Among these, 27 novel associations were detected for AD, 34 for PD and 40 for MDD. Out of 18,781 genes with annotated variants within ±10 kb, 62 genes were enriched for associations with AD, 70 with PD and 125 with MDD (p < 2.7 × 10-6). Of these, seven genes were novel susceptibility loci for AD (EPPK1, TTLL1, PACSIN2, TPM4, PIF1, ZNF689, AZGP1P1), two for PD (SLC26A1, EFNA3) and two for MDD (HSPH1, TRMT61A). The resulting network showed a significant excess of interactions (enrichment p = 1.0 × 10-16). The novel genes that were identified are involved in the organization of cytoskeletal architecture (EPPK1, TTLL1, PACSIN2, TPM4), telomere shortening (PIF1), the regulation of cellular aging (ZNF689, AZGP1P1) and neurodevelopment (EFNA3), thus, providing novel insights into the shared underlying biology of brain disorders and platelet parameters.
Collapse
|
4
|
López-Cerdán A, Andreu Z, Hidalgo MR, Grillo-Risco R, Català-Senent JF, Soler-Sáez I, Neva-Alejo A, Gordillo F, de la Iglesia-Vayá M, García-García F. Unveiling sex-based differences in Parkinson's disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2022; 13:68. [PMID: 36414996 PMCID: PMC9682715 DOI: 10.1186/s13293-022-00477-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Rubén Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | | | - Irene Soler-Sáez
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Almudena Neva-Alejo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Fernando Gordillo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
5
|
Wu LK, Agarwal S, Kuo CH, Kung YL, Day CH, Lin PY, Lin SZ, Hsieh DJY, Huang CY, Chiang CY. Artemisia Leaf Extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154250. [PMID: 35752074 DOI: 10.1016/j.phymed.2022.154250] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder involving the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Cellular clearance mechanisms, including the autophagy-lysosome pathway, are commonly affected in the pathogenesis of PD. The lysosomal Ca2+ channel mucolipin TRP channel 1 (TRPML1) is one of the most important proteins involved in the regulation of autophagy. Artemisia argyi Lev. et Vant., is a traditional Chinese herb, that has diverse therapeutic properties and is used to treat patients with skin diseases and oral ulcers. However, the neuroprotective effects of A. argyi are not explored yet. HYPOTHESIS This study aims is to investigate the neuroprotective effects of A. argyi in promoting the TRPML1-mediated autophagy/mitophagy-enhancing effect METHODS: In this study, we used 1-methyl-4-phenyl-pyridinium (MPP+)-induced PD model established in an SH-SY5Y human neuroblastoma cell line as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice. MTT assay was conducted to measure the cell viability and further MitoSoX and DCFDA assay were used to measure the ROS. Western blot analysis was used to access levels of TRPML1, p-DRP1 (ser616), p-AKT, PI3K, and β-catenin, Additionally, IF and IHC analysis to investigate the expression of TRPML1, LC3B, β-catenin, TH+, α-synuclein. Mitotracker stain was used to check mitophagy levels and a lysosomal intracellular activity kit was used to measure the lysosomal dysfunction. Behavioral studies were conducted by rotarod and grip strength experiments to check motor functions. RESULTS In our in vitro study, A. argyi rescued the MPP+-induced loss of cell viability and reduced the accumulation of mitochondrial and total reactive oxygen species (ROS). Subsequently, it increased the expression of TRPML1 protein, thereby inducing autophagy, which facilitated the clearance of toxic accumulation of α-synuclein. Furthermore, A. argyi played a neuroprotective role by activating the PI3K/AKT/β-catenin cell survival pathway. MPP+-mediated mitochondrial damage was overcome by upregulation of mitophagy and downregulation of the mitochondrial fission regulator p-DRP1 (ser616) in SH-SY5Y cells. In the in vivo study, A. argyi ameliorated impaired motor function and rescued TH+ neurons in the SNpc region. Similar to the results of the in vitro study, TRPML1, LC3B, and β-catenin expression was enhanced in the SNpc region in the A. argyi-treated mice brain. CONCLUSION Thus, our results first demonstrate that A. argyi can exert neuroprotective effects by stimulating TRPML1 and rescuing neuronal cells by boosting autophagy/mitophagy and upregulating a survival pathway, suggesting that A. argyi can further be exploited to slow the progression of PD.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- 1-Methyl-4-phenylpyridinium/toxicity
- Animals
- Artemisia
- Autophagy
- Dopaminergic Neurons
- Humans
- Mice
- Mice, Inbred C57BL
- Mitophagy
- Neuroblastoma/drug therapy
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinson Disease/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Plant Extracts/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Transient Receptor Potential Channels/metabolism
- alpha-Synuclein/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Li-Kung Wu
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Surbhi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Yen-Lun Kung
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Pi-Yu Lin
- Buddhist Tzu Chi Charity Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
| | - Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
| |
Collapse
|
6
|
Phyto-Carbazole Alkaloids from the Rutaceae Family as Potential Protective Agents against Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11030493. [PMID: 35326143 PMCID: PMC8944741 DOI: 10.3390/antiox11030493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Plant-derived (phyto) carbazole alkaloids are an important class of compounds, presented in the family of Rutaceae (Genera Murraya, Clausena, Glycosmis, Micromelum and Zanthoxylum). Due to several significant biological activities, such as antitumor, antibacterial, antiviral, antidiabetic, anti-HIV and neuroprotective activities of the parent skeleton (3-methylcarbazole), carbazole alkaloids are recognized as an important class of potential therapeutic agents. Neurodegenerative diseases (NDs) may exhibit a vast range of conditions, affecting neurons primarily and leading ultimately to the progressive losses of normal motor and cognitive functions. The main pathophysiological indicators of NDs comprise increasing atypical protein folding, oxidative stresses, mitochondrial dysfunctions, deranged neurotransmissions and neuronal losses. Phyto-carbazole alkaloids can be investigated for exerting multitarget approaches to ameliorating NDs. This review presents a comprehensive evaluation of the available scientific literature on the neuroprotective mechanisms of phyto-carbazole alkaloids from the Rutaceae family in ameliorating NDs.
Collapse
|
7
|
Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinson's disease. Neural Regen Res 2021; 16:1730-1739. [PMID: 33510062 PMCID: PMC8328771 DOI: 10.4103/1673-5374.306066] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is one of the most debilitating brain diseases. Despite the availability of symptomatic treatments, response towards the health of PD patients remains scarce. To fulfil the medical needs of the PD patients, an efficacious and etiological treatment is required. In this review, we have compiled the information covering limitations of current therapeutic options in PD, novel drug targets for PD, and finally, the role of some critical beneficial natural products to control the progression of PD.
Collapse
Affiliation(s)
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ritu Varshney
- Department of Bioengineering and Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - M. P. Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Front Pharmacol 2021; 12:648636. [PMID: 33935751 PMCID: PMC8082498 DOI: 10.3389/fphar.2021.648636] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two typical neurodegenerative diseases that increased with aging. With the emergence of aging population, the health problem and economic burden caused by the two diseases also increase. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons through different substrates such as forkhead box protein Os (FoxOs), glycogen synthase kinase-3β (GSK-3β), and caspase-9. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K/AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. This article reviews the relationship between AKT signaling pathway and AD and PD, and discusses the potential natural products based on the PI3K/AKT signaling pathway to treat two diseases in recent years, hoping to provide guidance and reference for this field. Further development of Chinese herbal medicine is needed to treat these two diseases.
Collapse
Affiliation(s)
- Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
9
|
Parkinson's Disease Master Regulators on Substantia Nigra and Frontal Cortex and Their Use for Drug Repositioning. Mol Neurobiol 2020; 58:1517-1534. [PMID: 33211252 DOI: 10.1007/s12035-020-02203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases. Available evidences support the view of PD as a complex disease, being the outcome of interactions between genetic and environmental factors. In face of diagnosis and therapy challenges, and the elusive PD etiology, the use of alternative methodological approaches for the elucidation of the disease pathophysiological mechanisms and proposal of novel potential therapeutic interventions has become increasingly necessary. In the present study, we first reconstructed the transcriptional regulatory networks (TN), centered on transcription factors (TF), of two brain regions affected in PD, the substantia nigra pars compacta (SNc) and the frontal cortex (FCtx). Then, we used case-control studies data from these regions to identify TFs working as master regulators (MR) of the disease, based on region-specific TNs. Twenty-nine regulatory units enriched with differentially expressed genes were identified for the SNc, and twenty for the FCtx, all of which were considered MR candidates for PD. Three consensus MR candidates were found for SNc and FCtx, namely ATF2, SLC30A9, and ZFP69B. In order to search for novel potential therapeutic interventions, we used these consensus MR candidate signatures as input to the Connectivity Map (CMap), a computational drug repositioning webtool. This analysis resulted in the identification of four drugs that reverse the expression pattern of all three MR consensus simultaneously, benperidol, harmaline, tubocurarine chloride, and vorinostat, thus suggested as novel potential PD therapeutic interventions.
Collapse
|
10
|
Yuan L, Chen X, Song Z, Le W, Zheng W, Liu X, Deng H. Extended Study of NUS1 Gene Variants in Parkinson's Disease. Front Neurol 2020; 11:583182. [PMID: 33193043 PMCID: PMC7653662 DOI: 10.3389/fneur.2020.583182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/15/2020] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD), is the second most common neurodegenerative disorder worldwide. Genetic, environmental factors, and aging are its primary development contributors. Recently the nuclear undecaprenyl pyrophosphate synthase 1 homolog (Saccharomyces cerevisiae) gene (NUS1) was reported as a candidate gene for PD, which raised our interest in the relationship between NUS1 and PD. This study was aimed to further explore the role of NUS1 variants in PD development. Genetic analysis for 308 Han-Chinese PD patients and 308 ethnically matched controls using whole exome sequencing was conducted. Additionally, a total of 60 articles involving in whole exome/whole genome sequencing or direct sequencing of the NUS1 gene from PubMed database between July 1, 2011 and August 26, 2020 were reviewed to evaluate PD-associated NUS1 variants. No potentially pathogenic NUS1 variant was found in 308 PD cases, and no frequency biases between 308 PD cases and 308 controls were observed for the only non-synonymous variant p.Asp179Glu (genotype: χ2 = 0.093, P = 0.761; allele: χ2 = 0.092, P = 0.762). No pathogenic or disease-associated NUS1 variant was reported in the 5,636 PD cases of the 60 articles. In summary, current findings indicate that NUS1 variant is not a common genetic factor contributing to PD.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Liu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Zhang S, Wang R, Wang G. Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chem Neurosci 2019; 10:945-953. [PMID: 30592597 DOI: 10.1021/acschemneuro.8b00454] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The characteristic feature of PD is the progressive degeneration of the dopaminergic (DAergic) neurons in the substantia nigra (SN). DAergic neurons in the SN accumulate black and insoluble membrane structures known as neuromelanin during aging. The oxidation of dopamine (DA) to form neuromelanin generates many o-quinones, including DA o-quinones, aminochrome, and 5,6-indolequinone. The focus of this review is to discuss the role of DA oxidation in association with PD. The oxidation of DA produces oxidative products, inducing mitochondrial dysfunction, impaired protein degradation, α-synuclein aggregation into neurotoxic oligomers, and oxidative stress, in vitro. Recent studies have demonstrated that the DA content is critical for both DJ-1 knockout and A53T α-synuclein transgenic mice to develop PD pathological features, providing evidence for DA action in PD pathogenesis in vivo. The effects of L-DOPA, as the most effective anti-PD drug, are also briefly discussed.
Collapse
Affiliation(s)
- Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
12
|
Castillo F, Mackenzie TA, Cautain B. Immunofluorescence Analysis by Confocal Microscopy for Detecting Endogenous FOXO. Methods Mol Biol 2019; 1890:143-149. [PMID: 30414151 DOI: 10.1007/978-1-4939-8900-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer cells are known to inactivate tumor suppressor proteins by triggering their anomalous subcellular location. It has been well established that the aberrant location of FOXO proteins is linked to tumor formation, progression of the same, or resistance to anti-neoplastic treatment. Furthermore, the abnormal location of FOXO has also been considered a potential biomarker for diabetic complications or longevity in different organisms. Here, we describe the immunodetection of endogenous FOXO by confocal microscopy, which can be used as a chemical tool to quantify FOXO expression levels, its cellular location, and even its active/inactive forms with relevant antibodies.
Collapse
Affiliation(s)
- Francisco Castillo
- Peptomyc S.L. CELLEX/Vall d'Hebron Institute of Oncology, Carrer de Natzaret, 115, Barcelona, Spain
| | - Thomas A Mackenzie
- Fundacion MEDINA Parque tecnologico ciencias de la salud, Granada, Spain
| | - Bastien Cautain
- Fundacion MEDINA Parque tecnologico ciencias de la salud, Granada, Spain.
| |
Collapse
|
13
|
Loss of Drosha underlies dopaminergic neuron toxicity in models of Parkinson's disease. Cell Death Dis 2018; 9:693. [PMID: 29880811 PMCID: PMC5992196 DOI: 10.1038/s41419-018-0716-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 01/06/2023]
Abstract
MiRNAs, a group of powerful modulator of gene expression, participate in multiple cellular processes under physiological and pathological conditions. Emerging evidence shows that Drosha, which controls the initial step in canonical miRNA biogenesis, is involved in modulating cell survival and death in models of several diseases. However, the role of Drosha in Parkinson’s disease (PD) has not been well established. Here, we show that the level of Drosha decreases in 6-OHDA-induced cellular and animal models of PD. 6-OHDA induced a p38 MAPK-dependent phosphorylation of Drosha. This triggered Drosha degradation. Enhancing the level of Drosha protected the dopaminergic (DA) neurons from 6-OHDA-induced toxicity in both in vitro and in vivo models of PD and alleviated the motor deficits of PD mice. These findings reveal that Drosha plays a critical role in the survival of DA neurons and suggest that stress-induced destabilization of Drosha may be part of the pathological process in PD.
Collapse
|