1
|
Zeng JJ, Chen L, Liu LF, Wang JL, Cheng J, Zheng YN, Zhang L, Zhang XM, Yuan QL. Neuroplastin 65 deficiency leads to the impairment of visual function through affecting ribbon synapse in retina of mice. Front Cell Neurosci 2025; 19:1558334. [PMID: 40406567 PMCID: PMC12095229 DOI: 10.3389/fncel.2025.1558334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/31/2025] [Indexed: 05/26/2025] Open
Abstract
Neuroplastin 65 (NP65) is a synapse-enriched glycoprotein in the central nervous system and is implicated in synaptic plasticity. In the present study, we found that NP65 knockout (NP65 KO) mice exhibit impaired visual function, including reductions in the amplitude of b-wave in scotopic flash electroretinogram (fERG), the amplitude of N1 and P1 waves in flash visual evoked potentials (fVEP), and the constriction rate in pupillary light reflexes (PLR). In wild-type (WT) mice, NP65 is specifically enriched in the synaptic ribbon (SR) of ribbon synapses labeled by Ribeye in the retina. We found that NP65 KO mice display nearly normal architecture of the retina. However, NP65 KO mice show a significant decrease in the immunoreactivity of presynaptic postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and Ribeye in the outer plexiform layer (OPL). Moreover, the electron microscopy displays a decrease in synaptic ribbons and defects in postsynaptic structures in the ribbon synapses of the OPL in NP65 KO mice. In addition, we found that the apposition of presynaptic photoreceptor axonal terminals and postsynaptic bipolar cell dendrites in the OPL is misplaced in NP65 KO mice. Finally, we show that intravitreous injection of AAV-NP65 reverses the visual dysfunction, increases Ribeye expression and restores the normal arrangement in the OPL of NP65 KO mice. Together, our findings reveal that NP65 deficiency leads to visual function impairment by affecting ribbon synapses in the OPL of mice, suggesting that NP65 is critical for visual function in mammals and a potential target for degenerative retinopathy.
Collapse
Affiliation(s)
- Jiu-jiang Zeng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Ling Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Li-fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Jia-lu Wang
- Department of Human Anatomy, Jinggansan University School of Medicine, Jian, China
| | - Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Ya-ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Xiao-ming Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Qiong-lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Cheng J, Chen L, Zheng YN, Liu J, Zhang L, Zhang XM, Huang L, Yuan QL. Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice. Acta Pharmacol Sin 2024; 45:1393-1405. [PMID: 38528118 PMCID: PMC11192762 DOI: 10.1038/s41401-024-01252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ling Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Liu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Lei Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xiao-Ming Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Chen Y, Zhao C, Guo H, Zou W, Zhang Z, Wei D, Lu H, Zhang L, Zhao Y. Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a. Cell Mol Immunol 2023; 20:941-954. [PMID: 37386173 PMCID: PMC10387484 DOI: 10.1038/s41423-023-01057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection; however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28-90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.
Collapse
Affiliation(s)
- Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Wu DD, Cheng J, Zheng YN, Liu YT, Hou SX, Liu LF, Huang L, Yuan QL. Neuroplastin 65 deficiency reduces amyloid plaque formation and cognitive deficits in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:1129773. [PMID: 37213217 PMCID: PMC10196121 DOI: 10.3389/fncel.2023.1129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is characterized by increasing cognitive dysfunction, progressive cerebral amyloid beta (Aβ) deposition, and neurofibrillary tangle aggregation. However, the molecular mechanisms of AD pathologies have not been completely understood. As synaptic glycoprotein neuroplastin 65 (NP65) is related with synaptic plasticity and complex molecular events underlying learning and memory, we hypothesized that NP65 would be involved in cognitive dysfunction and Aβ plaque formation of AD. For this purpose, we examined the role of NP65 in the transgenic amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD. Methods Neuroplastin 65-knockout (NP65-/-) mice crossed with APP/PS1 mice to get the NP65-deficient APP/PS1 mice. In the present study, a separate cohort of NP65-deficient APP/PS1 mice were used. First, the cognitive behaviors of NP65-deficient APP/PS1 mice were assessed. Then, Aβ plaque burden and Aβ levels in NP65-deficient APP/PS1 mice were measured by immunostaining and western blot as well as ELISA. Thirdly, immunostaining and western blot were used to evaluate the glial response and neuroinflammation. Finally, protein levels of 5-hydroxytryptamin (serotonin) receptor 3A and synaptic proteins and neurons were measured. Results We found that loss of NP65 alleviated the cognitive deficits of APP/PS1 mice. In addition, Aβ plaque burden and Aβ levels were significantly reduced in NP65-deficient APP/PS1 mice compared with control animals. NP65-loss in APP/PS1 mice resulted in a decrease in glial activation and the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, and IL-4) as well as protective matrix YM-1 and Arg-1, but had no effect on microglial phenotype. Moreover, NP65 deficiency significantly reversed the increase in 5-hydroxytryptamine (serotonin) receptor 3A (Htr3A) expression levels in the hippocampus of APP/PS1 mice. Discussion These findings identify a previously unrecognized role of NP65 in cognitive deficits and Aβ formation of APP/PS1 mice, and suggest that NP65 may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Tong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shuang-Xin Hou
- Department of Neurobiology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Li-Fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qiong-Lan Yuan,
| |
Collapse
|
5
|
Ilic K, Lin X, Malci A, Stojanović M, Puljko B, Rožman M, Vukelić Ž, Heffer M, Montag D, Schnaar RL, Kalanj-Bognar S, Herrera-Molina R, Mlinac-Jerkovic K. Plasma Membrane Calcium ATPase-Neuroplastin Complexes Are Selectively Stabilized in GM1-Containing Lipid Rafts. Int J Mol Sci 2021; 22:ijms222413590. [PMID: 34948386 PMCID: PMC8708829 DOI: 10.3390/ijms222413590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
The recent identification of plasma membrane (Ca2+)-ATPase (PMCA)-Neuroplastin (Np) complexes has renewed attention on cell regulation of cytosolic calcium extrusion, which is of particular relevance in neurons. Here, we tested the hypothesis that PMCA-Neuroplastin complexes exist in specific ganglioside-containing rafts, which could affect calcium homeostasis. We analyzed the abundance of all four PMCA paralogs (PMCA1-4) and Neuroplastin isoforms (Np65 and Np55) in lipid rafts and bulk membrane fractions from GM2/GD2 synthase-deficient mouse brains. In these fractions, we found altered distribution of Np65/Np55 and selected PMCA isoforms, namely PMCA1 and 2. Cell surface staining and confocal microscopy identified GM1 as the main complex ganglioside co-localizing with Neuroplastin in cultured hippocampal neurons. Furthermore, blocking GM1 with a specific antibody resulted in delayed calcium restoration of electrically evoked calcium transients in the soma of hippocampal neurons. The content and composition of all ganglioside species were unchanged in Neuroplastin-deficient mouse brains. Therefore, we conclude that altered composition or disorganization of ganglioside-containing rafts results in changed regulation of calcium signals in neurons. We propose that GM1 could be a key sphingolipid for ensuring proper location of the PMCA-Neuroplastin complexes into rafts in order to participate in the regulation of neuronal calcium homeostasis.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- BRAIN Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King’s College London, London SE5 9NU, UK
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Ayse Malci
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Mario Stojanović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia;
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
| | - Ronald L. Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Rodrigo Herrera-Molina
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8307993, Chile
- Center for Behavioral Brain Sciences, 39120 Magdeburg, Germany
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|
6
|
Ilic K, Mlinac-Jerkovic K, Sedmak G, Rosenzweig I, Kalanj-Bognar S. Neuroplastin in human cognition: review of literature and future perspectives. Transl Psychiatry 2021; 11:394. [PMID: 34282131 PMCID: PMC8289873 DOI: 10.1038/s41398-021-01509-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic glycoprotein neuroplastin is involved in synaptic plasticity and complex molecular events underlying learning and memory. Studies in mice and rats suggest that neuroplastin is essential for cognition, as it is needed for long-term potentiation and associative memory formation. Recently, it was found that some of the effects of neuroplastin are related to regulation of calcium homeostasis through interactions with plasma membrane calcium ATPases. Neuroplastin is increasingly seen as a key factor in complex brain functions, but studies in humans remain scarce. Here we summarize present knowledge about neuroplastin in human tissues and argue its genetic association with cortical thickness, intelligence, schizophrenia, and autism; specific immunolocalization depicting hippocampal trisynaptic pathway; potential role in tissue compensatory response in neurodegeneration; and high, almost housekeeping, level of spatio-temporal gene expression in the human brain. We also propose that neuroplastin acts as a housekeeper of neuroplasticity, and that it may be considered as an important novel cognition-related molecule in humans. Several promising directions for future investigations are suggested, which may complete our understanding of neuroplastin actions in molecular basis of human cognition.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), Strand, London, WC2R 2LS, UK
- Sleep Disorders Centre, Guy's and St Thomas' Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Qorri B, Tsay M, Agrawal A, Au R, Gracie J. Using machine intelligence to uncover Alzheimer’s disease progression heterogeneity. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: Research suggests that Alzheimer’s disease (AD) is heterogeneous with numerous subtypes. Through a proprietary interactive ML system, several underlying biological mechanisms associated with AD pathology were uncovered. This paper is an introduction to emerging analytic efforts that can more precisely elucidate the heterogeneity of AD.
Methods: A public AD data set (GSE84422) consisting of transcriptomic data of postmortem brain samples from healthy controls (n = 121) and AD (n = 380) subjects was analyzed. Data were processed by an artificial intelligence platform designed to discover potential drug repurposing candidates, followed by an interactive augmented intelligence program.
Results: Using perspective analytics, six perspective classes were identified: Class I is defined by TUBB1, ASB4, and PDE5A; Class II by NRG2 and ZNF3; Class III by IGF1, ASB4, and GTSE1; Class IV is defined by cDNA FLJ39269, ITGA1, and CPM; Class V is defined by PDE5A, PSEN1, and NDUFS8; and Class VI is defined by DCAF17, cDNA FLJ75819, and SLC33A1. It is hypothesized that these classes represent biological mechanisms that may act alone or in any combination to manifest an Alzheimer’s pathology.
Conclusions: Using a limited transcriptomic public database, six different classes that drive AD were uncovered, supporting the premise that AD is a heterogeneously complex disorder. The perspective classes highlighted genetic pathways associated with vasculogenesis, cellular signaling and differentiation, metabolic function, mitochondrial function, nitric oxide, and metal ion metabolism. The interplay among these genetic factors reveals a more profound underlying complexity of AD that may be responsible for the confluence of several biological factors. These results are not exhaustive; instead, they demonstrate that even within a relatively small study sample, next-generation machine intelligence can uncover multiple genetically driven subtypes. The models and the underlying hypotheses generated using novel analytic methods may translate into potential treatment pathways.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mike Tsay
- NetraMark Corp, Toronto, ON M4E 1G8, Canada
| | | | - Rhoda Au
- Department of Anatomy & Neurobiology, Neurology and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA 02218, USA
| | - Joseph Gracie
- NetraMark Corp, Toronto, ON M4E 1G8, Canada 5Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Wu Q, Jia Z. Wiring the Brain by Clustered Protocadherin Neural Codes. Neurosci Bull 2020; 37:117-131. [PMID: 32939695 PMCID: PMC7811963 DOI: 10.1007/s12264-020-00578-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
There are more than a thousand trillion specific synaptic connections in the human brain and over a million new specific connections are formed every second during the early years of life. The assembly of these staggeringly complex neuronal circuits requires specific cell-surface molecular tags to endow each neuron with a unique identity code to discriminate self from non-self. The clustered protocadherin (Pcdh) genes, which encode a tremendous diversity of cell-surface assemblies, are candidates for neuronal identity tags. We describe the adaptive evolution, genomic structure, and regulation of expression of the clustered Pcdhs. We specifically focus on the emerging 3-D architectural and biophysical mechanisms that generate an enormous number of diverse cell-surface Pcdhs as neural codes in the brain.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, Xinhua Hospital, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhilian Jia
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, Xinhua Hospital, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Li H, Liu Y, Gao X, Liu L, Amuti S, Wu D, Jiang F, Huang L, Wang G, Zeng J, Ma B, Yuan Q. Neuroplastin 65 modulates anxiety- and depression-like behavior likely through adult hippocampal neurogenesis and central 5-HT activity. FEBS J 2019; 286:3401-3415. [PMID: 31034748 DOI: 10.1111/febs.14865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/07/2019] [Accepted: 04/25/2019] [Indexed: 01/02/2023]
Abstract
Neuroplastin 65 (Np65) is a brain-specific cell adhesion molecule that is highly expressed in the hippocampus, amygdala, and cortex, regions of the brain that are associated with memory and emotions. However, the role of Np65 in regulation of emotional behavior is still unclear. In the present study, we show that Np65 knock-out (Np65 KO) mice display enhanced anxiety-like behavior, a reduction in some aspects of depressive-like behaviors, and increased sociability and memory. Biochemical investigations revealed that Np65 KO mice show increased adult-born neurons and proliferation in the hippocampus. In addition, the level of 5-hydroxytryptamine (5-HT) in the hippocampus was reduced. The expression of tryptophan hydroxylase 2 in the brainstem and the expression of the 5-HT3A receptor were also decreased. Electrophysiological recordings confirmed an impaired maintenance of long-term potentiation in the hippocampus of Np65 KO mice. Together, our findings uncover a role for Np65 in regulating anxiety- and depressive-like behaviors and suggest that Np65 may be essential for the maintenance of emotional stability, indicating that it might be an attractive potential target for treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoqing Gao
- Department of Anatomy and Neurobiology, Southwest Medical University, Luzhou, China
| | - Lifen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyiti Amuti
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dandan Wu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fen Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Geying Wang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiujiang Zeng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Ma
- Department of Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Qionglan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|