1
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
3
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
4
|
Wu J, Wu W, Jiang P, Xu Y, Yu M. Identification of SV2C and DENR as Key Biomarkers for Parkinson's Disease Based on Bioinformatics, Machine Learning, and Experimental Verification. J Mol Neurosci 2024; 74:6. [PMID: 38189881 DOI: 10.1007/s12031-023-02182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
The objective of this study is to investigate the potential biomarkers and therapeutic target genes for Parkinson's disease (PD). We analyzed four datasets (GSE8397, GSE20292, GSE20163, GSE20164) from the Gene Expression Omnibus database. We employed weighted gene co-expression network analysis and differential expression analysis to select genes and perform functional analysis. We applied three algorithms, namely, random forest, support vector machine recursive feature elimination, and least absolute shrinkage and selection operator, to identify hub genes, perform functional analysis, and assess their clinical diagnostic potential using receiver operating characteristic (ROC) curve analysis. We employed the xCell website to evaluate differences in the composition patterns of immune cells in the GEO datasets. We also collected serum samples from PD patients and established PD cell model to validate the expression of hub genes using enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Our findings identified SV2C and DENR as two hub genes for PD and decreased in PD brain tissue compared with controls. ROC analysis showed effectively value of SV2C and DENR to diagnose PD, and they were downregulated in the serum of PD patients and cell model. Functional analysis revealed that dopamine vesicle transport and synaptic vesicle recycling are crucial pathways in PD. Besides, the differences in the composition of immune cells, especially basophils and T cells, were discovered between PD and controls. In summary, our study identifies SV2C and DENR as potential biomarkers for diagnosing PD and provides a new perspective for exploring the molecular mechanisms of PD.
Collapse
Affiliation(s)
- Jiecong Wu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Wenqi Wu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Ping Jiang
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yuhao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
5
|
Kim HR, Jung Y, Shin J, Park M, Kweon DH, Ban C. Neuron-recognizable characteristics of peptides recombined using a neuronal binding domain of botulinum neurotoxin. Sci Rep 2022; 12:4980. [PMID: 35322139 PMCID: PMC8943039 DOI: 10.1038/s41598-022-09145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant peptides were designed using the C-terminal domain (receptor binding domain, RBD) and its subdomain (peptide A2) of a heavy chain of botulinum neurotoxin A-type 1 (BoNT/A1), which can bind to the luminal domain of synaptic vesicle glycoprotein 2C (SV2C-LD). Peptide A2- or RBD-containing recombinant peptides linked to an enhanced green fluorescence protein (EGFP) were prepared by expression in Escherichia coli. A pull-down assay using SV2C-LD-covered resins showed that the recombinant peptides for CDC297 BoNT/A1, referred to EGFP-A2' and EGFP-RBD', exhibited ≥ 2.0-times stronger binding affinity to SV2C-LD than those for the wild-type BoNT/A1. Using bio-layer interferometry, an equilibrium dissociation rate constant (KD) of EGFP-RBD' to SV2C-LD was determined to be 5.45 μM, which is 33.87- and 15.67-times smaller than the KD values for EGFP and EGFP-A2', respectively. Based on confocal laser fluorescence micrometric analysis, the adsorption/absorption of EGFP-RBD' to/in differentiated PC-12 cells was 2.49- and 1.29-times faster than those of EGFP and EGFP-A2', respectively. Consequently, the recombinant peptides acquired reasonable neuron-specific binding/internalizing ability through the recruitment of RBD'. In conclusion, RBDs of BoNTs are versatile protein domains that can be used to mark neural systems and treat a range of disorders in neural systems.
Collapse
Affiliation(s)
- Hye Rin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jonghyeok Shin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Myungseo Park
- Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Biologics Research Center, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Interdisciplinary Program in BioCosmetics, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
6
|
Grosso Jasutkar H, Yamamoto A. Do Changes in Synaptic Autophagy Underlie the Cognitive Impairments in Huntington's Disease? J Huntingtons Dis 2021; 10:227-238. [PMID: 33780373 PMCID: PMC8293641 DOI: 10.3233/jhd-200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although Huntington's disease (HD) is classically considered from the perspective of the motor syndrome, the cognitive changes in HD are prominent and often an early manifestation of disease. As such, investigating the underlying pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. In this review, we first discuss evidence from both HD patients and animal models that cognitive changes correlate with early pathological changes at the synapse, an observation that is similarly made in other neurodegenerative conditions that primarily affect cognition. We then describe how autophagy plays a critical role supporting synaptic maintenance in the healthy brain, and how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of disease.
Collapse
Affiliation(s)
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Iuliano M, Seeley C, Sapp E, Jones EL, Martin C, Li X, DiFiglia M, Kegel-Gleason KB. Disposition of Proteins and Lipids in Synaptic Membrane Compartments Is Altered in Q175/Q7 Huntington's Disease Mouse Striatum. Front Synaptic Neurosci 2021; 13:618391. [PMID: 33815086 PMCID: PMC8013775 DOI: 10.3389/fnsyn.2021.618391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Dysfunction at synapses is thought to be an early change contributing to cognitive, psychiatric and motor disturbances in Huntington's disease (HD). In neurons, mutant Huntingtin collects in aggregates and distributes to the same sites as wild-type Huntingtin including on membranes and in synapses. In this study, we investigated the biochemical integrity of synapses in HD mouse striatum. We performed subcellular fractionation of striatal tissue from 2 and 6-month old knock-in Q175/Q7 HD and Q7/Q7 mice. Compared to striata of Q7/Q7 mice, proteins including GLUT3, Na+/K+ ATPase, NMDAR 2b, PSD95, and VGLUT1 had altered distribution in Q175/Q7 HD striata of 6-month old mice but not 2-month old mice. These proteins are found on plasma membranes and pre- and postsynaptic membranes supporting hypotheses that functional changes at synapses contribute to cognitive and behavioral symptoms of HD. Lipidomic analysis of mouse fractions indicated that compared to those of wild-type, fractions 1 and 2 of 6 months Q175/Q7 HD had altered levels of two species of PIP2, a phospholipid involved in synaptic signaling, increased levels of cholesterol ester and decreased cardiolipin species. At 2 months, increased levels of species of acylcarnitine, phosphatidic acid and sphingomyelin were measured. EM analysis showed that the contents of fractions 1 and 2 of Q7/Q7 and Q175/Q7 HD striata had a mix of isolated synaptic vesicles, vesicle filled axon terminals singly or in clusters, and ER and endosome-like membranes. However, those of Q175/Q7 striata contained significantly fewer and larger clumps of particles compared to those of Q7/Q7. Human HD postmortem putamen showed differences from control putamen in subcellular distribution of two proteins (Calnexin and GLUT3). Our biochemical, lipidomic and EM analysis show that the presence of the HD mutation conferred age dependent disruption of localization of synaptic proteins and lipids important for synaptic function. Our data demonstrate concrete biochemical changes suggesting altered integrity of synaptic compartments in HD mice that may mirror changes in HD patients and presage cognitive and psychiatric changes that occur in premanifest HD.
Collapse
|
8
|
Lekholm E, Ceder MM, Forsberg EC, Schiöth HB, Fredriksson R. Differentiation of two human neuroblastoma cell lines alters SV2 expression patterns. Cell Mol Biol Lett 2021; 26:5. [PMID: 33588752 PMCID: PMC7885392 DOI: 10.1186/s11658-020-00243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The synaptic vesicle glycoprotein 2 (SV2) family is essential to the synaptic machinery involved in neurotransmission and vesicle recycling. The isoforms SV2A, SV2B and SV2C are implicated in neurological diseases such as epilepsy, Alzheimer's and Parkinson's disease. Suitable cell systems for studying regulation of these proteins are essential. Here we present gene expression data of SV2A, SV2B and SV2C in two human neuroblastoma cell lines after differentiation. METHODS Human neuroblastoma cell lines SiMa and IMR-32 were treated for seven days with growth supplements (B-27 and N-2), all-trans-retinoic acid (ATRA) or vasoactive intestinal peptide (VIP) and gene expression levels of SV2 and neuronal targets were analyzed. RESULTS The two cell lines reacted differently to the treatments, and only one of the three SV2 isoforms was affected at a time. SV2B and choline O-acetyltransferase (CHAT) expression was changed in concert after growth supplement treatment, decreasing in SiMa cells while increasing in IMR-32. ATRA treatment resulted in no detected changes in SV2 expression in either cell line while VIP increased both SV2C and dopamine transporter (DAT) in IMR-32 cells. CONCLUSION The synergistic expression patterns between SV2B and CHAT as well as between SV2C and DAT mirror the connectivity between these targets found in disease models and knock-out animals, although here no genetic alteration was made. These cell lines and differentiation treatments could possibly be used to study SV2 regulation and function.
Collapse
Affiliation(s)
- Emilia Lekholm
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Mikaela M Ceder
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erica C Forsberg
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
|
10
|
Stout K, Dunn A, Hoffman C, Miller GW. The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chem Neurosci 2019; 10:3927-3938. [PMID: 31394034 PMCID: PMC11562936 DOI: 10.1021/acschemneuro.9b00351] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Collapse
Affiliation(s)
- Kristen Stout
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Amy Dunn
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Carlie Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States
| |
Collapse
|
11
|
Ciruelas K, Marcotulli D, Bajjalieh SM. Synaptic vesicle protein 2: A multi-faceted regulator of secretion. Semin Cell Dev Biol 2019; 95:130-141. [PMID: 30826548 DOI: 10.1016/j.semcdb.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Synaptic Vesicle Protein 2 (SV2) comprises a recently evolved family of proteins unique to secretory vesicles that undergo calcium-regulated exocytosis. In this review we consider SV2s' structural features, evolution, and function and discuss its therapeutic potential as the receptors for an expanding class of drugs used to treat epilepsy and cognitive decline.
Collapse
Affiliation(s)
- Kristine Ciruelas
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Daniele Marcotulli
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Sandra M Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
12
|
Choi JE, Werbel T, Wang Z, Wu CC, Yaksh TL, Di Nardo A. Botulinum toxin blocks mast cells and prevents rosacea like inflammation. J Dermatol Sci 2018; 93:58-64. [PMID: 30658871 DOI: 10.1016/j.jdermsci.2018.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rosacea is a chronic inflammatory skin condition whose etiology has been linked to mast cells and the antimicrobial peptide cathelicidin LL-37. Individuals with refractory disease have demonstrated clinical benefit with periodic injections of onabotulinum toxin, but the mechanism of action is unknown. OBJECTIVES To investigate the molecular mechanism by which botulinum toxin improves rosacea lesions. METHODS Primary human and murine mast cells were pretreated with onabotulinum toxin A or B or control. Mast cell degranulation was evaluated by β-hexosaminidase activity. Expression of botulinum toxin receptor Sv2 was measured by qPCR. The presence of SNAP-25 and VAMP2 was established by immunofluorescence. In vivo rosacea model was established by intradermally injecting LL-37 with or without onabotulinum toxin A pretreatment. Mast cell degranulation was assessed in vivo by histologic counts. Rosacea biomarkers were analyzed by qPCR of mouse skin sections. RESULTS Onabotulinum toxin A and B inhibited compound 48/80-induced degranulation of both human and murine mast cells. Expression of Sv2 was established in mouse mast cells. Onabotulinum toxin A and B increased cleaved SNAP-25 and decreased VAMP2 staining in mast cells respectively. In mice, injection of onabotulinum toxin A significantly reduced LL-37-induced skin erythema, mast cell degranulation, and mRNA expression of rosacea biomarkers. CONCLUSIONS These findings suggest that onabotulinum toxin reduces rosacea-associated skin inflammation by directly inhibiting mast cell degranulation. Periodic applications of onabotulinum toxin may be an effective therapy for refractory rosacea and deserves further study.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Tyler Werbel
- School of Medicine, University of California, San Diego, CA, USA
| | - Zhenping Wang
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Chia Chi Wu
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology and Pharmacology, University of California, San Diego, CA, USA
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, CA, USA.
| |
Collapse
|
13
|
Liu X, Peng T, Li H. Using Huntingtin Knock-In Minipigs to Fill the Gap Between Mouse Models and Patients with Huntington's Disease. Neurosci Bull 2018; 34:870-872. [PMID: 30128692 DOI: 10.1007/s12264-018-0272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xiangqian Liu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Peng
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory for Neurological Disorders (Ministry of Education), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - He Li
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory for Neurological Disorders (Ministry of Education), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|