1
|
Song Y, Zhao Y, Zhang X, Cheng C, Yan H, Liu D, Zhang D. Construction of AMPK-related circRNA network in mouse myocardial ischemia-reperfusion injury model. BMC Cardiovasc Disord 2024; 24:759. [PMID: 39736524 DOI: 10.1186/s12872-024-04387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE To screen Myocardial ischemia-reperfusion Injury in mice. adenosine monophate-activatedprotein kinase (AMPK) -related differentially expressed circularRNA (circRNA) in MIRI model, Ampk-related circRNA network was drawn to provide possible ideas for the prevention and treatment of MIRI. METHODS The mouse MIRI model was constructed by ligation of the left anterior descending artery. After the model was successfully established, the related indicators of cardiac function were detected, and high-throughput sequencing was performed on the myocardial tissue of the mice. RESULTS MIRI model was successfully constructed, and two AMPK related differentially expressed loops (novel_circ_043550 and novel_circ_035243) were screened out. A circRNA-miRNA-mRNA network consisting of 2 circRNA, 28 microRNA(miRNA) and 229 messengerRNA (mRNA) was constructed. CONCLUSIONS This study reveals the differential expression of several AMPK-related circRNAs in MIRI in mice, and the AMPK-related circRNA regulatory network is constructed, suggesting that AMPK-related circRNA may have potential clinical application prospects as a potential molecular marker and therapeutic target for MIRI.
Collapse
Affiliation(s)
- Yang Song
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yi Zhao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xiaodi Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Cheng Cheng
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Haidong Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
2
|
Chen C, Yu Q, Huang Y, Shen XQ, Ding ZZ, Chen GW, Yan J, Gu QG, Mao X. Research on the function of the Cend1 regulatory mechanism on p75NTR signaling in spinal cord injury. Neuropeptides 2022; 95:102264. [PMID: 35728483 DOI: 10.1016/j.npep.2022.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
How to use NSC repair mechanisms, minimize the loss of neurons, and recover the damaged spinal cord functions are hotspots and difficulties in spinal cord injury research. Studies have shown that Cend1 signaling is involved in regulating the NSC differentiation, that p75NTR signaling is involved in the regulation of mature neuronal apoptosis and that NSC differentiation decreases mature neuron apoptosis. Our research group found an interaction between Cend1 and p75NTR, and there was a correlation with spinal cord injury. Therefore, we speculate that Cend1 regulates p75NTR signals and promotes the differentiation of NSCs, and inhibits neuronal apoptosis. Therefore, this study first analyzed the expression of p75NTR and Cend1 in spinal cord injury and its relationship with NSCs and neurons and then analyzed the regulatory mechanism and the mechanism of survival on neuronal apoptosis and differentiation of NSCs. Finally, we analyzed the effect of p75NTR and the regulation of Cend1 damage on functional recovery of the spinal cord with overall intervention. The completion of the subject will minimize the loss of neurons, innovative use of NSC repair mechanisms, and open up a new perspective for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China; Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Qin Yu
- Department of Imaging, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Yunsheng Huang
- Center of Stomatology, The Second Affiliated Hospital of soochow University,No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China
| | - Xiao-Qin Shen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Zhen-Zhong Ding
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Gui-Wen Chen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China.
| | - Qing-Guo Gu
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China.
| | - Xingxing Mao
- Department of Orthopedics, The Sixth People's Hospital of Nantong, Yonghe Road 500, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
3
|
Tian K, Wang A, Wang J, Li W, Shen W, Li Y, Luo Z, Liu Y, Zhou Y. Transcriptome Analysis Identifies SenZfp536, a Sense LncRNA that Suppresses Self-renewal of Cortical Neural Progenitors. Neurosci Bull 2020; 37:183-200. [PMID: 33196962 DOI: 10.1007/s12264-020-00607-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate transcription to control development and homeostasis in a variety of tissues and organs. However, their roles in the development of the cerebral cortex have not been well elucidated. Here, a bioinformatics pipeline was applied to delineate the dynamic expression and potential cis-regulating effects of mouse lncRNAs using transcriptome data from 8 embryonic time points and sub-regions of the developing cerebral cortex. We further characterized a sense lncRNA, SenZfp536, which is transcribed downstream of and partially overlaps with the protein-coding gene Zfp536. Both SenZfp536 and Zfp536 were predominantly expressed in the proliferative zone of the developing cortex. Zfp536 was cis-regulated by SenZfp536, which facilitates looping between the promoter of Zfp536 and the genomic region that transcribes SenZfp536. Surprisingly, knocking down or activating the expression of SenZfp536 increased or compromised the proliferation of cortical neural progenitor cells (NPCs), respectively. Finally, overexpressing Zfp536 in cortical NPCs reversed the enhanced proliferation of cortical NPCs caused by SenZfp536 knockdown. The study deepens our understanding of how lncRNAs regulate the propagation of cortical NPCs through cis-regulatory mechanisms.
Collapse
Affiliation(s)
- Kuan Tian
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Andi Wang
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Junbao Wang
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wei Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yamu Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|