1
|
Al-Madhagi H. The Landscape of Exosomes Biogenesis to Clinical Applications. Int J Nanomedicine 2024; 19:3657-3675. [PMID: 38681093 PMCID: PMC11048319 DOI: 10.2147/ijn.s463296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Exosomes are extracellular vesicles that originate from various cells and mediate intercellular communication, altering the behavior or fate of recipient cells. They carry diverse macromolecules, such as lipids, proteins, carbohydrates, and nucleic acids. Environmental stressors can change the exosomal contents of many cells, making them useful for diagnosing many chronic disorders, especially neurodegenerative, cardiovascular, cancerous, and diabetic diseases. Moreover, exosomes can be engineered as therapeutic agents to modulate disease processes. State-of-art techniques are employed to separate exosomes including ultracentrifugation, size-exclusion chromatography and immunoaffinity. However, modern technologies such as aqueous two-phase system as well as microfluidics are gaining attention in the recent years. The article highlighted the composition, biogenesis, and implications of exosomes, as well as the standard and novel methods for isolating them and applying them as biomarkers and therapeutic cargo carriers.
Collapse
Affiliation(s)
- Haitham Al-Madhagi
- Biochemical Technology Program, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
| |
Collapse
|
2
|
Serafini FL, Delli Pizzi A, Simeone P, Giammarino A, Mannetta C, Villani M, Izzi J, Buca D, Catitti G, Chiacchiaretta P, Trebeschi S, Miscia S, Caulo M, Lanuti P. Circulating Extracellular Vesicles: Their Role in Patients with Abdominal Aortic Aneurysm (AAA) Undergoing EndoVascular Aortic Repair (EVAR). Int J Mol Sci 2022; 23:ijms232416015. [PMID: 36555653 PMCID: PMC9782915 DOI: 10.3390/ijms232416015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a frequent aortic disease. If the diameter of the aorta is larger than 5 cm, an open surgical repair (OSR) or an endovascular aortic repair (EVAR) are recommended. To prevent possible complications (i.e., endoleaks), EVAR-treated patients need to be monitored for 5 years following the intervention, using computed tomography angiography (CTA). However, this radiological method involves high radiation exposure in terms of CTA/year. In such a context, the study of peripheral-blood-circulating extracellular vesicles (pbcEVs) has great potential to identify biomarkers for EVAR complications. We analyzed several phenotypes of pbcEVs using polychromatic flow cytometry in 22 patients with AAA eligible for EVAR. From each enrolled patient, peripheral blood samples were collected at AAA diagnosis, and after 1, 6, and 12 months following EVAR implantation, i.e. during the diagnostic follow-up protocol. Patients developing an endoleak displayed a significant decrease in activated-platelet-derived EVs between the baseline condition and 6 months after EVAR intervention. Furthermore, we also observed, that 1 month after EVAR implantation, patients developing an endoleak showed higher concentrations of activated-endothelial-derived EVs than patients who did not develop one, suggesting their great potential as a noninvasive and specific biomarker for early identification of EVAR complications.
Collapse
Affiliation(s)
- Francesco Lorenzo Serafini
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Andrea Delli Pizzi
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
- Correspondence: (A.D.P.); (P.S.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
- Correspondence: (A.D.P.); (P.S.)
| | | | - Cristian Mannetta
- Unit of Vascular Surgery, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Michela Villani
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Jacopo Izzi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Davide Buca
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sebastiano Miscia
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Massimo Caulo
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| |
Collapse
|
3
|
Cheng P, Cheng L, Han H, Li J, Ma C, Huang H, Zhou J, Feng J, Huang Y, Lv Y, Huang H, Wang Y, Hou L, Chen Y, Li G. A pH/H 2 O 2 /MMP9 Time-Response Gel System with Sparc high Tregs Derived Extracellular Vesicles Promote Recovery After Acute Myocardial Infarction. Adv Healthc Mater 2022; 11:e2200971. [PMID: 36056927 DOI: 10.1002/adhm.202200971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/08/2022] [Indexed: 01/28/2023]
Abstract
Regulatory T cells overexpressing SPARC (secreted protein acidic and cysteine rich) (Sparchigh Tregs) can help repair infarct tissues after acute myocardial infarction (AMI). This research demonstrates that Sparchigh Treg-derived extracellular vesicles (EVs) effectively improved cardiac function through proinflammatory factors IL-1β, IL-6, and TNF-α inhibition and collagen synthesis related gene Col3a1 promotion in AMI; moreover, a composite hydrogel-EVs system (DHPM(4APPC)_EVs) is designed based on Sparchigh Treg-derived EVs with CXCR2 overexpressing and pH/H2 O2 /MMP9 temporally responsive gel microspheres. In AMI, due to the levels of chemokine, pH, H2 O2 , and MMP9 enzymes in the infarct area, DHPM(4APPC)_EVs can effectively target the infarct area, release the loaded EVs, form the gel to capture the released EVs, and slowly release the captured EVs, contribute to promote EVs to stay in the infarct area for a long time to play the repair function, so as to reduce myocardial injury and promote the improvement of cardiac function. The proposed system in this research provides a potential approach for the treatment of AMI in the future.
Collapse
Affiliation(s)
- Panke Cheng
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Hukui Han
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Junlin Li
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing, 400038, P. R. China
| | - Hui Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Jie Zhou
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Jiayue Feng
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Yu Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Yipin Lv
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, 610036, P. R. China
| | - Huihui Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Yiren Wang
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Lingmi Hou
- Department of Breast and thyroid Surgery, Biological targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P. R. China.,Department of Breast and Thyroid Surgery, Yingshan Hospital of West China Hospital, Sichuan University, Nanchong, 673000, P. R. China
| | - Yang Chen
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Gang Li
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| |
Collapse
|
4
|
Xu J, Wang W, Wang Y, Zhu Z, Li D, Wang T, Liu K. Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases. Front Genet 2022; 13:929231. [PMID: 36267409 PMCID: PMC9577319 DOI: 10.3389/fgene.2022.929231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases are the most common diseases threatening the health of the elderly, and the incidence and mortality rates associated with cardiovascular diseases remain high and are increasing gradually. Studies on the treatment and prevention of cardiovascular diseases are underway. Currently, several research groups are studying the role of exosomes and biomolecules incorporated by exosomes in the prevention, diagnosis, and treatment of clinical diseases, including cardiovascular diseases. Now, based on the results of published studies, this review discusses the characteristics, separation, extraction, and identification of exosomes, specifically the role of exosomal miRNAs in atherosclerosis, myocardial injury and infarction, heart failure, aortic dissection, myocardial fibrosis, ischemic reperfusion, atrial fibrillation, and other diseases. We believe that the observations noted in this article will aid in the prevention, diagnosis, and treatment of cardiovascular diseases.
Collapse
|
5
|
Wang Y, Amdanee N, Zhang X. Exosomes in schizophrenia: Pathophysiological mechanisms, biomarkers, and therapeutic targets. Eur Psychiatry 2022; 65:e61. [PMID: 36082534 PMCID: PMC9532215 DOI: 10.1192/j.eurpsy.2022.2319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While schizophrenia (SCZ) is a devastating psychiatric disorder that detrimentally affects a significant portion of the worldwide population, its diagnosis is traditionally based on a relatively subjective assessment of current symptoms and medical history, devoid of an objective diagnostic modality. Antipsychotic medications are commonly used in the treatment of SCZ; however, some patients have low remission rates or forsake treatment due to the associated multiple side effects, resulting in recurrent episodes of the disease and poor prognosis. These situations imply that the diagnosis, treatment, and prognosis of SCZ need to be improved to increase the odds of a better outcome. Mounting studies have found that extracellular vesicles (EVs) play essential roles in the central nervous system. They are implicated in several mechanisms closely associated with SCZ such as cellular communication and synaptic plasticity. They can additionally exhibit neuroprotective and therapeutic effects. Since they possess distinct constituents, are readily available, easily detectable, and dependent on the internal environment, they can potentially serve as reliable biomarkers for disease diagnosis. Moreover, their biological configuration along with their ability to increase the bioavailability of their constituents and modulate intricate intracellular reactions in target cells, propel EVs as new targets for treatment. This review paper summarizes relevant research pertaining to the roles of EVs in SCZ, with the aim of improving insights into SCZ pathogenesis and evaluating EVs as potential biomarkers in the diagnosis and treatment of SCZ.
Collapse
|
6
|
Marson D, Aulic S, Fermeglia A, Laurini E, Pricl S. Nanovesicles for the delivery of cardiovascular drugs. APPLICATIONS OF NANOVESICULAR DRUG DELIVERY 2022:341-369. [DOI: 10.1016/b978-0-323-91865-7.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Wang H, Xie Y, Salvador AM, Zhang Z, Chen K, Li G, Xiao J. Exosomes: Multifaceted Messengers in Atherosclerosis. Curr Atheroscler Rep 2020; 22:57. [PMID: 32772195 DOI: 10.1007/s11883-020-00871-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Atherosclerosis (AS) is a chronic inflammatory disease that contributes to the development of coronary artery disease, which has become a leading health burden worldwide. Though several strategies such as pharmacological treatment, exercise intervention, and surgery have been used in clinical practice, there is still no effective strategy to cure AS. Exosomes are extensively studied both as diagnostic markers as well as for therapeutic purposes due to their role in pathological processes related to AS. To elucidate the role of exosomes in AS and thus provide a new insight into AS therapy, we review recent advances concerning exosome targets and their function in mediating intercellular communication in AS, and expect to provide a reference for novel effective strategies to cure AS. RECENT FINDINGS Exosomes exert important roles in the diagnosis, development, and potential therapy of AS. For AS development, (1) activation of CD-137 in endothelial cells represses exosomal-TET2 production, causing a phenotypic switch of vascular smooth muscle cells (VSMC) and promoting plaque formation; (2) exosomal-MALTA1 derived from endothelial cells causes neutrophil extracellular traps (NETs) and M2 macrophage polarization, which aggravates AS; and (3) exosomal-miR-21-3p derived from macrophages inhibits PTEN expression and further promotes VSMC migration/proliferation, leading to AS development. For AS diagnosis, plasma exosomal-miR30e and miR-92a are considered to be potential diagnostic markers. For AS therapy, adipose mesenchymal stem cell-derived exosomes protect endothelial cells from AS aggravation, via inhibiting miR-342-5p. Exosome-mediated cross-talk between different cells within the vasculature exerts crucial roles in regulating endothelial function, proliferation and differentiation of vascular smooth muscle cells, and platelet activation as well as macrophage activation, collectively leading to the development and progression of AS. Exosomes can potentially be used as diagnostic biomarkers and constitute as a new therapeutic strategy for AS.
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuling Xie
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Ane M Salvador
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02214, USA
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Kaichuan Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Sarodaya N, Karapurkar J, Kim KS, Hong SH, Ramakrishna S. The Role of Deubiquitinating Enzymes in Hematopoiesis and Hematological Malignancies. Cancers (Basel) 2020; 12:E1103. [PMID: 32354135 PMCID: PMC7281754 DOI: 10.3390/cancers12051103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/11/2020] [Accepted: 04/26/2020] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the production of blood cells throughout the human lifespan. Single HSCs can give rise to at least eight distinct blood-cell lineages. Together, hematopoiesis, erythropoiesis, and angiogenesis coordinate several biological processes, i.e., cellular interactions during development and proliferation, guided migration, lineage programming, and reprogramming by transcription factors. Any dysregulation of these processes can result in hematological disorders and/or malignancies. Several studies of the molecular mechanisms governing HSC maintenance have demonstrated that protein regulation by the ubiquitin proteasomal pathway is crucial for normal HSC function. Recent studies have shown that reversal of ubiquitination by deubiquitinating enzymes (DUBs) plays an equally important role in hematopoiesis; however, information regarding the biological function of DUBs is limited. In this review, we focus on recent discoveries about the physiological roles of DUBs in hematopoiesis, erythropoiesis, and angiogenesis and discuss the DUBs associated with common hematological disorders and malignancies, which are potential therapeutic drug targets.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
| | - Janardhan Karapurkar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
9
|
He N, Zhang Y, Zhang S, Wang D, Ye H. Exosomes: Cell-Free Therapy for Cardiovascular Diseases. J Cardiovasc Transl Res 2020; 13:713-721. [PMID: 32333198 DOI: 10.1007/s12265-020-09966-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases (CVDs) are an important cause of death and disease worldwide. Because injured cardiac tissue cannot be repaired itself, it is urgent to develop other alternate therapies. Stem cells can be differentiated into cardiomyocytes, endothelial cells, and vascular smooth muscle cells for the treatment of CVDs. Therefore, cell therapy has recently been considered a viable treatment option that can significantly improve cardiac function. Nonetheless, implanted stem cells rarely survive in the recipient heart, suggesting that the benefits of stem cell therapy may involve other mechanisms. Exosomes derived from stem cells have a myocardial protection function after myocardial injury, and may be a promising and effective therapy for CVDs. Here, we discuss the application and mechanism of exosomes derived from stem cells in the diagnosis and treatment of CVDs and provide evidence for the application of exosomes in CVDs. Graphical Abstract.
Collapse
Affiliation(s)
- Nana He
- Department of Cardiology, HwaMei Hospital (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, 41 Xibei Street, Ningbo, 315010, Zhejiang, China
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yuelin Zhang
- Department of Medicine, University of Ningbo, Ningbo, China
| | - Shun Zhang
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Dongjuan Wang
- Department of Cardiology, HwaMei Hospital (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, 41 Xibei Street, Ningbo, 315010, Zhejiang, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, 41 Xibei Street, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
10
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
11
|
Wang B, Cai W, Ai D, Zhang X, Yao L. The Role of Deubiquitinases in Vascular Diseases. J Cardiovasc Transl Res 2019; 13:131-141. [DOI: 10.1007/s12265-019-09909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
|