1
|
Wang M, Huang Z, Zhu Y, Li X, Sun H, Fan Q. The Bromodomain and Extraterminal Protein Inhibitor Apabetalone Ameliorates Kidney Injury in Diabetes by Regulating Cholesterol Accumulation and Modulating the Gut Microbiota. Kidney Int Rep 2025; 10:522-534. [PMID: 39990894 PMCID: PMC11843129 DOI: 10.1016/j.ekir.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction A US Food and Drug Administration-approved new bromodomain (BRD) and extraterminal (BET) bromine domain antagonist called apabetalone, which targets BRD4, has been shown to increase prebeta-1 high-density lipoprotein (HDL) particles, enhance apolipoprotein A-I in both humans and animals, and restore angiogenesis in experimental diabetes. Its action is not however fully known mechanistically. The objective of our research was to investigate the impact of apabetalone on renal damage linked to diabetic kidney disease (DKD). Methods This research employed both pharmacological and genetic methods to examine the impact of apabetalone on db/db (BKS. Cg-leprdb/leprdb) mice and human tubular epithelial cells (HK-2). Results Here, significant reductions in blood creatinine, urea nitrogen, and urinary albumin-to-creatinine ratio (UACR) levels, serum triglycerides (TGs) and serum total cholesterol (TC), as well as ectopic lipid droplet formation in renal tissue, were seen in the db/db mice following apabetalone therapy. Analysis of the gut microbiota revealed changes in its composition. Significantly, the proportion of Firmicutes to Bacteroidetes decreased, as well as Deferribacterota, indicating a positive influence on lipid metabolism. Untargeted metabolomic analysis indicated that the ABC transporter signaling pathway, implicated in cholesterol metabolism, was enriched. Moreover, peroxisome proliferator-activated receptor gamma (PPARγ)/liver X receptor (LXR)/adenosine triphosphate-binding cassette transporter A1 (ABCA1) protein, and mRNA level, as well as fibrosis-related marker proteins, fibronectin and collagen I were all improved by apabetalone. Conclusion Therefore, we suggest that apabetalone showed significant antihyperlipidemic and antifibrotic effects, closely associated with alterations in the gut microbiota and cholesterol metabolism. The results of this investigation provide fresh perspectives on the processes that underlie apabetalone's effects in db/db mice.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaohui Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yonghong Zhu
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - QiuLing Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 PMCID: PMC11641342 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Priyanka K. Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA;
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
3
|
Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP. Nonlinear dynamics of multi-omics profiles during human aging. NATURE AGING 2024; 4:1619-1634. [PMID: 39143318 PMCID: PMC11564093 DOI: 10.1038/s43587-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Aging is a complex process associated with nearly all diseases. Understanding the molecular changes underlying aging and identifying therapeutic targets for aging-related diseases are crucial for increasing healthspan. Although many studies have explored linear changes during aging, the prevalence of aging-related diseases and mortality risk accelerates after specific time points, indicating the importance of studying nonlinear molecular changes. In this study, we performed comprehensive multi-omics profiling on a longitudinal human cohort of 108 participants, aged between 25 years and 75 years. The participants resided in California, United States, and were tracked for a median period of 1.7 years, with a maximum follow-up duration of 6.8 years. The analysis revealed consistent nonlinear patterns in molecular markers of aging, with substantial dysregulation occurring at two major periods occurring at approximately 44 years and 60 years of chronological age. Distinct molecules and functional pathways associated with these periods were also identified, such as immune regulation and carbohydrate metabolism that shifted during the 60-year transition and cardiovascular disease, lipid and alcohol metabolism changes at the 40-year transition. Overall, this research demonstrates that functions and risks of aging-related diseases change nonlinearly across the human lifespan and provides insights into the molecular and biological pathways involved in these changes.
Collapse
Affiliation(s)
- Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Singapore, Singapore
| | - Chuchu Wang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Damiano G, Rinaldi R, Raucci A, Molinari C, Sforza A, Pirola S, Paneni F, Genovese S, Pompilio G, Vinci MC. Epigenetic mechanisms in cardiovascular complications of diabetes: towards future therapies. Mol Med 2024; 30:161. [PMID: 39333854 PMCID: PMC11428340 DOI: 10.1186/s10020-024-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of cardiovascular disease and microvascular complications in diabetes have been extensively studied, but effective methods of prevention and treatment are still lacking. In recent years, DNA methylation, histone modifications, and non-coding RNAs have arisen as possible mechanisms involved in the development, maintenance, and progression of micro- and macro-vascular complications of diabetes. Epigenetic changes have the characteristic of being heritable or deletable. For this reason, they are now being studied as a therapeutic target for the treatment of diabetes and the prevention or for slowing down its complications, aiming to alleviate the personal and social burden of the disease.This review addresses current knowledge of the pathophysiological links between diabetes and cardiovascular complications, focusing on the role of epigenetic modifications, including DNA methylation and histone modifications. In addition, although the treatment of complications of diabetes with "epidrugs" is still far from being a reality and faces several challenges, we present the most promising molecules and approaches in this field.
Collapse
Affiliation(s)
- Giulia Damiano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Raffaella Rinaldi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Angela Raucci
- Unit of Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Chiara Molinari
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Annalisa Sforza
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Sergio Pirola
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zürich, Switzerland
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Stefano Genovese
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, 20100, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.
| |
Collapse
|
5
|
Bai Q, Shao E, Ma D, Jiao B, Scheetz SD, Hartnett-Scott KA, Ilin VA, Aizenman E, Kofler J, Burton EA. A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination. Nat Commun 2024; 15:8195. [PMID: 39294122 PMCID: PMC11410960 DOI: 10.1038/s41467-024-52173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is an incurable neurodegenerative disease characterized by 4-repeat (0N/4R)-Tau protein accumulation in CNS neurons. We generated transgenic zebrafish expressing human 0N/4R-Tau to investigate PSP pathophysiology. Tau zebrafish replicated multiple features of PSP, including: decreased survival; hypokinesia; impaired optokinetic responses; neurodegeneration; neuroinflammation; synapse loss; and Tau hyperphosphorylation, misfolding, mislocalization, insolubility, truncation, and oligomerization. Using automated assays, we screened 147 small molecules for activity in rescuing neurological deficits in Tau zebrafish. (+)JQ1, a bromodomain inhibitor, improved hypokinesia, survival, microgliosis, and brain synapse elimination. A heterozygous brd4+/- mutant reducing expression of the bromodomain protein Brd4 similarly rescued these phenotypes. Microglial phagocytosis of synaptic material was decreased by (+)JQ1 in both Tau zebrafish and rat primary cortical cultures. Microglia in human PSP brains expressed Brd4. Our findings implicate Brd4 as a regulator of microglial synaptic elimination in tauopathy and provide an unbiased approach for identifying mechanisms and therapeutic targets in PSP.
Collapse
Affiliation(s)
- Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Enhua Shao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Denglei Ma
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Binxuan Jiao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Seth D Scheetz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Karen A Hartnett-Scott
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Vladimir A Ilin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elias Aizenman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Edward A Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatrics Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
6
|
Wang M, Huang Z, Li X, He P, Sun H, Peng Y, Fan Q. Apabetalone, a BET protein inhibitor, inhibits kidney damage in diabetes by preventing pyroptosis via modulating the P300/H3K27ac/PLK1 axis. Pharmacol Res 2024; 207:107306. [PMID: 39002871 DOI: 10.1016/j.phrs.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Many inflammatory disorders, including diabetic kidney disease (DKD), are associated with pyroptosis, a type of inflammation-regulated cell death. The purpose of this work was to ascertain the effects of apabetalone, which targets BRD4, a specific inhibitor of the bromodomain (BRD) and extra-terminal (BET) proteins that target bromodomain 2, on kidney injury in DKD. This study utilized pharmacological and genetic approaches to investigate the effects of apabetalone on pyroptosis in db/db mice and human tubular epithelial cells (HK-2). BRD4 levels were elevated in HK-2 cells exposed to high glucose and in db/db mice. Modulating BRD4 levels led to changes in the generation of inflammatory cytokines and cell pyroptosis linked to NLRP3 inflammasome in HK-2 cells and db/db mice. Likewise, these cellular processes were mitigated by apabetalone through inhibition BRD4. Apabetalone or BRD4 siRNA suppressed PLK1 expression in HK-2 cells under high glucose by P300-dependent H3K27 acetylation on the PLK1 gene promoter, as demonstrated through chromatin immunoprecipitation and immunoprecipitation assays. To summarize, apabetalone relieves renal proptosis and fibrosis in DKD. BRD4 regulates the P300/H3K27ac/PLK1 axis, leading to the activation of the NLRP3 inflammasome and subsequent cell pyroptosis, inflammation, and fibrosis. These results may provide new perspectives on DKD treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaohui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Li
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping He
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yali Peng
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - QiuLing Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Wang M, Huang Z, Fan Q. Correspondence: Reply to commentary on "Apabetalone, a BET protein inhibitor, inhibits kidney damage in diabetes by preventing pyroptosis via modulating the P300/H3K27ac/PLK1 axis". Pharmacol Res 2024; 208:107330. [PMID: 39142539 DOI: 10.1016/j.phrs.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaohui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - QiuLing Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Dhulkifle H, Diab MI, Algonaiah M, Korashy HM, Maayah ZH. Apabetalone (RVX-208): A Potential Epigenetic Therapy for the Treatment of Cardiovascular, Renal, Neurological, Viral, and Cancer Disorders. ACS Pharmacol Transl Sci 2024; 7:546-559. [PMID: 38481679 PMCID: PMC10928887 DOI: 10.1021/acsptsci.3c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2025]
Abstract
Bromodomain and extra-terminal domain proteins (BET proteins) are epigenetic reader proteins that have been implicated in regulating gene expression through binding to chromatin and interaction with transcription factors. These proteins are located in the nucleus and are responsible for recognizing acetylated lysine residues on histones, reading epigenetic messages, recruiting key transcription factors, and thereby regulating gene expression. BET proteins control the transcription of genes responsible for maladaptive effects in inflammation, cancer, and renal and cardiovascular diseases. Given the multifaceted role of BET proteins in the pathogenesis of various diseases, several small molecule inhibitors of BET proteins have been developed as potential therapeutic targets for treating different diseases in recent years. However, while many nonselective BET inhibitors are indicated for the treatment of cancer, a selective BET inhibitor, apabetalone, is the only oral BET inhibitor in phase III clinical trials for the treatment of cardiovascular diseases and others. Thus, this review aims to present and discuss the preclinical and clinical evidence for the beneficial effects and mechanism of action of apabetalone for treating various diseases.
Collapse
Affiliation(s)
- Hevna Dhulkifle
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohammad Issam Diab
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Majed Algonaiah
- Department
of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hesham M. Korashy
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Zaid H. Maayah
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Sun M, Clayton N, Alam S, Asmussen N, Wong A, Kim JH, Luong G, Mokhtari S, Pellei D, Carrico CK, Schwartz Z, Boyan BD, Giannobile WV, Sahingur SE, Lin Z. Selective BET inhibitor RVX-208 ameliorates periodontal inflammation and bone loss. J Clin Periodontol 2023; 50:1658-1669. [PMID: 37855275 DOI: 10.1111/jcpe.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
AIM To determine the effects of RVX-208, a selective bromodomain and extra-terminal domain (BET) inhibitor targeting bromodomain 2 (BD2), on periodontal inflammation and bone loss. MATERIALS AND METHODS Macrophage-like cells (RAW264.7) and human gingival epithelial cells were challenged by Porphyromonas gingivalis (Pg) with or without RVX-208. Inflammatory gene expression and cytokine production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RAW264.7 cells were induced to osteoclast differentiation. After RVX-208 treatment, osteoclast differentiation was evaluated by histology, tartrate-resistant-acid-phosphatase (TRAP) activity and the expression of osteoclast-specific genes. The effect of RVX-208 on osteoclast transcriptome was studied by RNA sequencing. Periodontitis was induced in rats by ligature and local RVX-208 treatment was administered every other day. Alveolar bone loss was measured by micro-computed tomography. RESULTS RVX-208 inhibited inflammatory gene expression and cytokine production in Pg-infected cells. Osteoclast differentiation was inhibited by RVX-208, as evidenced by reduced osteoclast number, TRAP activity and osteoclast-specific gene expression. RVX-208 displayed a more selective and less profound suppressive impact on transcriptome compared with pan-BET inhibitor, JQ1. RVX-208 administration prevented the alveolar bone loss in vivo. CONCLUSIONS RVX-208 regulated both upstream (inflammatory cytokine production) and downstream (osteoclast differentiation) events that lead to periodontal tissue destruction, suggesting that it may be a promising 'epi-drug' for the prevention of periodontitis.
Collapse
Affiliation(s)
- Mingxu Sun
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Jianbo Dental Clinic, Qingdao, People's Republic of China
| | - Nicholas Clayton
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sheikh Alam
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Niels Asmussen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Andrew Wong
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jin Ha Kim
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gary Luong
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sasan Mokhtari
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David Pellei
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Caroline K Carrico
- Department of Dental Public Health and Policy, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhao Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022; 9:952949. [PMID: 36093141 PMCID: PMC9458904 DOI: 10.3389/fcvm.2022.952949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Kai Wang
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Zhang
| |
Collapse
|
11
|
Tsujikawa LM, Kharenko OA, Stotz SC, Rakai BD, Sarsons CD, Gilham D, Wasiak S, Fu L, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Breaking boundaries: Pan BETi disrupt 3D chromatin structure, BD2-selective BETi are strictly epigenetic transcriptional regulators. Biomed Pharmacother 2022; 152:113230. [PMID: 35687908 DOI: 10.1016/j.biopha.2022.113230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Bromodomain and extraterminal proteins (BETs) are more than just epigenetic regulators of transcription. Here we highlight a new role for the BET protein BRD4 in the maintenance of higher order chromatin structure at Topologically Associating Domain Boundaries (TADBs). BD2-selective and pan (non-selective) BET inhibitors (BETi) differentially support chromatin structure, selectively affecting transcription and cell viability. METHODS Using RNA-seq and BRD4 ChIP-seq, the differential effect of BETi treatment on the transcriptome and BRD4 chromatin occupancy of human aortic endothelial cells from diabetic patients (dHAECs) stimulated with TNFα was evaluated. Chromatin decondensation and DNA fragmentation was assessed by immunofluorescence imaging and quantification. Key dHAEC findings were verified in proliferating monocyte-like THP-1 cells using real time-PCR, BRD4 co-immunoprecipitation studies, western blots, proliferation and apoptosis assays. FINDINGS We discovered that 1) BRD4 co-localizes with Ying-Yang 1 (YY1) at TADBs, critical chromatin structure complexes proximal to many DNA repair genes. 2) BD2-selective BETi enrich BRD4/YY1 associations, while pan-BETi do not. 3) Failure to support chromatin structures through BRD4/YY1 enrichment inhibits DNA repair gene transcription, which induces DNA damage responses, and causes widespread chromatin decondensation, DNA fragmentation, and apoptosis. 4) BD2-selective BETi maintain high order chromatin structure and cell viability, while reducing deleterious pro-inflammatory transcription. INTERPRETATION BRD4 plays a previously unrecognized role at TADBs. BETi differentially impact TADB stability. Our results provide translational insight for the development of BETi as therapeutics for a range of diseases including CVD, chronic kidney disease, cancer, and COVID-19.
Collapse
Affiliation(s)
- Laura M Tsujikawa
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Olesya A Kharenko
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Stephanie C Stotz
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Brooke D Rakai
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Christopher D Sarsons
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Dean Gilham
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Sylwia Wasiak
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Li Fu
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Michael Sweeney
- Resverlogix Corporation, Suite 4010, 44 Montgomery Street, San Francisco, CA 94104, USA.
| | - Jan O Johansson
- Resverlogix Corporation, Suite 4010, 44 Montgomery Street, San Francisco, CA 94104, USA.
| | - Norman C W Wong
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Ewelina Kulikowski
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| |
Collapse
|
12
|
Fu L, Wasiak S, Tsujikawa LM, Rakai BD, Stotz SC, Wong NCW, Johansson JO, Sweeney M, Mohan CM, Khan A, Kulikowski E. Inhibition of epigenetic reader proteins by apabetalone counters inflammation in activated innate immune cells from Fabry disease patients receiving enzyme replacement therapy. Pharmacol Res Perspect 2022; 10:e00949. [PMID: 35417091 PMCID: PMC9007222 DOI: 10.1002/prp2.949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fabry disease (FD) is a rare X‐linked disorder of lipid metabolism, characterized by the accumulation of globotriaosylceramide (Gb3) due to defective the lysosomal enzyme, α‐galactosidase. Gb3 deposits activate immune‐mediated systemic inflammation, ultimately leading to life‐threatening consequences in multiple organs such as the heart and kidneys. Enzyme replacement therapy (ERT), the standard of care, is less effective with advanced tissue injury and inflammation in patients with FD. Here, we showed that MCP‐1 and TNF‐α cytokine levels were almost doubled in plasma from ERT‐treated FD patients. Chemokine receptor CCR2 surface expression was increased by twofold on monocytes from patients with low eGFR. We also observed an increase in IL12B transcripts in unstimulated peripheral blood mononuclear cells (PBMCs) over a 2‐year period of continuous ERT. Apabetalone is a clinical‐stage oral bromodomain and extra terminal protein inhibitor (BETi), which has beneficial effects on cardiovascular and kidney disease related pathways including inflammation. Here, we demonstrate that apabetalone, a BD2‐selective BETi, dose dependently reduced the production of MCP‐1 and IL‐12 in stimulated PBMCs through transcriptional regulation of their encoding genes. Reactive oxygen species production was diminished by up to 80% in stimulated neutrophils following apabetalone treatment, corresponding with inhibition of NOX2 transcription. This study elucidates that inhibition of BET proteins by BD2‐selective apabetalone alleviates inflammatory processes and oxidative stress in innate immune cells in general and in FD. These results suggest potential benefit of BD2‐selective apabetalone in controlling inflammation and oxidative stress in FD, which will be further investigated in clinical trials.
Collapse
Affiliation(s)
- Li Fu
- Resverlogix Corp, Calgary, AB, Canada
| | | | | | | | | | | | | | | | - Connie M Mohan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Metabolics and Genetics in Calgary (M.A.G.I.C.) Clinic Ltd., Calgary, AB, Canada
| | | |
Collapse
|
13
|
Alkaline Phosphatase: An Old Friend as Treatment Target for Cardiovascular and Mineral Bone Disorders in Chronic Kidney Disease. Nutrients 2022; 14:nu14102124. [PMID: 35631265 PMCID: PMC9144546 DOI: 10.3390/nu14102124] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Alkaline phosphatase (ALP) is an evolutionary conserved enzyme and widely used biomarker in clinical practice. Tissue-nonspecific alkaline phosphatase (TNALP) is one of four human isozymes that are expressed as distinct TNALP isoforms after posttranslational modifications, mainly in bone, liver, and kidney tissues. Beyond the well-known effects on bone mineralization, the bone ALP (BALP) isoforms (B/I, B1, B1x, and B2) are also involved in the pathogenesis of ectopic calcification. This narrative review summarizes the recent clinical investigations and mechanisms that link ALP and BALP to inflammation, metabolic syndrome, vascular calcification, endothelial dysfunction, fibrosis, cardiovascular disease, and mortality. The association between ALP, vitamin K, bone metabolism, and fracture risk in patients with chronic kidney disease (CKD) is also discussed. Recent advances in different pharmacological strategies are highlighted, with the potential to modulate the expression of ALP directly and indirectly in CKD–mineral and bone disorder (CKD-MBD), e.g., epigenetic modulation, phosphate binders, calcimimetics, vitamin D, and other anti-fracture treatments. We conclude that the significant evidence for ALP as a pathogenic factor and risk marker in CKD-MBD supports the inclusion of concrete treatment targets for ALP in clinical guidelines. While a target value below 120 U/L is associated with improved survival, further experimental and clinical research should explore interventional strategies with optimal risk–benefit profiles. The future holds great promise for novel drug therapies modulating ALP.
Collapse
|
14
|
Mohammed SA, Albiero M, Ambrosini S, Gorica E, Karsai G, Caravaggi CM, Masi S, Camici GG, Wenzl FA, Calderone V, Madeddu P, Sciarretta S, Matter CM, Spinetti G, Lüscher TF, Ruschitzka F, Costantino S, Fadini GP, Paneni F. The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxid Redox Signal 2022; 36:667-684. [PMID: 34913726 DOI: 10.1089/ars.2021.0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aims: Therapeutic modulation of blood vessel growth holds promise for the prevention of limb ischemia in diabetic (DM) patients with peripheral artery disease (PAD). Epigenetic changes, namely, posttranslational histone modifications, participate in angiogenic response suggesting that chromatin-modifying drugs could be beneficial in this setting. Apabetalone (APA), a selective inhibitor of bromodomain (BRD) and bromodomain and extraterminal containing protein family (BET) proteins, prevents bromodomain-containing protein 4 (BRD4) interactions with chromatin thus modulating transcriptional programs in different organs. We sought to investigate whether APA affects angiogenic response in diabetes. Results: Compared with vehicle, APA restored tube formation and migration in human aortic endothelial cells (HAECs) exposed to high-glucose (HG) levels. Expression profiling of angiogenesis genes showed that APA prevents HG-induced upregulation of the antiangiogenic molecule thrombospondin-1 (THBS1). ChIP-seq and chromatin immunoprecipitation (ChIP) assays in HG-treated HAECs showed the enrichment of both BRD4 and active marks (H3K27ac) on THBS1 promoter, whereas BRD4 inhibition by APA prevented chromatin accessibility and THBS1 transcription. Mechanistically, we show that THBS1 inhibits angiogenesis by suppressing vascular endothelial growth factor A (VEGFA) signaling, while APA prevents these detrimental changes. In diabetic mice with hind limb ischemia, epigenetic editing by APA restored the THBS1/VEGFA axis, thus improving limb vascularization and perfusion, compared with vehicle-treated animals. Finally, epigenetic regulation of THBS1 by BRD4/H3K27ac was also reported in DM patients with PAD compared with nondiabetic controls. Innovation: This is the first study showing that BET protein inhibition by APA restores angiogenic response in experimental diabetes. Conclusions: Our findings set the stage for preclinical studies and exploratory clinical trials testing APA in diabetic PAD. Antioxid. Redox Signal. 36, 667-684.
Collapse
Affiliation(s)
- Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Mattia Albiero
- Department of Medicine, University of Padua, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Gaia Spinetti
- Cardiovascular Physiopathology-Regenerative Medicine Laboratory, IRCCS MultiMedica, Milan, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Royal Brompton and Harefield Hospital Trust, London, United Kingdom
| | - Frank Ruschitzka
- University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
15
|
Liberale L, Badimon L, Montecucco F, Lüscher TF, Libby P, Camici GG. Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:837-847. [PMID: 35210039 PMCID: PMC8881676 DOI: 10.1016/j.jacc.2021.12.017] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Aging and inflammation both contribute pivotally to cardiovascular (CV) and cerebrovascular disease, the leading causes of death and disability worldwide. The concept of inflamm-aging recognizes that low-grade inflammatory pathways observed in the elderly contribute to CV risk. Understanding the mechanisms that link inflammation and aging could reveal new therapeutic targets and offer options to cope with the growing aging population worldwide. This review reports recent scientific advances in the pathways through which inflamm-aging mediates age-dependent decline in CV function and disease onset and considers critically the translational potential of such concepts into everyday clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy. https://twitter.com/liberale_luca
| | - Lina Badimon
- Cardiovascular Research Program ICCC, IR-IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, CiberCV-Institute Carlos III, Barcelona, Spain. https://twitter.com/lbadimon
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom. https://twitter.com/TomLuscher
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Domingos JA, Shen X, Terence C, Senapin S, Dong HT, Tan MR, Gibson-Kueh S, Jerry DR. Scale Drop Disease Virus (SDDV) and Lates calcarifer Herpes Virus (LCHV) Coinfection Downregulate Immune-Relevant Pathways and Cause Splenic and Kidney Necrosis in Barramundi Under Commercial Farming Conditions. Front Genet 2021; 12:666897. [PMID: 34220943 PMCID: PMC8249934 DOI: 10.3389/fgene.2021.666897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 01/31/2023] Open
Abstract
Marine farming of barramundi (Lates calcarifer) in Southeast Asia is currently severely affected by viral diseases. To better understand the biological implications and gene expression response of barramundi in commercial farming conditions during a disease outbreak, the presence of pathogens, comparative RNAseq, and histopathology targeting multiple organs of clinically “sick” and “healthy” juveniles were investigated. Coinfection of scale drop disease virus (SDDV) and L. calcarifer herpes virus (LCHV) were detected in all sampled fish, with higher SDDV viral loads in sick than in healthy fish. Histopathology showed that livers in sick fish often had moderate to severe abnormal fat accumulation (hepatic lipidosis), whereas the predominant pathology in the kidneys shows moderate to severe inflammation and glomerular necrosis. The spleen was the most severely affected organ, with sick fish presenting severe multifocal and coalescing necrosis. Principal component analysis (PC1 and PC2) explained 70.3% of the observed variance and strongly associated the above histopathological findings with SDDV loads and with the sick phenotypes, supporting a primary diagnosis of the fish being impacted by scale drop disease (SDD). Extracted RNA from kidney and spleen of the sick fish were also severely degraded likely due to severe inflammation and tissue necrosis, indicating failure of these organs in advanced stages of SDD. RNAseq of sick vs. healthy barramundi identified 2,810 and 556 differentially expressed genes (DEGs) in the liver and muscle, respectively. Eleven significantly enriched pathways (e.g., phagosome, cytokine-cytokine-receptor interaction, ECM-receptor interaction, neuroactive ligand-receptor interaction, calcium signaling, MAPK, CAMs, etc.) and gene families (e.g., tool-like receptor, TNF, lectin, complement, interleukin, chemokine, MHC, B and T cells, CD molecules, etc.) relevant to homeostasis and innate and adaptive immunity were mostly downregulated in sick fish. These DEGs and pathways, also previously identified in L. calcarifer as general immune responses to other pathogens and environmental stressors, suggest a failure of the clinically sick fish to cope and overcome the systemic inflammatory responses and tissue degeneration caused by SDD.
Collapse
Affiliation(s)
- Jose A Domingos
- Tropical Futures Institute, James Cook University, Singapore, Singapore.,Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Xueyan Shen
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Celestine Terence
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Saengchan Senapin
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Ha Thanh Dong
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand.,Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Marie R Tan
- School of Applied Science (SAS), Republic Polytechnic, Singapore, Singapore
| | - Susan Gibson-Kueh
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Dean R Jerry
- Tropical Futures Institute, James Cook University, Singapore, Singapore.,Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
17
|
Hou ZS, Xin YR, Yang XD, Zeng C, Zhao HK, Liu MQ, Zhang MZ, Daniel JG, Li JF, Wen HS. Transcriptional Profiles of Genes Related to Stress and Immune Response in Rainbow Trout ( Oncorhynchus mykiss) Symptomatically or Asymptomatically Infected With Vibrio anguillarum. Front Immunol 2021; 12:639489. [PMID: 33968031 PMCID: PMC8097155 DOI: 10.3389/fimmu.2021.639489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most common aquaculture fish species worldwide. Vibriosis disease outbreaks cause significant setbacks to aquaculture. The stress and immune responses are bidirectionally modulated in response to the health challenges. Therefore, an investigation into the regulatory mechanisms of the stress and immune responses in trout is invaluable for identifying potential vibriosis treatments. We investigated the transcriptional profiles of genes associated with stress and trout immune functions after Vibrio anguillarum infection. We compared the control trout (CT, 0.9% saline injection), asymptomatic trout (AT, surviving trout with minor or no symptoms after bacteria injection), and symptomatic trout (ST, moribund trout with severe symptoms after bacteria injection). Our results showed activated immunomodulatory genes in the cytokine network and downregulated glucocorticoid and mineralocorticoid receptors in both AT and ST, indicating activation of the proinflammatory cytokine cascade as a common response in AT and ST. Moreover, the AT specifically activated the complement- and TNF-associated immune defenses in response to V. anguillarum infection. However, the complement and coagulation cascades, as well as steroid hormone homeostasis in ST, were disturbed by V. anguillarum. Our studies provide new insights toward understanding regulatory mechanisms in stress and immune functions in response to diseases.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Mei-Zhao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jeffrey G Daniel
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| |
Collapse
|
18
|
Bromodomain and Extraterminal Protein Inhibitor, Apabetalone (RVX-208), Reduces ACE2 Expression and Attenuates SARS-Cov-2 Infection In Vitro. Biomedicines 2021; 9:biomedicines9040437. [PMID: 33919584 PMCID: PMC8072876 DOI: 10.3390/biomedicines9040437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Effective therapeutics are urgently needed to counter infection and improve outcomes for patients suffering from COVID-19 and to combat this pandemic. Manipulation of epigenetic machinery to influence viral infectivity of host cells is a relatively unexplored area. The bromodomain and extraterminal (BET) family of epigenetic readers have been reported to modulate SARS-CoV-2 infection. Herein, we demonstrate apabetalone, the most clinical advanced BET inhibitor, downregulates expression of cell surface receptors involved in SARS-CoV-2 entry, including angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase 4 (DPP4 or CD26) in SARS-CoV-2 permissive cells. Moreover, we show that apabetalone inhibits SARS-CoV-2 infection in vitro to levels comparable to those of antiviral agents. Taken together, our study supports further evaluation of apabetalone to treat COVID-19, either alone or in combination with emerging therapeutics.
Collapse
|
19
|
The Therapeutic Potential of Epigenome-Modifying Drugs in Cardiometabolic Disease. CURRENT GENETIC MEDICINE REPORTS 2021. [DOI: 10.1007/s40142-021-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Abstract
In chronic kidney disease (CKD), disturbance of several metabolic regulatory mechanisms cause premature ageing, accelerated cardiovascular disease (CVD), and mortality. Single-target interventions have repeatedly failed to improve the prognosis for CKD patients. Epigenetic interventions have the potential to modulate several pathogenetic processes simultaneously. Alkaline phosphatase (ALP) is a robust predictor of CVD and all-cause mortality and implicated in pathogenic processes associated with CVD in CKD.
Collapse
|
21
|
Nicholls SJ, Schwartz GG, Buhr KA, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Toth PP, Wong N, Sweeney M, Ray KK. Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecified analysis of the BETonMACE study. Cardiovasc Diabetol 2021; 20:13. [PMID: 33413345 PMCID: PMC7791841 DOI: 10.1186/s12933-020-01199-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Patients with diabetes and acute coronary syndrome (ACS) are at high risk for subsequent heart failure. Apabetalone is a selective inhibitor of bromodomain and extra-terminal (BET) proteins, epigenetic regulators of gene expression. Preclinical data suggest that apabetalone exerts favorable effects on pathways related to myocardial structure and function and therefore could impact subsequent heart failure events. The effect of apabetalone on heart failure events after an ACS is not currently known. Methods The phase 3 BETonMACE trial was a double-blind, randomized comparison of apabetalone versus placebo on the incidence of major adverse cardiovascular events (MACE) in 2425 patients with a recent ACS and diabetes. This prespecified secondary analysis investigated the impact of apabetalone on hospitalization for congestive heart failure, not previously studied. Results Patients (age 62 years, 74.4% males, 90% high-intensity statin use, LDL-C 70.3 mg/dL, HDL-C 33.3 mg/dL and HbA1c 7.3%) were followed for an average 26 months. Apabetalone treated patients experienced the nominal finding of a lower rate of first hospitalization for heart failure (2.4% vs. 4.0%, HR 0.59 [95%CI 0.38–0.94], P = 0.03), total number of hospitalizations for heart failure (35 vs. 70, HR 0.47 [95%CI 0.27–0.83], P = 0.01) and the combination of cardiovascular death or hospitalization for heart failure (5.7% vs. 7.8%, HR 0.72 [95%CI 0.53–0.98], P = 0.04). Conclusion Apabetalone treatment was associated with fewer hospitalizations for heart failure in patients with type 2 diabetes and recent ACS. Future studies are warranted to define the potential for BET inhibition with apabetalone to prevent heart failure in patients with diabetes and ACS.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| | - Gregory G Schwartz
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kevin A Buhr
- Statistical Data Analysis Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Henry N Ginsberg
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | | | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, University of California Irvine, Irvine, USA
| | | | - Peter P Toth
- CGH Medical Center Sterling, Sterling, IL, USA.,Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman Wong
- Resverlogix Corporation, Calgary, AB, Canada
| | | | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College, London, UK
| | | |
Collapse
|
22
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
23
|
Carbone F, Montecucco F, Xu S, Banach M, Jamialahmadi T, Sahebkar A. Epigenetics in atherosclerosis: key features and therapeutic implications. Expert Opin Ther Targets 2020; 24:719-721. [PMID: 32354276 DOI: 10.1080/14728222.2020.1764535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network , Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa , Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa , Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa , Genoa, Italy
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz , Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI) , Lodz, Poland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University , Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran
- Halal Research Center of IRI, FDA , Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
24
|
Epigenetic Modulation by Apabetalone Counters Cytokine-Driven Acute Phase Response In Vitro, in Mice and in Patients with Cardiovascular Disease. Cardiovasc Ther 2020; 2020:9397109. [PMID: 32821285 PMCID: PMC7416228 DOI: 10.1155/2020/9397109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic systemic inflammation contributes to cardiovascular disease (CVD) and correlates with the abundance of acute phase response (APR) proteins in the liver and plasma. Bromodomain and extraterminal (BET) proteins are epigenetic readers that regulate inflammatory gene transcription. We show that BET inhibition by the small molecule apabetalone reduces APR gene and protein expression in human hepatocytes, mouse models, and plasma from CVD patients. Steady-state expression of serum amyloid P, plasminogen activator inhibitor 1, and ceruloplasmin, APR proteins linked to CVD risk, is reduced by apabetalone in cultured hepatocytes and in humanized mouse liver. In cytokine-stimulated hepatocytes, apabetalone reduces the expression of C-reactive protein (CRP), alpha-2-macroglobulin, and serum amyloid P. The latter two are also reduced by apabetalone in the liver of endotoxemic mice. BET knockdown in vitro also counters cytokine-mediated induction of the CRP gene. Mechanistically, apabetalone reduces the cytokine-driven increase in BRD4 BET occupancy at the CRP promoter, confirming that transcription of CRP is BET-dependent. In patients with stable coronary disease, plasma APR proteins CRP, IL-1 receptor antagonist, and fibrinogen γ decrease after apabetalone treatment versus placebo, resulting in a predicted downregulation of the APR pathway and cytokine targets. We conclude that CRP and components of the APR pathway are regulated by BET proteins and that apabetalone counters chronic cytokine signaling in patients.
Collapse
|
25
|
Brandts J, Ray KK. Apabetalone - BET protein inhibition in cardiovascular disease and Type 2 diabetes. Future Cardiol 2020; 16:385-395. [PMID: 32378426 DOI: 10.2217/fca-2020-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Apabetalone is the first selective BET protein inhibitor in the field of cardiovascular diseases (CVD). BET proteins are epigenetic regulators that link upstream epigenetic modifications to downstream gene expression. Inhibition of BET proteins by apabetalone has been shown to modulate reverse cholesterol transport, coagulation, inflammation and vascular calcification. Furthermore, apabetalone reduces circulating markers of CVD risk and plaque vulnerability. Post-hoc pooled analyses suggest a potential reduction in risk of major adverse cardiac events (MACE) in patients with Type 2 diabetes (T2D) and stable CVD. However, the current cardiovascular outcomes trial BET-on-MACE failed to detect the assumed 30% reduction of MACE by apabetalone in patients with T2D after an acute coronary syndrome.
Collapse
Affiliation(s)
- Julia Brandts
- Department of Medicine I, University Hospital RWTH Aachen, Aachen, Germany.,Imperial Centre for Cardiovascular Disease Prevention, School of Public Health, Imperial College London, London, UK
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
26
|
Ray KK, Nicholls SJ, Buhr KA, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Toth PP, Wong N, Sweeney M, Schwartz GG. Effect of Apabetalone Added to Standard Therapy on Major Adverse Cardiovascular Events in Patients With Recent Acute Coronary Syndrome and Type 2 Diabetes: A Randomized Clinical Trial. JAMA 2020; 323:1565-1573. [PMID: 32219359 PMCID: PMC7101505 DOI: 10.1001/jama.2020.3308] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IMPORTANCE Bromodomain and extraterminal proteins are epigenetic regulators of gene transcription. Apabetalone is a selective bromodomain and extraterminal protein inhibitor targeting bromodomain 2 and is hypothesized to have potentially favorable effects on pathways related to atherothrombosis. Pooled phase 2 data suggest favorable effects on clinical outcomes. OBJECTIVE To test whether apabetalone significantly reduces major adverse cardiovascular events. DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, placebo-controlled trial, conducted at 190 sites in 13 countries. Patients with an acute coronary syndrome in the preceding 7 to 90 days, type 2 diabetes, and low high-density lipoprotein cholesterol levels were eligible for enrollment, which started November 11, 2015, and ended July 4, 2018, with end of follow-up on July 3, 2019. INTERVENTIONS Patients were randomized (1:1) to receive apabetalone, 100 mg orally twice daily (n = 1215), or matching placebo (n = 1210) in addition to standard care. MAIN OUTCOMES AND MEASURES The primary outcome was a composite of time to the first occurrence of cardiovascular death, nonfatal myocardial infarction, or stroke. RESULTS Among 2425 patients who were randomized (mean age, 62 years; 618 women [25.6%]), 2320 (95.7%) had full ascertainment of the primary outcome. During a median follow-up of 26.5 months, 274 primary end points occurred: 125 (10.3%) in apabetalone-treated patients and 149 (12.4%) in placebo-treated patients (hazard ratio, 0.82 [95% CI, 0.65-1.04]; P = .11). More patients allocated to apabetalone than placebo discontinued study drug (114 [9.4%] vs 69 [5.7%]) for reasons including elevations of liver enzyme levels (35 [2.9%] vs 11 [0.9%]). CONCLUSIONS AND RELEVANCE Among patients with recent acute coronary syndrome, type 2 diabetes, and low high-density lipoprotein cholesterol levels, the selective bromodomain and extraterminal protein inhibitor apabetalone added to standard therapy did not significantly reduce the risk of major adverse cardiovascular events. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02586155.
Collapse
Affiliation(s)
- Kausik K. Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, United Kingdom
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Kevin A. Buhr
- Statistical Data Analysis Center, University of Wisconsin–Madison
| | - Henry N. Ginsberg
- Irving Institute for Clinical and Translational Research, Columbia University, New York, New York
| | | | | | | | - Peter P. Toth
- CGH Medical Center, Sterling, Illinois, and Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Norman Wong
- Resverlogix Corporation, Calgary, Alberta, Canada
| | | | | |
Collapse
|
27
|
Wang F, Yang Y, You Q, Chen H. Prognostic Significance of Serum Complement Component 3 in Chronic Rhinosinusitis with Nasal Polyps. ORL J Otorhinolaryngol Relat Spec 2020; 82:67-73. [PMID: 31935724 DOI: 10.1159/000504195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/17/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to assess the relationship between serum complement component 3 (C3) levels and disease recurrences in patients with chronic rhinosinusitis with nasal polyps (NPs). METHODS Ninety-seven patients with NPs and 30 controls were recruited. Clinical features were collected. Serum concentrations of C3 and C4 were measured before and after endoscopic sinus surgery. RESULTS Compared to the controls, increased C3 levels were found in patients with NPs. Patients with polyp recurrences had higher pre- and postoperative serum C3 levels than patients without polyp recurrences. Serum C3 levels dropped after surgery. After polyp regrowth, the mean C3 level in the recurrent group elevated again to the degree similar to that before surgery. When patients were stratified by tissue eosinophilia, no significant difference was seen in pre-/postoperative, absolute change after surgery, and post-recurrent C3 levels between patients without and with eosinophilic NPs in the group with disease recurrences. CONCLUSION Serum C3 may be involved in the pathogenesis of NPs. Higher serum C3 levels may pinpoint patients at high risk of recurrence as an independent factor. Furthermore, the change in C3 levels after surgery may have the potential to serve as a predictor for polyp progression. Adding serum C3 measurement to the routine walk-up in the clinical management of NPs is worth further investigation and may help physicians make a more rational diagnostic and/or therapeutic decision regarding this disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, ZheJiang University, Hangzhou, China,
| | - Yang Yang
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, ZheJiang University, Hangzhou, China
| | - Qihan You
- Department of Pathology, The First Affiliated Hospital, School of Medicine, ZheJiang University, Hangzhou, China
| | - Haihong Chen
- Department of Otolaryngology, The First Affiliated Hospital, School of Medicine, ZheJiang University, Hangzhou, China
| |
Collapse
|
28
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
29
|
Ray KK, Nicholls SJ, Ginsberg HD, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Toth PP, Wong N, Cummings JL, Sweeney M, Schwartz GG. Effect of selective BET protein inhibitor apabetalone on cardiovascular outcomes in patients with acute coronary syndrome and diabetes: Rationale, design, and baseline characteristics of the BETonMACE trial. Am Heart J 2019; 217:72-83. [PMID: 31520897 DOI: 10.1016/j.ahj.2019.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
Abstract
After an acute coronary syndrome (ACS), patients with diabetes remain at high risk for additional cardiovascular events despite use of current therapies. Bromodomain and extra-terminal (BET) proteins are epigenetic modulators of inflammation, thrombogenesis, and lipoprotein metabolism implicated in atherothrombosis. The BETonMACE trial tests the hypothesis that treatment with apabetalone, a selective BET protein inhibitor, will improve cardiovascular outcomes in patients with diabetes after an ACS. DESIGN: Patients (n = 2425) with ACS in the preceding 7 to 90 days, with type 2 diabetes and low HDL cholesterol (≤40 mg/dl for men, ≤45 mg/dl for women), receiving intensive or maximum-tolerated therapy with atorvastatin or rosuvastatin, were assigned in double-blind fashion to receive apabetalone 100 mg orally twice daily or matching placebo. Baseline characteristics include female sex (25%), myocardial infarction as index ACS event (74%), coronary revascularization for index ACS (80%), treatment with dual anti-platelet therapy (87%) and renin-angiotensin system inhibitors (91%), median LDL cholesterol 65 mg per deciliter, and median HbA1c 7.3%. The primary efficacy measure is time to first occurrence of cardiovascular death, non-fatal myocardial infarction, or stroke. Assumptions include a primary event rate of 7% per annum in the placebo group and median follow-up of 1.5 years. Patients will be followed until at least 250 primary endpoint events have occurred, providing 80% power to detect a 30% reduction in the primary endpoint with apabetalone. SUMMARY: BETonMACE will determine whether the addition of the selective BET protein inhibitor apabetalone to contemporary standard of care for ACS reduces cardiovascular morbidity and mortality in patients with type 2 diabetes. Results are expected in 2019.
Collapse
|
30
|
Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant 2019. [PMID: 29534238 DOI: 10.1093/ndt/gfy009] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Epigenetics refers to heritable changes in gene expression patterns not caused by an altered nucleotide sequence, and includes non-coding RNAs and covalent modifications of DNA and histones. This review focuses on functional evidence for the involvement of DNA and histone epigenetic modifications in the pathogenesis of kidney disease and the potential therapeutic implications. There is evidence of activation of epigenetic regulatory mechanisms in acute kidney injury (AKI), chronic kidney disease (CKD) and the AKI-to-CKD transition of diverse aetiologies, including ischaemia-reperfusion injury, nephrotoxicity, ureteral obstruction, diabetes, glomerulonephritis and polycystic kidney disease. A beneficial in vivo effect over preclinical kidney injury has been reported for drugs that decrease DNA methylation by either inhibiting DNA methylation (e.g. 5-azacytidine and decitabine) or activating DNA demethylation (e.g. hydralazine), decrease histone methylation by inhibiting histone methyltransferases, increase histone acetylation by inhibiting histone deacetylases (HDACs, e.g. valproic acid, vorinostat, entinostat), increase histone crotonylation (crotonate) or interfere with histone modification readers [e.g. inhibits of bromodomain and extra-terminal proteins (BET)]. Most preclinical studies addressed CKD or the AKI-to-CKD transition. Crotonate administration protected from nephrotoxic AKI, but evidence is conflicting on DNA methylation inhibitors for preclinical AKI. Several drugs targeting epigenetic regulators are in clinical development or use, most of them for malignancy. The BET inhibitor apabetalone is in Phase 3 trials for atherosclerosis, kidney function being a secondary endpoint, but nephrotoxicity was reported for DNA and HDAC inhibitors. While research into epigenetic modulators may provide novel therapies for kidney disease, caution should be exercised based on the clinical nephrotoxicity of some drugs.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Olga Ruiz-Andres
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Jonay Poveda
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Lara Valiño-Rivas
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana Belén Sanz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
31
|
Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, Sarsons CD, Gilham D, Daze E, Wasiak S, Studer D, Rinker KD, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics 2019; 11:102. [PMID: 31300040 PMCID: PMC6626370 DOI: 10.1186/s13148-019-0696-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Apabetalone (RVX-208) is a bromodomain and extraterminal protein inhibitor (BETi) that in phase II trials reduced the relative risk (RR) of major adverse cardiac events (MACE) in patients with cardiovascular disease (CVD) by 44% and in diabetic CVD patients by 57% on top of statins. A phase III trial, BETonMACE, is currently assessing apabetalone's ability to reduce MACE in statin-treated post-acute coronary syndrome type 2 diabetic CVD patients with low high-density lipoprotein C. The leading cause of MACE is atherosclerosis, driven by dysfunctional lipid metabolism and chronic vascular inflammation (VI). In vitro studies have implicated the BET protein BRD4 as an epigenetic driver of inflammation and atherogenesis, suggesting that BETi may be clinically effective in combating VI. Here, we assessed apabetalone's ability to regulate inflammation-driven gene expression and cell adhesion in vitro and investigated the mechanism by which apabetalone suppresses expression. The clinical impact of apabetalone on mediators of VI was assessed with proteomic analysis of phase II CVD patient plasma. RESULTS In vitro, apabetalone prevented inflammatory (TNFα, LPS, or IL-1β) induction of key factors that drive endothelial activation, monocyte recruitment, adhesion, and plaque destabilization. BRD4 abundance on inflammatory and adhesion gene promoters and enhancers was reduced by apabetalone. BRD2-4 degradation by MZ-1 also prevented TNFα-induced transcription of monocyte and endothelial cell adhesion molecules and inflammatory mediators, confirming BET-dependent regulation. Transcriptional regulation by apabetalone translated into a reduction in monocyte adhesion to an endothelial monolayer. In a phase II trial, apabetalone treatment reduced the abundance of multiple VI mediators in the plasma of CVD patients (SOMAscan® 1.3 k). These proteins correlate with CVD risk and include adhesion molecules, cytokines, and metalloproteinases. Ingenuity® Pathway Analysis (IPA®) predicted that apabetalone inhibits pro-atherogenic regulators and pathways and prevents disease states arising from leukocyte recruitment. CONCLUSIONS Apabetalone suppressed gene expression of VI mediators in monocytes and endothelial cells by inhibiting BET-dependent transcription induced by multiple inflammatory stimuli. In CVD patients, apabetalone treatment reduced circulating levels of VI mediators, an outcome conducive with atherosclerotic plaque stabilization and MACE reduction. Inhibition of inflammatory and adhesion molecule gene expression by apabetalone is predicted to contribute to MACE reduction in the phase III BETonMACE trial.
Collapse
Affiliation(s)
- Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Shovon Das
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Stephanie C Stotz
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Emily Daze
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Deborah Studer
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Kristina D Rinker
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Michael Sweeney
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Jan O Johansson
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Norman C W Wong
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada.
| |
Collapse
|
32
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
33
|
Stratton MS, Farina FM, Elia L. Epigenetics and vascular diseases. J Mol Cell Cardiol 2019; 133:148-163. [PMID: 31211956 DOI: 10.1016/j.yjmcc.2019.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease remains the number one cause of death and disability worldwide despite significant improvements in diagnosis, prevention, and early intervention efforts. There is an urgent need for improved understanding of cardiovascular processes responsible for disease development in order to develop more effective therapeutic strategies. Recent knowledge gleaned from the study of epigenetic mechanisms in the vasculature has uncovered new potential targets for intervention. Herein, we provide an overview of epigenetic mechanism, and review recent findings related to epigenetics in vascular diseases, highlighting classical epigenetic mechanism such as DNA methylation and histone modification as well as the newly discovered non-coding RNA mechanisms.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, United States of America.
| | - Floriana Maria Farina
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Leonardo Elia
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
34
|
Abstract
Bromodomain and extra-terminal (BET) inhibitors, acting via epigenetic mechanisms, have been developed recently as potential new treatments for cancer, including prostate cancer, and inflammatory conditions. Some BET inhibitors, such as RVX-208, also raise high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 levels. A recent meta-analysis of three small trials (n = 798) found that RVX-208 protected against major adverse cardiovascular events (MACE), raising the question as to whether this protective effect was an artefact, a chance finding, or mediated by HDL-C, anti-inflammatory pathways, or other factors. Notably, the effect of RVX-208 on MACE was largely driven by revascularizations, but fewer interventions in the treatment arm could have arisen accidently from favorable effects of RVX-208 on HDL-C and C-reactive protein influencing decisions about patient care. A larger (n = 2400) trial of RVX-208, BETonMACE (NCT02586155), with a more restricted definition of MACE, excluding hospitalizations, will shortly provide clarity. A successful BETonMACE trial would raise the question as to whether RVX-208 operates via lipids, inflammation, or other means, because several previous HDL-C modulators and anti-inflammatories have not provided effective means of treating cardiovascular disease and reducing overall mortality. Re-conceptualizing cardiovascular disease within the well-established evolutionary biology theory that growth and specifically reproduction trade-off against longevity might provide a more comprehensive explanation. Drivers of the gonadotropic axis, particularly androgens, suppress both HDL-C and the immune system while promoting ischemic heart disease and stroke. As such, any effects of RVX-208 on cardiovascular disease might be the result of reducing androgens, of which higher HDL-C and reduced inflammation are biomarkers. Notably, several other effective treatments for cardiovascular disease, such as statins and spironolactone, are known anti-androgens. Results of the BETonMACE trial, and corresponding insight about the mechanism of BET inhibitors in cardiovascular disease, are eagerly awaited.
Collapse
|
35
|
Shishikura D, Kataoka Y, Honda S, Takata K, Kim SW, Andrews J, Psaltis PJ, Sweeney M, Kulikowski E, Johansson J, Wong NCW, Nicholls SJ. The Effect of Bromodomain and Extra-Terminal Inhibitor Apabetalone on Attenuated Coronary Atherosclerotic Plaque: Insights from the ASSURE Trial. Am J Cardiovasc Drugs 2019; 19:49-57. [PMID: 30155718 DOI: 10.1007/s40256-018-0298-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Apabetalone is a selective bromodomain and extra-terminal (BET) inhibitor which modulates lipid and inflammatory pathways implicated in atherosclerosis. The impact of apabetalone on attenuated coronary atherosclerotic plaque (AP), a measure of vulnerability, is unknown. METHODS The ApoA-1 Synthesis Stimulation and intravascular Ultrasound for coronary atheroma Regression Evaluation (ASSURE; NCT01067820) study employed serial intravascular ultrasound (IVUS) measures of coronary atheroma in 281 patients treated with apabetalone or placebo for 26 weeks. AP was measured at baseline and follow-up. Factors associated with changes in AP were investigated. RESULTS AP was observed in 31 patients (11%) [27 (13.0%) in the apabetalone group and four (5.5%) in the placebo group]. The apabetalone group demonstrated reductions in AP length by - 1 mm [interquartile range (IQR) - 4, 1] (p = 0.03), AP arc by - 37.0° (IQR - 59.2, 8.2) (p = 0.003) and the AP index by - 34.6 mm° (IQR - 52.6, 10.1) (p = 0.003) from baseline. The change in AP index correlated with on-treatment concentration of high-density lipoprotein (HDL) particles (r = - 0.52, p = 0.006), but not HDL cholesterol (r = - 0.11, p = 0.60) or apolipoprotein A-1 (r = - 0.16, p = 0.43). Multivariable analysis revealed that on-treatment concentrations of HDL particles (p = 0.03) and very low-density lipoprotein particles (p = 0.01) were independently associated with changes in AP index. CONCLUSIONS Apabetalone favorably modulated ultrasonic measures of plaque vulnerability in the population studied, which may relate to an increase in HDL particle concentrations. The clinical implications are currently being investigated in the phase 3 major adverse cardiac event outcomes trial BETonMACE.
Collapse
Affiliation(s)
- Daisuke Shishikura
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Yu Kataoka
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Satoshi Honda
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Kohei Takata
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Susan W Kim
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Jordan Andrews
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | | | | | | | | | - Stephen J Nicholls
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| |
Collapse
|
36
|
Gilham D, Tsujikawa LM, Sarsons CD, Halliday C, Wasiak S, Stotz SC, Jahagirdar R, Sweeney M, Johansson JO, Wong NCW, Kalantar-Zadeh K, Kulikowski E. Apabetalone downregulates factors and pathways associated with vascular calcification. Atherosclerosis 2018; 280:75-84. [PMID: 30476723 DOI: 10.1016/j.atherosclerosis.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Apabetalone is an inhibitor of bromodomain and extraterminal (BET) proteins. In clinical trials, apabetalone reduced the incidence of major adverse cardiac events (MACE) in patients with cardiovascular disease and reduced circulating factors that promote vascular calcification (VC). Because VC contributes to MACE, effects of apabetalone on pro-calcific processes were examined. METHODS AND RESULTS Apabetalone inhibited extracellular calcium deposition and opposed induction of transdifferentiation markers in human coronary artery vascular smooth muscle cells (VSMCs) under osteogenic culture conditions. Tissue-nonspecific alkaline phosphatase (TNAP) is a key contributor to VC, and apabetalone suppressed osteogenic induction of the mRNA, protein and enzyme activity. The liver is a major source of circulating TNAP, and apabetalone also downregulated TNAP expression in primary human hepatocytes. BRD4, a transcriptional regulator and target of apabetalone, has been linked to calcification. Osteogenic transdifferentiation of VSMCs resulted in disassembly of 100 BRD4-rich enhancers, with concomitant enlargement of remaining enhancers. Apabetalone reduced the size of BRD4-rich enhancers, consistent with disrupting BRD4 association with chromatin. 38 genes were uniquely associated with BRD4-rich enhancers in osteogenic conditions; 11 were previously associated with calcification. Apabetalone reduced levels of BRD4 on many of these enhancers, which correlated with decreased expression of the associated gene. Bioinformatics revealed BRD4 may cooperate with 7 specific transcription factors to promote transdifferentiation and calcification. CONCLUSIONS Apabetalone counters transdifferentiation and calcification of VSMCs via an epigenetic mechanism involving specific transcription factors. The mechanistic findings, combined with evidence from clinical trials, support further development of apabetalone as a therapeutic for VC.
Collapse
|
37
|
Epigenetic processing in cardiometabolic disease. Atherosclerosis 2018; 281:150-158. [PMID: 30290963 DOI: 10.1016/j.atherosclerosis.2018.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Albeit a consistent body of evidence supports the notion that genes influence cardiometabolic features and outcomes, the "non-genetic regulation" of this process is gaining increasing attention. Plastic chemical changes of DNA/histone complexes - known as epigenetic changes - critically determine gene activity by rapidly modifying chromatin accessibility to transcription factors. In this review, we describe the emerging role of chromatin modifications as fine tuners of gene transcription in adipogenesis, insulin resistance, macrophage polarization, immuno-metabolism, endothelial dysfunction and metabolic cardiomyopathy. Epigenetic processing participates in the dynamic interplay among different organs in the cardiometabolic patient. DNA methylation and post-translational histone modifications in both visceral and subcutaneous adipose tissue enable the transcription of genes implicated in lipo- and adipogenesis, inflammation and insulin resistance. Along the same line, complex networks of chromatin modifying enzymes are responsible for impaired nitric oxide bioavailability and defective insulin signalling in the vasculature, thus leading to reduced capillary recruitment and insulin delivery in the liver, skeletal muscle and adipose tissue. Furthermore, changes in methylation status of IL-4, IFNγ and Forkhead box P3 (Foxp3) gene loci are crucial for the polarization of immune cells, thus leading to adipose tissue inflammation and atherosclerosis. Cell-specific epigenetic information could advance our understanding of cardiometabolic processes, thus leading to individualized risk assessment and personalized therapeutic approaches in patients with cardiometabolic disturbances. The development of new chromatin modifying drugs indicates that targeting epigenetic changes is a promising approach to reduce the burden of cardiovascular disease in this setting.
Collapse
|
38
|
Wasiak S, Tsujikawa LM, Halliday C, Stotz SC, Gilham D, Jahagirdar R, Kalantar-Zadeh K, Robson R, Sweeney M, Johansson JO, Wong NC, Kulikowski E. Benefit of Apabetalone on Plasma Proteins in Renal Disease. Kidney Int Rep 2018; 3:711-721. [PMID: 29854980 PMCID: PMC5976837 DOI: 10.1016/j.ekir.2017.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Apabetalone, a small molecule inhibitor, targets epigenetic readers termed BET proteins that contribute to gene dysregulation in human disorders. Apabetalone has in vitro and in vivo anti-inflammatory and antiatherosclerotic properties. In phase 2 clinical trials, this drug reduced the incidence of major adverse cardiac events in patients with cardiovascular disease. Chronic kidney disease is associated with a progressive loss of renal function and a high risk of cardiovascular disease. We studied the impact of apabetalone on the plasma proteome in patients with impaired kidney function. METHODS Subjects with stage 4 or 5 chronic kidney disease and matched controls received a single dose of apabetalone. Plasma was collected for pharmacokinetic analysis and for proteomics profiling using the SOMAscan 1.3k platform. Proteomics data were analyzed with Ingenuity Pathway Analysis to identify dysregulated pathways in diseased patients, which were targeted by apabetalone. RESULTS At baseline, 169 plasma proteins (adjusted P value <0.05) were differentially enriched in renally impaired patients versus control subjects, including cystatin C and β2 microglobulin, which correlate with renal function. Bioinformatics analysis of the plasma proteome revealed a significant activation of 42 pathways that control immunity and inflammation, oxidative stress, endothelial dysfunction, vascular calcification, and coagulation. At 12 hours postdose, apabetalone countered the activation of pathways associated with renal disease and reduced the abundance of disease markers, including interleukin-6, plasminogen activator inhibitor-1, and osteopontin. CONCLUSION These data demonstrated plasma proteome dysregulation in renally impaired patients and the beneficial impact of apabetalone on pathways linked to chronic kidney disease and its cardiovascular complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Robson
- Christchurch Clinical Studies Trust, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
39
|
Nicholls SJ, Ray KK, Johansson JO, Gordon A, Sweeney M, Halliday C, Kulikowski E, Wong N, Kim SW, Schwartz GG. Selective BET Protein Inhibition with Apabetalone and Cardiovascular Events: A Pooled Analysis of Trials in Patients with Coronary Artery Disease. Am J Cardiovasc Drugs 2018; 18:109-115. [PMID: 29027131 DOI: 10.1007/s40256-017-0250-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Inhibition of bromodomain and extra-terminal (BET) proteins can modulate lipoprotein and inflammatory factors that mediate atherosclerosis. The impact of the BET inhibitor, apabetalone, on cardiovascular events is unknown. OBJECTIVE Our objective was to investigate the impact of apabetalone on cardiovascular event rates in a pooled analysis of clinical studies in patients with established coronary artery disease. METHODS We conducted a pooled analysis of patients (n = 798) with coronary artery disease who participated in clinical trials (ASSERT, ASSURE, SUSTAIN) that evaluated the impact of 3-6 months of treatment with apabetalone on lipid parameters and coronary atherosclerosis. The incidence of major adverse cardiovascular events (death, myocardial infarction, coronary revascularization, hospitalization for cardiovascular causes) in the treatment groups was evaluated. RESULTS At baseline, patients treated with apabetalone were more likely to be Caucasian, have a history of dyslipidemia, and be undertreated with ß-blocker and anti-platelet agents. Treatment with apabetalone produced the following dose-dependent changes compared with placebo: increases in apolipoprotein A-I (apoA-I) of up to 6.7% (P < 0.001), increases in high-density lipoprotein cholesterol (HDL-C) of up to 6.5% (P < 0.001), increases in large HDL particles of up to 23.3% (P < 0.001), and decreases in high-sensitivity C-reactive protein (hsCRP) of - 21.1% (P = 0.04). Apabetalone treatment did not affect atherogenic lipoproteins compared with placebo. Patients treated with apabetalone experienced fewer major adverse cardiovascular events than those treated with placebo (5.9 vs. 10.4%; P = 0.02), a finding that was more prominent in patients with diabetes (5.4 vs. 12.7%; P = 0.02), with baseline HDL-C < 39 mg/dl (5.5 vs. 12.8%; P = 0.01), or with elevated hsCRP levels (5.4 vs. 14.2%; P = 0.02). CONCLUSION Pooled analysis of short-term studies demonstrated fewer cardiovascular events among patients treated with the BET protein inhibitor, apabetalone, than among those treated with placebo. BET protein inhibition warrants further investigation as a novel approach to cardiovascular risk reduction.
Collapse
Affiliation(s)
- Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, PO Box 11060, Adelaide, SA, 5001, Australia.
| | - Kausik K Ray
- School of Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | - Susan W Kim
- South Australian Health and Medical Research Institute, University of Adelaide, PO Box 11060, Adelaide, SA, 5001, Australia
| | | |
Collapse
|
40
|
Haas MJ, Plazarte M, Chamseddin A, Onstead-Haas L, Wong NCW, Plazarte G, Mooradian AD. Inhibition of hepatic apolipoprotein A-I gene expression by histamine. Eur J Pharmacol 2018; 823:49-57. [PMID: 29378195 DOI: 10.1016/j.ejphar.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/12/2023]
Abstract
In a recent high throughput analysis to identify drugs that alter hepatic apolipoprotein A-I (apo A-I) expression, histamine receptor one (H1) antagonists emerged as potential apo A-1 inducing drugs. Thus the present study was undertaken to identify some of the underlying molecular mechanisms of the effect of antihistaminic drugs on apo AI production. Apo A-I levels were measured by enzyme immunoassay and Western blots. Apo A-I mRNA levels were measured by reverse transcription real-time PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as the internal control. The effects of histamine and antihistamines on apo A-I gene were determined by transient transfection of plasmids containing the apo A-I gene promoter. Histamine repressed while (H1) receptor antagonist azelastine increased apo A-I protein and mRNA levels within 48 h in a dose-dependent manner. Azelastine and histamine increased and suppressed, respectively, apo A-I gene promoter activity through a peroxisome proliferator activated receptor α response element. Treatment of HepG2 cells with other H1 receptor antagonists including fexofenadine, cetirizine, and diphenhydramine increased apo A-I levels in a dose-dependent manner while treatment with H2 receptor antagonists including cimetidine, famotidine, and ranitidine had no effect. We conclude that H1 receptor signaling is a novel pathway of apo A1 gene expression and therefore could be an important therapeutic target for enhancing de-novo apo A-1 synthesis.
Collapse
Affiliation(s)
- Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States.
| | - Monica Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Ayham Chamseddin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Luisa Onstead-Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Norman C W Wong
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Gabriela Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| |
Collapse
|
41
|
|