1
|
Kumar D, Kumar R, Janrao S, Sharma V, Begum N, Fernandes V, Khatri DK. Treadmill exercise mitigates rotenone-induced neuroinflammation and α-synuclein level in a mouse model of Parkinson's disease. Brain Res 2025; 1854:149540. [PMID: 40023234 DOI: 10.1016/j.brainres.2025.149540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 7-10 million people globally. It presents with motor symptoms like bradykinesia, tremors, rigidity, and postural instability, along with non-motor issues such as anxiety and mood fluctuations. PD is characterized by the progressive loss of nigrostriatal neurons, α-synuclein protein aggregation, reduced tyrosine hydroxylase level, and impaired dopamine signaling. Neuroinflammation plays a key role in PD progression, with elevated pro-inflammatory cytokines promoting M1 microglial activation, which exacerbates neurodegeneration. Conversely, anti-inflammatory cytokines such as IL-10 and IL-4 help shift microglia to the neuroprotective M2 phenotype, reducing inflammation. Animal models show an imbalance with increased M1 and reduced M2 microglia. This study explored the neuroprotective effects of treadmill exercise in a rotenone-induced PD mouse model. After 21 days of exercise, behavioral impairments improved, as shown by open field tests, Rota-rod, and footprint analysis. Exercise also reduced pro-inflammatory cytokines; TNF-α, and IL-1β levels while increasing anti-inflammatory cytokines; IL-10, and IL-4. This shift correlated with decreased α-synuclein levels and increased tyrosine hydroxylase expression, indicating reduced neurodegeneration. These findings suggest that treadmill exercise can mitigate PD symptoms and pathology by modulating neuroinflammation and restoring dopaminergic function.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rohith Kumar
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sushmita Janrao
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vaishnavi Sharma
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| |
Collapse
|
2
|
Li OY, Shin S, Zhou S, Turnbull A, Lin FV, for the Alzheimer's Disease Neuroimaging Initiative. Relationships between neuropsychiatric symptoms, subtypes of astrocyte activities, and brain pathologies in Alzheimer's disease and Parkinson's disease. Alzheimers Dement 2025; 21:e70242. [PMID: 40390204 PMCID: PMC12089078 DOI: 10.1002/alz.70242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 05/21/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative diseases (NDs). This study examined astrocytic contributions to neuropsychiatric symptoms (NPS), focusing on astrocytic protein activity and its relationship with NPS severity, accounting for clinical and pathological features of NDs. METHODS Cerebrospinal astrocytic proteins (glial fibrillary acidic protein [GFAP], chitinase-3-like protein 1 [YKL-40], and aquaporin-4 [AQP4]) from Alzheimer's Disease Neuroimaging Initiative (ADNI) (AD) and Parkinson's Progression Markers Initiative (PPMI) (PD) were analyzed using K-means clustering. Six NPS domains, ND-specific pathologies (amyloid-beta/Aβ for AD, alpha-synuclein/αSyn for PD), and nonspecific pathology (phosphorylated tau/ptau) were assessed. RESULTS In both samples, three astrocytic clusters were identified, and the "highYKL|lowOthers" cluster (high YKL-40, low GFAP/AQP4) consistently showed lower ptau and NPS severity compared to the "highAll" cluster (high GFAP, YKL-40, AQP4). In PPMI, the "highYKL|lowOthers" cluster also attenuated the relationship between αSyn and NPS compared to the "highAll" cluster. DISCUSSION Astrocytic activity relates to NPS, highlighting astrocytic proteins as potential therapeutic targets for NPS in NDs. HIGHLIGHTS Astrocytic protein clusters were linked to NPS severity in AD and PD cohorts. The "highYKL|lowOthers" cluster showed lower ptau and NPS severity than "allhigh" cluster in AD and PD cohorts. Astrocytic proteins may serve as therapeutic targets for managing NPS in NDs.
Collapse
Affiliation(s)
- Oceanna Yueran Li
- CogT LabDepartment of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Steven Shin
- CogT LabDepartment of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Sa Zhou
- CogT LabDepartment of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Adam Turnbull
- CogT LabDepartment of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - F. Vankee Lin
- CogT LabDepartment of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | | |
Collapse
|
3
|
Folarin OR, Olopade FE, Gilbert TT, Ladagu AD, Pires Dos Santos PI, Mustapha OA, Kpasham LZ, Olopade JO, Outeiro TF. Chronic Vanadium Exposure Promotes Aggregation of Alpha-Synuclein, Tau and Amyloid Beta in Mouse Brain. J Neurochem 2025; 169:e70082. [PMID: 40377064 DOI: 10.1111/jnc.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 05/18/2025]
Abstract
The interaction of toxic environmental metals and metalloids with brain proteins and polypeptides can result in pathological aggregations and formation of toxic oligomers, which are key features of many neurodegenerative diseases. Occupational and environmental exposure to vanadium is connected to a neurological syndrome that includes psychiatric symptoms, cognitive decline, and neurodegeneration. In this study, we hypothesized that prolonged vanadium exposure may be a potential risk factor for Alzheimer's and Parkinson's diseases. A total of 72 male BALB/c mice, each 4 weeks' old, were used. Vanadium-treated groups received intraperitoneal injections of 3 mg/kg body weight of vanadium three times a week for 6, 12, or 18 months. The control group received sterile water while the withdrawal group were given vanadium injection for 3 months, followed by withdrawal of the metal, but treatment with sterile water only, and were sacrificed at 3-, 9-, or 15-months post vanadium exposure. Sagittal sections of brain paraffin-embedded tissue were prepared and analyzed using immunofluorescence to study the immunoreactivity and cellular localization of α-synuclein (α-syn), amyloid-β (Aβ), and tau proteins. Our findings revealed pathological aggregation of these proteins in the frontoparietal cortices and the dorsal CA1 and CA3 regions. Double immunolabeling with glial cells and neurons showed neuronal degeneration, functional gliosis, and activation of astrocytes and microglia at sites of α-synuclein immunoreactivity. We observed increased immunoreactivity of phosphorylated nuclei tau both in the parietal cortices and corpus callosum white matter while we observed intraneuronal accumulation of Aβ deposits in the cortex and dorsal hippocampal regions in vanadium treated brains. These cellular changes and proteinopathies, although persisting, were significantly attenuated after vanadium withdrawal. Our findings show that prolonged vanadium exposure promotes abnormal accumulation of neurodegeneration-associated proteins (α-syn, Tau, and Aβ) in the brain, which is further exacerbated by aging in the context of extended exposure to the metal.
Collapse
Affiliation(s)
- O R Folarin
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - F E Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - T T Gilbert
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A D Ladagu
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - P I Pires Dos Santos
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - O A Mustapha
- Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Abeokuta, Abeokuta, Nigeria
| | - L Z Kpasham
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - J O Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - T F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Hu Y, Ma Y, Liu L, Hong Y, Wang G, Tang B, Guo J, Yang P, Cao Y, Ren H. Loss of NgBR causes neuronal damage through decreasing KAT7-mediated RFX1 acetylation and FGF1 expression. Cell Mol Life Sci 2025; 82:140. [PMID: 40192836 PMCID: PMC11977062 DOI: 10.1007/s00018-025-05660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta and striatal dopamine depletion. The NUS1 gene, which encodes the neurite outgrowth inhibitor B receptor (NgBR), has been recently identified as a novel risk gene for PD. However, its roles and mechanism in neurodegeneration are still unclear. Here, we demonstrate that NgBR deficiency triggers neuronal damage through a novel KAT7/RFX1/FGF1 axis. RNA sequencing and experimental verification revealed that NgBR depletion downregulates expression and secretion of fibroblast growth factor 1 (FGF1), which led to inactivation of the PI3K/AKT signaling pathway. Mechanistically, NgBR deletion suppresses lysine acetyltransferase 7 (KAT7) expression, impairing KAT7-mediated acetylation of regulatory factor X1 (RFX1), a transcriptional repressor for FGF1. This stabilized RFX1 by blocking its proteasomal degradation, thereby suppressing FGF1 transcription. Crucially, exogenous FGF1 rescued AKT signaling and mitigated neuronal damage in NgBR-deficient models. Our findings establish NgBR-KAT7-RFX1 as a regulatory axis controlling FGF1-dependent neuroprotection, which promotes the understanding of PD pathogenesis and highlights FGF1 supplementation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Yuwei Hu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanni Ma
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lele Liu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yan Hong
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guanghui Wang
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Suzhou Key Laboratory of Geriatric Neurological Disorders, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215400, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Yang
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Ying Cao
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Haigang Ren
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
- Suzhou Key Laboratory of Geriatric Neurological Disorders, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215400, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu, 215123, China.
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
5
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025; 41:676-690. [PMID: 39754628 PMCID: PMC11978575 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025; 41:691-706. [PMID: 39775589 PMCID: PMC11979074 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
7
|
Ma Q, Tian JL, Lou Y, Guo R, Ma XR, Wu JB, Yang J, Tang BJ, Li S, Qiu M, Duan S, Zhao JW, Zhang J, Xu ZZ. Oligodendrocytes drive neuroinflammation and neurodegeneration in Parkinson's disease via the prosaposin-GPR37-IL-6 axis. Cell Rep 2025; 44:115266. [PMID: 39913287 DOI: 10.1016/j.celrep.2025.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease and is difficult to treat due to its elusive mechanisms. Recent studies have identified a striking association between oligodendrocytes and PD progression, yet how oligodendrocytes regulate the pathogenesis of PD is still unknown. Here, we show that G-protein-coupled receptor 37 (GPR37) is upregulated in oligodendrocytes of the substantia nigra and that prosaposin (PSAP) secretion is increased in parkinsonian mice. The released PSAP can induce interleukin (IL)-6 upregulation and secretion from oligodendrocytes via a GPR37-dependent pathway, resulting in enhanced neuroinflammation, dopamine neuron degeneration, and behavioral deficits. GPR37 deficiency in oligodendrocytes prevents neurodegeneration in multiple PD models. Finally, the hallmarks of the PSAP-GPR37-IL-6 axis are observed in patients with PD. Thus, our results reveal that dopaminergic neurons interact with oligodendrocytes via secreted PSAP, and our findings identify the PSAP-GPR37-IL-6 axis as a driver of PD pathogenesis and a potential therapeutic target that might alleviate PD progression in patients.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China.
| | - Jin-Lan Tian
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China
| | - Yao Lou
- Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Ran Guo
- Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian-Bin Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Yang
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Bing-Jie Tang
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shumin Duan
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Zhang
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Department of Pathology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou 310002, China
| | - Zhen-Zhong Xu
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China.
| |
Collapse
|
8
|
Gong Z, Guo D, Lin Y, Liu Z, Lv M, Liu X, Yao Y, Wang S, Wang Y, Wang Z. A single-cell transcriptome analysis reveals astrocyte heterogeneity and identifies CHI3L1 as a diagnostic biomarker in Parkinson's disease. Heliyon 2025; 11:e42051. [PMID: 39931480 PMCID: PMC11808505 DOI: 10.1016/j.heliyon.2025.e42051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by motor and non-motor symptoms. It has been reported that astrocytes play a critical role in the pathogenesis and progression of PD. Here, we aimed to identify the heterogeneity of astrocytes and investigate genes associated with astrocyte differentiation trajectories in PD. Methods The single-cell transcriptomic profiles of PD samples were collected from the GEO database. We have identified subsets of astrocytes and analyzed their functions. The differentiation trajectory of astrocyte subtypes was explored using Monocle2. Inflammatory response scores were determined using AUCell. The levels of CHI3L1 mRNA and protein expressions in astrocytes were analyzed using qRT-PCR and Western Blot assay, respectively. Results We characterized seven cell types within the substantia nigra region of both PD and normal samples. Our analysis revealed that astrocytes comprised the second-highest proportion of cell types. Additionally, we identified three distinct subpopulations of astrocytes: Astro-C0, Astro-C1, and Astro-C2. Notably, Astro-C0 was associated with inflammatory signaling pathways. Trajectory analysis indicated that Astro-C0 occupies an intermediate stage of differentiation. The astrocyte-related gene CHI3L1 was found to be highly expressed in the Astro-C0 subpopulation. Furthermore, we observed increased levels of CHI3L1 mRNA and protein in LPS-induced astrocytes. Astrocytes exhibiting elevated CHI3L1 levels demonstrated interactions with microglia in PD patients. Lastly, we discovered that CHI3L1 was significantly overexpressed in PD patients and exhibited strong diagnostic potential for the disease. Conclusion This study clarified the heterogeneity of astrocytes in PD based on the single-cell transcriptomic profiles and found that CHI3L1 may be a diagnostic biomarker for PD.
Collapse
Affiliation(s)
- Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Dan Guo
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yufeng Lin
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Zhiwei Liu
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Mengdi Lv
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Xinxin Liu
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yang Yao
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Sijia Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yuan Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
9
|
Sharma N, Sharma M, Thakkar D, Kumar H, Smetanova S, Buresova L, Andrla P, Khairnar A. Chronic DSS-Induced Colitis Exacerbates Parkinson's Disease Phenotype and Its Pathological Features Following Intragastric Rotenone Exposure. ACS Pharmacol Transl Sci 2025; 8:346-367. [PMID: 39974653 PMCID: PMC11833723 DOI: 10.1021/acsptsci.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/15/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025]
Abstract
Background: Parkinson's disease (PD) is intricately linked to gastrointestinal inflammation and the presence of neurotoxins in the gut, integrating α-syn pathologic alterations and subsequent neurodegeneration into the brain. Objectives: This study aimed to explore the enduring impact of dextran sodium sulfate (DSS)-mediated colitis on the vulnerability of central dopaminergic neurons to subsequent rotenone exposure. Methods: To induce chronic colitis, 10-month-old C57BL/6 mice were pre-exposed to 3 cycles of 1 week of 1% (w/v) DSS administration in drinking water followed by 2 weeks of regular drinking water. After colitis induction, animals received a low dose of intragastric rotenone for the next 8 weeks, followed by testing for Parkinsonian behavior and GI phenotypes of inflammation. At the end of the 17th week, colon, brain stem, and midbrain tissue were isolated and analyzed for α-syn, inflammatory markers, and dopaminergic neuronal loss. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Results: We found that chronic rotenone administration in the presence of preexisting colitis led to a further increase in colonic pro-inflammatory mediator expressions, α-syn expression, and reduced colonic tight junction protein expressions. We also found early impairment of GI functions and worsened grip strength in rotenone-exposed colitic mice. Furthermore, α-syn pathology specific to the colitic mice exposed to rotenone showed dopaminergic neurons degeneration and astroglial activation in substantia nigra and striatum, including regions of the brain stem, i.e., dorsal motor of the vagus and locus coeruleus. Finally, the result of 16S rRNA gene sequencing analysis indicated that colitic mice, after being exposed to rotenone, exhibited a discernible trend in their microbiota composition (Catenibacterium, Turicibactor, and clostridium sensue stricto 1), linking it to the development of PD. Conclusions: These findings indicate that prolonged low-dose rotenone exposure, combined with an early inflammatory intestinal milieu, provides a preconditioning effect on α-syn pathology and exerts neurodegeneration in the intragastric rotenone PD mouse model.
Collapse
Affiliation(s)
- Nishant Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Monika Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Disha Thakkar
- Department
of Pharmaceutical Analysis, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Hemant Kumar
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Sona Smetanova
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Lucie Buresova
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Petr Andrla
- RECETOX,
Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Amit Khairnar
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Brno 62500, Czech Republic
- International
Clinical Research Centre, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
10
|
Kumar D, Bishnoi M, Kondepudi KK, Sharma SS. Gut Microbiota-Based Interventions for Parkinson's Disease: Neuroprotective Mechanisms and Current Perspective. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10433-x. [PMID: 39809955 DOI: 10.1007/s12602-024-10433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis. Neuroprotective effects of these interventions are mediated by several mechanisms, including the enhancement of neurotrophin and activation of the PI3K/AKT/mTOR signaling pathway, GLP-1-mediated gut-brain axis signaling, Nrf2/ARE pathway, and autophagy. Other pathways, such as free fatty acid receptor activation, synaptic plasticity improvement, and blood-brain and gut barrier integrity maintenance, also contribute to neuroprotection. Furthermore, the inhibition of the TLR4/NF-кB pathway, MAPK pathway, GSK-3β signaling pathway, miR-155-5p-mediated neuroinflammation, and ferroptosis could account for their protective effects. Clinical studies involving gut microbiota-based interventions have shown therapeutic benefits in PD patients, particularly in improving gastrointestinal dysfunction and some neurological symptoms. However, the effectiveness in alleviating motor symptoms remains mild. Large-scale clinical trials are still needed to confirm these findings. This review emphasizes the neuroprotective mechanisms of gut microbiota-based interventions in PD as supported by both preclinical and clinical studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
11
|
Zhao XY, Xu DE, Wu ML, Liu JC, Shi ZL, Ma QH. Regulation and function of endoplasmic reticulum autophagy in neurodegenerative diseases. Neural Regen Res 2025; 20:6-20. [PMID: 38767472 PMCID: PMC11246128 DOI: 10.4103/nrr.nrr-d-23-00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 05/22/2024] Open
Abstract
The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiu-Yun Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - De-En Xu
- Department of Neurology, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Ji-Chuan Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Zi-Ling Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Breznik L, Daurer M, Rabl R, Loeffler T, Etxeberria-Rekalde E, Neddens J, Flunkert S, Prokesch M. Motor deficits and brain pathology in the Parkinson's disease mouse model hA53Ttg. Front Neurosci 2024; 18:1462041. [PMID: 39371610 PMCID: PMC11450652 DOI: 10.3389/fnins.2024.1462041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the accumulation of α-synuclein (α-syn) aggregates. The A53T missense point mutation occurs in autosomal dominant familial PD and has been found to promote the aggregation of α-syn. To investigate the role of the A53T mutation in PD, researchers have developed various mouse models with this mutation. Objective We therefore conducted a comprehensive characterization of the tg(THY1-SNCA*A53T)M53Sud mouse model (hA53Ttg mice) for its motor and pathological features. Methods hA53Ttg mice were tested for motor impairments in a series of motor tests at 2, 4 or 6 months of age. Human α-syn and α-syn pSer129, as well as GFAP and Iba1 signal were labeled and quantified in the cortex, hippocampus, and brainstem. Neurofilament light chain (NF-L) levels were measured in the cerebrospinal fluid (CSF) and plasma. Ex vivo analyses were performed at the age of 2, 4, 6, and 10 months. Results Behavioral tests revealed early muscle weakness and motor impairments that progressed with age. Immunohistochemical analyses demonstrated elevated levels of human α-syn and α-syn pSer129 in all evaluated brain regions. α-syn pSer129 labeling further revealed fiber-like structures in the cortex of older animals. Neuroinflammation was observed in an age-dependent manner. Biochemical evaluation revealed elevated NF-L levels in the plasma and CSF. Overall, our findings highlight the value of hA53Ttg mice in modeling PD-associated pathologies that closely resemble those observed in PD patients. Conclusion Our results thus suggest that hA53Ttg mice are a useful tool for studying the underlying mechanisms of PD.
Collapse
|
13
|
Qiu R, Cai Y, Su Y, Fan K, Sun Z, Zhang Y. Emerging insights into Lipocalin-2: Unraveling its role in Parkinson's Disease. Biomed Pharmacother 2024; 177:116947. [PMID: 38901198 DOI: 10.1016/j.biopha.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, marked by a complex pathogenesis. Lipocalin-2 (LCN2) emerges as a crucial factor during the progression of PD. Belonging to the lipocalin family, LCN2 is integral to several biological functions, including glial cell activation, iron homeostasis regulation, immune response, inflammatory reactions, and oxidative stress mitigation. Substantial research has highlighted marked increases in LCN2 expression within the substantia nigra (SN), cerebrospinal fluid (CSF), and blood of individuals with PD. This review focuses on the pathological roles of LCN2 in neuroinflammation, aging, neuronal damage, and iron dysregulation in PD. It aims to explore the underlying mechanisms of LCN2 in the disease and potential therapeutic targets that could inform future treatment strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Zhang N, Guo P, Zhao Y, Qiu X, Shao S, Liu Z, Gao Z. Pharmacological mechanisms of puerarin in the treatment of Parkinson's disease: An overview. Biomed Pharmacother 2024; 177:117101. [PMID: 39002442 DOI: 10.1016/j.biopha.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Puerarin, a monomer of traditional Chinese medicine, is a key component of Pueraria radix. Both clinical and experimental researches demonstrated that puerarin has therapeutic effects on Parkinson's disease (PD). Puerarin's pharmacological mechanisms include: 1) Anti-apoptosis. Puerarin inhibits cell apoptosis through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. Puerarin also exerts a hormone-like effect against cell apoptosis; 2) Anti-oxidative stress injury. Puerarin inhibits the Nrf2 nuclear exclusion through the GSK-3β/Fyn pathway to promote the Nrf2 accumulation in the nucleus, and then promotes the antioxidant synthesis through the Nrf2/ARE signaling pathway to protect against oxidative stress; 3) Neuroprotective effects by intervening in the ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP). Puerarin significantly enhances the activity of chaperone-mediated autophagy (CMA), which downregulates the expression of α-synuclein, reduces its accumulation, and thus improves the function of damaged neurons. Additionally, puerarin increases proteasome activity and decreases ubiquitin-binding proteins, thereby preventing toxic accumulation of intracellular proteins; 4) Alleviating inflammatory response. Puerarin inhibits the conversion of microglia to the M1 phenotype while inducing the transition of microglia to the M2 phenotype. Furthermore, puerarin promotes the secretion of anti-inflammatory factor and inhibits the expression of pro-inflammatory factors; 5) Increasing the levels of dopamine and its metabolites. Puerarin could increase the levels of dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum; 6) Promoting neurotrophic factor expression and neuronal repair. Puerarin increases the expression of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), thereby exerting a neuroprotective effect. Moreover, the regulation of the gut microbiota by puerarin may be a potential mechanism for the treatment of PD. The current review discusses the molecular mechanisms of puerarin, which may provide insight into the active components of traditional Chinese medicine in the treatment of PD.
Collapse
Affiliation(s)
- Nianping Zhang
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Peng Guo
- Department of Neurology, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Yan Zhao
- Department of Hand and Upper Limb Surgery, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Xiao Qiu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Shuai Shao
- Department of reproductive medicine, Jingmen People's Hospital, Jingmen, Hubei 448000, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zong Gao
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China.
| |
Collapse
|
15
|
Valdés-Fuentes M, Rodríguez-Martínez E, Rivas-Arancibia S. Accumulation of Alpha-Synuclein and Increase in the Inflammatory Response in the substantia nigra, Jejunum, and Colon in a Model of O 3 Pollution in Rats. Int J Mol Sci 2024; 25:5526. [PMID: 38791561 PMCID: PMC11122268 DOI: 10.3390/ijms25105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This work aimed to study the effect of repeated exposure to low doses of ozone on alpha-synuclein and the inflammatory response in the substantia nigra, jejunum, and colon. Seventy-two male Wistar rats were divided into six groups. Each group received one of the following treatments: The control group was exposed to air. The ozone groups were exposed for 7, 15, 30, 60, and 90 days for 0.25 ppm for four hours daily. Afterward, they were anesthetized, and their tissues were extracted and processed using Western blotting, immunohistochemistry, and qPCR. The results indicated a significant increase in alpha-synuclein in the substantia nigra and jejunum from 7 to 60 days of exposure and an increase in NFκB from 7 to 90 days in the substantia nigra, while in the jejunum, a significant increase was observed at 7 and 15 days and a decrease at 60 and 90 days for the colon. Interleukin IL-17 showed an increase at 90 days in the substantia nigra in the jejunum and increases at 30 days and in the colon at 15 and 90 days. Exposure to ozone increases the presence of alpha-synuclein and induces the loss of regulation of the inflammatory response, which contributes significantly to degenerative processes.
Collapse
Affiliation(s)
| | | | - Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.V.-F.); (E.R.-M.)
| |
Collapse
|
16
|
Yi S, Wang L, Ho MS, Zhang S. The autophagy protein Atg9 functions in glia and contributes to parkinsonian symptoms in a Drosophila model of Parkinson's disease. Neural Regen Res 2024; 19:1150-1155. [PMID: 37862221 PMCID: PMC10749615 DOI: 10.4103/1673-5374.382259] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by motor deficits, dopaminergic neuron loss, and brain accumulation of α-synuclein aggregates called Lewy bodies. Dysfunction in protein degradation pathways, such as autophagy, has been demonstrated in neurons as a critical mechanism for eliminating protein aggregates in Parkinson's disease. However, it is less well understood how protein aggregates are eliminated in glia, the other cell type in the brain. In the present study, we show that autophagy-related gene 9 (Atg9), the only transmembrane protein in the autophagy machinery, is highly expressed in Drosophila glia from adult brain. Results from immunostaining and live cell imaging analysis reveal that a portion of Atg9 localizes to the trans-Golgi network, autophagosomes, and lysosomes in glia. Atg9 is persistently in contact with these organelles. Lacking glial atg9 reduces the number of omegasomes and autophagosomes, and impairs autophagic substrate degradation. This suggests that glial Atg9 participates in the early steps of autophagy, and hence the control of autophagic degradation. Importantly, loss of glial atg9 induces parkinsonian symptoms in Drosophila including progressive loss of dopaminergic neurons, locomotion deficits, and glial activation. Our findings identify a functional role of Atg9 in glial autophagy and establish a potential link between glial autophagy and Parkinson's disease. These results may provide new insights on the underlying mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Shuanglong Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linfang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
17
|
Wang R, Sun H, Cao Y, Zhang Z, Chen Y, Wang X, Liu L, Wu J, Xu H, Wu D, Mu C, Hao Z, Qin S, Ren H, Han J, Fang M, Wang G. Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice. Sci Signal 2024; 17:eadk8249. [PMID: 38530880 DOI: 10.1126/scisignal.adk8249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson's disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.
Collapse
Affiliation(s)
- Rui Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Cao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yajing Chen
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiying Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200000, China
| | - Lele Liu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ming Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Guanghui Wang
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
18
|
Ma YY, Li X, Yu JT, Wang YJ. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener 2024; 13:12. [PMID: 38414054 PMCID: PMC10898075 DOI: 10.1186/s40035-024-00404-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The aetiologies and origins of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), are complex and multifaceted. A growing body of evidence suggests that the gut microbiome plays crucial roles in the development and progression of neurodegenerative diseases. Clinicians have come to realize that therapeutics targeting the gut microbiome have the potential to halt the progression of neurodegenerative diseases. This narrative review examines the alterations in the gut microbiome in AD, PD, ALS and HD, highlighting the close relationship between the gut microbiome and the brain in neurodegenerative diseases. Processes that mediate the gut microbiome-brain communication in neurodegenerative diseases, including the immunological, vagus nerve and circulatory pathways, are evaluated. Furthermore, we summarize potential therapeutics for neurodegenerative diseases that modify the gut microbiome and its metabolites, including diets, probiotics and prebiotics, microbial metabolites, antibacterials and faecal microbiome transplantation. Finally, current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
| |
Collapse
|
19
|
Song J, Li Z, Xue X, Meng J, Zhu W, Hu S, Xu G, Wang L. Neonatal stress disrupts the glymphatic system development and increases the susceptibility to Parkinson's disease in later life. CNS Neurosci Ther 2024; 30:e14587. [PMID: 38421142 PMCID: PMC10851323 DOI: 10.1111/cns.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Neonatal stress disrupts brain development and increases the risk of neurological disorders later in life. However, the impact of neonatal stress on the development of the glymphatic system and susceptibility to Parkinson's disease (PD) remains largely unknown. METHODS Neonatal maternal deprivation (NMD) was performed on mice for 14 consecutive days to model chronic neonatal stress. Adeno-associated virus expressing A53T-α-synuclein (α-syn) was injected into the substantia nigra to establish PD model mice. Glymphatic activity was determined using in vivo magnetic resonance imaging, ex vivo fluorescence imaging and microplate assay. The transcription and expression of aquaporin-4 (AQP4) and other molecules were evaluated by qPCR, western blotting, and immunofluorescence. Animal's responses to NMD and α-syn overexpression were observed using behavioral tests. RESULTS Glymphatic activity was impaired in adult NMD mice. AQP4 polarization and platelet-derived growth factor B (PDGF-B) signaling were reduced in the frontal cortex and hippocampus of both young and adult NMD mice. Furthermore, exogenous α-syn accumulation was increased and PD-like symptoms were aggravated in adult NMD mice. CONCLUSION The results demonstrated that NMD could disrupt the development of the glymphatic system through PDGF-B signaling and increase the risk of PD later in life, indicating that alleviating neonatal stress could be beneficial in protecting the glymphatic system and reducing susceptibility to neurodegeneration.
Collapse
Affiliation(s)
- Jian Song
- Department of Physiology and NeurobiologySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Zhen‐Hua Li
- Department of Physiology and NeurobiologySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Xin‐Yu Xue
- Department of Physiology and NeurobiologySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jing‐Cai Meng
- Department of Physiology and NeurobiologySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Wen‐Xin Zhu
- Department of Physiology and NeurobiologySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Shufen Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Guang‐Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of NeuroscienceSoochow UniversitySuzhouChina
| | - Lin‐Hui Wang
- Department of Physiology and NeurobiologySuzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
20
|
Shen QQ, Jv XH, Ma XZ, Li C, Liu L, Jia WT, Qu L, Chen LL, Xie JX. Cell senescence induced by toxic interaction between α-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson's disease. Acta Pharmacol Sin 2024; 45:268-281. [PMID: 37674042 PMCID: PMC10789811 DOI: 10.1038/s41401-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (β-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 μM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.
Collapse
Affiliation(s)
- Qing-Qing Shen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Xian-Hui Jv
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Xi-Zhen Ma
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Chong Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Lin Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Wen-Ting Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China
| | - Lei-Lei Chen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
21
|
Zhang N, Yan Z, Xin H, Shao S, Xue S, Cespuglio R, Wang S. Relationship among α‑synuclein, aging and inflammation in Parkinson's disease (Review). Exp Ther Med 2024; 27:23. [PMID: 38125364 PMCID: PMC10728906 DOI: 10.3892/etm.2023.12311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative pathology whose major clinical symptoms are movement disorders. The main pathological characteristics of PD are the selective death of dopaminergic (DA) neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein (α-Syn) within these neurons. PD is associated with numerous risk factors, including environmental factors, genetic mutations and aging. In many cases, the complex interplay of numerous risk factors leads to the onset of PD. The mutated α-Syn gene, which expresses pathologicalα-Syn protein, can cause PD. Another important feature of PD is neuroinflammation, which is conducive to neuronal death. α-Syn is able to interact with certain cell types in the brain, including through phagocytosis and degradation of α-Syn by glial cells, activation of inflammatory pathways by α-Syn in glial cells, transmission of α-Syn between glial cells and neurons, and interactions between peripheral immune cells and α-Syn. In addition to the aforementioned risk factors, PD may also be associated with aging, as the prevalence of PD increases with advancing age. The aging process impairs the cellular clearance mechanism, which leads to chronic inflammation and the accumulation of intracellular α-Syn, which results in DA neuronal death. In the present review, the age-associated α-Syn pathogenicity and the interactions between α-Syn and certain types of cells within the brain are discussed to facilitate understanding of the mechanisms of PD pathogenesis, which may potentially provide insight for the future clinical treatment of PD.
Collapse
Affiliation(s)
- Nianping Zhang
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Zhaoli Yan
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Hua Xin
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Shuai Shao
- Department of Reproductive Medicine, Jingmen People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Song Xue
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Raymond Cespuglio
- Neuroscience Research Center of Lyon (CNRL), Claude-Bernard Lyon-1 University, 69500 Lyon, France
| | - Shijun Wang
- Department of Pathology, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| |
Collapse
|
22
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
23
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Yin S, Ma XY, Sun YF, Yin YQ, Long Y, Zhao CL, Ma JW, Li S, Hu Y, Li MT, Hu G, Zhou JW. RGS5 augments astrocyte activation and facilitates neuroinflammation via TNF signaling. J Neuroinflammation 2023; 20:203. [PMID: 37674228 PMCID: PMC10481574 DOI: 10.1186/s12974-023-02884-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xin-Yue Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ying-Feng Sun
- Center for Brain Disorders Research, Center of Parkinson's Disease, Capital Medical University, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ying Long
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chun-Lai Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jun-Wei Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Sen Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yan Hu
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ming-Tao Li
- Guangdong Provincial Key Laboratory of Brain Function, Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science, Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- Co-Innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
25
|
He C, Duan S. Novel Insight into Glial Biology and Diseases. Neurosci Bull 2023; 39:365-367. [PMID: 36877440 PMCID: PMC10043134 DOI: 10.1007/s12264-023-01039-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/07/2023] Open
Affiliation(s)
- Cheng He
- Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, 200433, China.
| | - Shumin Duan
- Department of Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
26
|
PPARs and Their Neuroprotective Effects in Parkinson's Disease: A Novel Therapeutic Approach in α-Synucleinopathy? Int J Mol Sci 2023; 24:ijms24043264. [PMID: 36834679 PMCID: PMC9963164 DOI: 10.3390/ijms24043264] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.
Collapse
|