1
|
Shang S, Zhao X, Zhang Q, Zhao G, Wang H, Lu X. Potential Therapeutic Effects of Terahertz Radiation on Alzheimer's Disease-like Pathology in the Tau Transgenic Caenorhabditis elegans Model. ACS Chem Neurosci 2025; 16:1710-1719. [PMID: 40202328 DOI: 10.1021/acschemneuro.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
The application of terahertz waves in the field of neurological disease research has gradually attracted attention in recent years. Prior studies have indicated that terahertz waves are capable of alleviating the symptoms of Alzheimer's disease (AD) in mice, yet the underlying relevant mechanisms remain unclear. This study explores the therapeutic potential of terahertz (THz) radiation on AD using a transgenic Caenorhabditis elegans model expressing human tau protein. The nematodes were subjected to 0.1 THz radiation at varying power levels, and its impact on locomotion, tau protein aggregation, and associative learning was evaluated. Results indicate that 0.1 THz irradiation significantly improved the locomotor performance and associative learning of the tau transgenic nematodes, reduced tau aggregation, and increased the expression of SKN-1 and DAF-16. Molecular dynamics simulation revealed that THz waves inhibited the structural stability of tau protofibrils by reducing the protein compactness, altering the secondary structure, reducing hydrogen bond formation, and changing the hydrophobic interaction. Overall, this study demonstrates the potential of low-frequency THz radiation as a nonpharmacological therapy for AD, highlighting its ability to modulate neuronal function and alleviate disease symptoms.
Collapse
Affiliation(s)
- Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049 Shaanxi, P. R. China
| | - Xiaofei Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 Shaanxi, China
| | - Qi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049 Shaanxi, P. R. China
| | - Geqian Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049 Shaanxi, P. R. China
| | - Hongguang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 Shaanxi, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049 Shaanxi, P. R. China
| |
Collapse
|
2
|
Song L, He Z, Dong J, Wang H, Zhang J, Yao B, Xu X, Wang H, Zhao L, Peng R. THz Waves Improve Spatial Working Memory by Increasing the Activity of Glutamatergic Neurons in Mice. Cells 2025; 14:370. [PMID: 40072098 PMCID: PMC11898596 DOI: 10.3390/cells14050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Terahertz (THz) waves, a novel type of radiation with quantum and electronic properties, have attracted increasing attention for their effects on the nervous system. Spatial working memory, a critical component of higher cognitive function, is coordinated by brain regions such as the infralimbic cortex (IL) region of the medial prefrontal cortex and the ventral cornu ammonis 1 (vCA1) of hippocampus. However, the regulatory effects of THz waves on spatial working memory and the underlying mechanisms remain unclear. In this study, the effects of 0.152 THz waves on glutamatergic neuronal activity and spatial working memory and the related mechanisms were investigated in cell, brain slice, and mouse models. Cellular experiments revealed that THz waves exposure for 60 min significantly increased the intrinsic excitability of primary hippocampal neurons, enhanced glutamatergic neuron activity, and upregulated the expression of molecules involved in glutamate metabolism. In brain slice experiments, THz waves markedly elevated neuronal activity, promoted synaptic plasticity, and increased glutamatergic synaptic transmission within the IL and vCA1 regions. Molecular dynamics simulations found that THz waves could inhibit the ion transport function of glutamate receptors. Moreover, Y-maze tests demonstrated that mice exposed to THz waves exhibited significantly improved spatial working memory. Multiomics analyses indicated that THz waves could induce changes in chromatin accessibility and increase the proportion of excitatory neurons. These findings suggested that exposure to 0.152 THz waves increased glutamatergic neuronal activity, promoted synaptic plasticity, and improved spatial working memory, potentially through modifications in chromatin accessibility and excitatory neuron proportions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Wang
- Beijing Institute of Radiation Medicine, 100850 Beijing, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, 100850 Beijing, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, 100850 Beijing, China
| |
Collapse
|
3
|
Perez FP, Walker B, Morisaki J, Kanakri H, Rizkalla M. Neurostimulation devices to treat Alzheimer's disease. EXPLORATION OF NEUROSCIENCE 2025; 4:100674. [PMID: 40084342 PMCID: PMC11904933 DOI: 10.37349/en.2025.100674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (Aβ). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett Walker
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Shang S, Gao F, Zhang Q, Song T, Wang W, Liu D, Gong Y, Lu X. 0.263 terahertz irradiation induced genes expression changes in Caenorhabditis elegans. iScience 2024; 27:109391. [PMID: 38532884 PMCID: PMC10963221 DOI: 10.1016/j.isci.2024.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.
Collapse
Affiliation(s)
- Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Fei Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Qi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Tao Song
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Wang
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Diwei Liu
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yubin Gong
- Terahertz Science and Technology Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| |
Collapse
|