1
|
Rammala BJ, Ramchuran S, Chunilall V, Zhou N. Enterobacter spp. isolates from an underground coal mine reveal ligninolytic activity. BMC Microbiol 2024; 24:382. [PMID: 39354380 PMCID: PMC11443738 DOI: 10.1186/s12866-024-03537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Lignin, the second most abundant renewable carbon source on earth, holds significant potential for producing biobased specialty chemicals. However, its complex, highly branched structure, consisting of phenylpropanoic units and strong carbon-carbon and ether bonds, makes it highly resistant to depolymerisation. This recalcitrancy highlights the need to search for robust lignin-degrading microorganisms with potential for use as industrial strains. Bioprospecting for microorganisms from lignin-rich niches is an attractive approach among others. Here, we explored the ligninolytic potential of bacteria isolated from a lignin-rich underground coalmine, the Morupule Coal Mine, in Botswana. Using a culture-dependent approach, we screened for the presence of bacteria that could grow on 2.5% kraft lignin-supplemented media and identified them using 16 S rRNA sequencing. The potential ligninolytic isolates were evaluated for their ability to tolerate industry-associated stressors. We report the isolation of twelve isolates with ligninolytic abilities. Of these, 25% (3) isolates exhibited varying robust ligninolytic ability and tolerance to various industrial stressors. The molecular identification revealed that the isolates belonged to the Enterobacter genus. Two of three isolates had a 16 S rRNA sequence lower than the identity threshold indicating potentially novel species pending further taxonomic review. ATR-FTIR analysis revealed the ligninolytic properties of the isolates by demonstrating structural alterations in lignin, indicating potential KL degradation, while Py-GC/MS identified the resulting biochemicals. These isolates produced chemicals of diverse functional groups and monomers as revealed by both methods. The use of coalmine-associated ligninolytic bacteria in biorefineries has potential.
Collapse
Affiliation(s)
- Bame J Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| | - Santosh Ramchuran
- Council for Science and Industrial Research, Chemicals Cluster, Pretoria, South Africa
| | - Viren Chunilall
- Council for Science and Industrial Research, Biorefinery Industry Development Facility, Durban, South Africa
- School of Life Sciences, School of Engineering, University of KwaZulu Natal, Durban, South Africa
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| |
Collapse
|
2
|
Ramarao KDR, Razali Z, Somasundram C, Kunasekaran W, Jin TL. Effects of Drying Methods on the Antioxidant Properties of Piper betle Leaves. Molecules 2024; 29:1762. [PMID: 38675582 PMCID: PMC11051789 DOI: 10.3390/molecules29081762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 04/28/2024] Open
Abstract
Piper betle leaf powder is increasingly utilised as a health supplement. In this study, P. betle leaves were subjected to four different drying methods: convective air-drying, oven-drying, sun-drying, and no drying, with fresh leaves as control. Their antioxidant properties were then evaluated using colourimetric assays and GC-MS. Results showed that the sun-dried leaves had the highest (p < 0.05) total antioxidant capacity (66.23 ± 0.10 mg AAE/g), total polyphenol content (133.93 ± 3.76 mg GAE/g), total flavonoid content (81.25 ± 3.26 mg CE/g) and DPPH radical scavenging activity (56.48 ± 0.11%), and the lowest alkaloid content (45.684 ± 0.265 mg/gm). GC-MS analysis revealed that major constituents of aqueous extracts of fresh and sun-dried P. betle leaves were hydrazine 1,2-dimethyl-; ethyl aminomethylformimidate; glycerin; propanoic acid, 2-hydroxy-, methyl ester, (+/-)-; and 1,2-Cyclopentanedione. In conclusion, sun-dried leaves exhibited overall better antioxidant properties, and their aqueous extracts contained biologically active phytoconstituents that have uses in various fields.
Collapse
Affiliation(s)
- Kivaandra Dayaa Rao Ramarao
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.D.R.R.); (C.S.)
- The Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.D.R.R.); (C.S.)
- The Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.D.R.R.); (C.S.)
- The Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wijenthiran Kunasekaran
- Wari Technologies Sdn. Bhd., 2A-2, Galleria Cyberjaya, Jalan Teknokrat 6, Cyber 5, Cyberjaya 63000, Selangor, Malaysia; (W.K.); (T.L.J.)
| | - Tan Li Jin
- Wari Technologies Sdn. Bhd., 2A-2, Galleria Cyberjaya, Jalan Teknokrat 6, Cyber 5, Cyberjaya 63000, Selangor, Malaysia; (W.K.); (T.L.J.)
| |
Collapse
|
3
|
Gagné V, Boucher N, Desgagné-Penix I. Cannabis Roots: Therapeutic, Biotechnological and Environmental Aspects. Cannabis Cannabinoid Res 2024; 9:35-48. [PMID: 38252502 DOI: 10.1089/can.2023.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Since the legalization of recreational cannabis in Canada in 2018, the number of licenses for this crop has increased significantly, resulting in an increase in waste generated. Nevertheless, cannabis roots were once used for their therapeutic properties, indicating that they could be valued today rather than dismissed. This review will focus on both traditional therapeutic aspects and potential use of roots in modern medicine while detailing the main studies on active phytomolecules found in cannabis roots. The environmental impact of cannabis cultivation and current knowledge of the root-associated microbiome are also presented as well as their potential applications in biotechnology and phytoremediation. Thus, several high added-value applications of cannabis roots resulting from scientific advances in recent years can be considered to remove them from discarded residues.
Collapse
Affiliation(s)
- Valérie Gagné
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
| | - Nathalie Boucher
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
4
|
Ugbogu EA, Okoro H, Emmanuel O, Ugbogu OC, Ekweogu CN, Uche M, Dike ED, Ijioma SN. Phytochemical characterization, anti-diarrhoeal, analgesic, anti-inflammatory activities and toxicity profile of Ananas comosus (L.) Merr (pineapple) leaf in albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117224. [PMID: 37748634 DOI: 10.1016/j.jep.2023.117224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ananas comosus (pineapple) leaf is used in ethnomedicine to treat diarrhoea, inflammation, pain, bacterial infections and oedema. AIM OF THE STUDY The aim of this study was to investigate the anti-diarrhoeal, anti-inflammatory and analgesic effects as well as the toxicity profile of the aqueous Ananas comosus leaf extract (AACLE) in rats. METHODS Methanol ACLE was subjected to gas chromatography-mass spectrometry (GC-MS) analysis. In the acute toxicity study, a single oral dose of up to 5000 mg/kg AACLE was administered. In the subacute toxicity study (28 days), rats in groups 2-4 received AACLE orally. The anti-diarrhoeal effect was studied using charcoal meal and castor oil-induced diarrhoea. Anti-inflammatory and analgesic tests were measured using egg albumin-induced paw oedema and acetic acid-induced writhing methods, respectively. For the subacute toxicity, anti-diarrhoeal, analgesic, and anti-inflammatory studies, AACLE was administered orally to rats at doses of 200, 400, and 600 mg/kg body weight. RESULTS Hexadecanoic acid methyl ester, 2-methoxy-4-vinylphenol, n-hexadecanoic acid and n-heptadecanol-1 were identified among other compounds with known pharmacological activities by GC-MS analysis. No deaths, behavioural changes, or signs of toxicity were observed in the acute toxicity study. Treatment with AACLE (28 days) decreased aspartate aminotransferase, alanine transaminase, total cholesterol, triglycerides, and low-density lipoprotein cholesterol, while high-density lipoprotein cholesterol, glutathione, and catalase increased when compared with control (P < 0.05). Treatment with AACLE did not cause significant changes in haematological or renal function parameters. Treatment with AACLE inhibited gastrointestinal motility and castor oil-induced diarrhoea in rats. Treatment with AACLE resulted in a dose-dependent (200-600 mg/kg) significant (P < 0.05) anti-diarrhoeal, analgesic, and anti-inflammatory effect compared to standard drugs. CONCLUSION Our study revealed that ACLE is not toxic but contains bioactive compounds with anti-diarrhoeal, anti-inflammatory, antimicrobial, and hepatoprotective activity. AACLE has antidiarrhoeal, analgesic and anti-inflammatory activity in rats, which justifies its therapeutic use in traditional medicine.
Collapse
Affiliation(s)
- Eziuche Amadike Ugbogu
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria.
| | - Happiness Okoro
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Miracle Uche
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Emmanuel Dike Dike
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Solomon Nnah Ijioma
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| |
Collapse
|
5
|
Lomascolo A, Odinot E, Villeneuve P, Lecomte J. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:173. [PMID: 37964324 PMCID: PMC10644543 DOI: 10.1186/s13068-023-02425-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
p-Hydroxycinnamic acids, such as sinapic, ferulic, p-coumaric and caffeic acids, are among the most abundant phenolic compounds found in plant biomass and agro-industrial by-products (e.g. cereal brans, sugar-beet and coffee pulps, oilseed meals). These p-hydroxycinnamic acids, and their resulting decarboxylation products named vinylphenols (canolol, 4-vinylguaiacol, 4-vinylphenol, 4-vinylcatechol), are bioactive molecules with many properties including antioxidant, anti-inflammatory and antimicrobial activities, and potential applications in food, cosmetic or pharmaceutical industries. They were also shown to be suitable precursors of new sustainable polymers and biobased substitutes for fine chemicals such as bisphenol A diglycidyl ethers. Non-oxidative microbial decarboxylation of p-hydroxycinnamic acids into vinylphenols involves cofactor-free and metal-independent phenolic acid decarboxylases (EC 4.1.1 carboxyl lyase family). Historically purified from bacteria (Bacillus, Lactobacillus, Pseudomonas, Enterobacter genera) and some yeasts (e.g. Brettanomyces or Candida), these enzymes were described for the decarboxylation of ferulic and p-coumaric acids into 4-vinylguaiacol and 4-vinylphenol, respectively. The catalytic mechanism comprised a first step involving p-hydroxycinnamic acid conversion into a semi-quinone that then decarboxylated spontaneously into the corresponding vinyl compound, in a second step. Bioconversion processes for synthesizing 4-vinylguaiacol and 4-vinylphenol by microbial decarboxylation of ferulic and p-coumaric acids historically attracted the most research using bacterial recombinant phenolic acid decarboxylases (especially Bacillus enzymes) and the processes developed to date included mono- or biphasic systems, and the use of free- or immobilized cells. More recently, filamentous fungi of the Neolentinus lepideus species were shown to natively produce a more versatile phenolic acid decarboxylase with high activity on sinapic acid in addition to the others p-hydroxycinnamic acids, opening the way to the production of canolol by biotechnological processes applied to rapeseed meal. Few studies have described the further microbial/enzymatic bioconversion of these vinylphenols into valuable compounds: (i) synthesis of flavours such as vanillin, 4-ethylguaiacol and 4-ethylphenol from 4-vinylguaiacol and 4-vinylphenol, (ii) laccase-mediated polymer synthesis from canolol, 4-vinylguaiacol and 4-vinylphenol.
Collapse
Affiliation(s)
- Anne Lomascolo
- Aix Marseille Univ., INRAE, UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France.
| | - Elise Odinot
- OléoInnov, 19 rue du Musée, 13001, Marseille, France
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
6
|
Sun J, Al-Ansi W, Fan M, Li Y, Qian H, Fan L, Wang L. Volatile compound dynamics in oats solid-state fermentation: A comparative study of Saccharomyces cerevisiae A3, Lactococcus lactis 4355, and Lactobacillus plantarum 2329 inoculations. Food Chem 2023; 437:137813. [PMID: 39491250 DOI: 10.1016/j.foodchem.2023.137813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Fermentation is a longstanding method that enhances food quality and finds extensive food processing and preservation applications. This study comprehensively studied the impact of oats fermentation by Saccharomyces cerevisiae A3 and Lactococcus lactis 4355 (T1), Saccharomyces cerevisiae A3, and Lactobacillus plantarum 2329 (T2) on volatile-compounds using UHPLC-MS/MS. A total of 74 volatile compounds were found in control samples (YM), 81 in T1 samples, and 60 in T2 samples. T2 samples showed the highest hydrocarbons, esters, and phenols (25.7%, 2.26%, and 0.32%) compared with T1 (21.6%, 1.29%, and 0.19%) and YM samples (18.6%, 1.86%, and 0), respectively. Moreover, volcano, Z-score scatter plot distributions, and KEGG-path analysis indicated that different metabolic pathways in YM-T1 and YM-T2 models, where glycerophospholipid-metabolic pathways were the dominant in T1, while ABC transporters-pathways were the prominent in T2. These findings offer valuable insights for future advancements of novel oat products with enhanced functionality.
Collapse
Affiliation(s)
- Juan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
7
|
Asami E, Kitami M, Ida T, Kobayashi T, Saeki M. Anti-inflammatory activity of 2-methoxy-4-vinylphenol involves inhibition of lipopolysaccharide-induced inducible nitric oxidase synthase by heme oxygenase-1. Immunopharmacol Immunotoxicol 2023; 45:589-596. [PMID: 36995736 DOI: 10.1080/08923973.2023.2197141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND 2-Methoxy-4-vinylphenol (2M4VP) is a natural anti-inflammatory compound derived from red wine, but its underlying mechanism remains unclear. Heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, inhibits NO gene expression, while nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor involved in HO-1 production, binds to the antioxidant response element (ARE) in the nucleus and promotes HO-1 transcription. Based on the hypothesis that the inhibitory effect of 2M4VP on NO production is mediated by HO-1, we examined the possible mechanism of the anti-inflammatory activity of 2M4VP in this study. MATERIALS AND METHODS The anti-inflammatory activity of 2M4VP was analyzed by Griess method, ELISA, qPCR, and Western blotting using LPS-treated macrophage lineage RAW264.7 cells. The impact of 2M4VP on the Nrf2/ARE pathway was also analyzed using immunocytochemistry and an ARE luciferase reporter using HEK293 cells. RESULTS The results showed that 2M4VP reduced the production of LPS-induced NO and inducible nitric oxidase synthase (iNOS). In addition, 2M4VP increased the expression of HO-1, while pretreatment with the Nrf2 inhibitor ML385 downregulated HO-1 expression. 2M4VP induced Kelch-like ECH-associated protein 1 (Keap1) degradation. Furthermore, it promoted Nrf2 nuclear translocation and increased luciferase activity by binding to the ARE. CONCLUSIONS 2M4VP induces Keap1 degradation and promotes Nrf2 nuclear translocation. Activation of Nrf2/ARE pathway enhances HO-1 expression and leads to iNOS inhibition for anti-inflammatory function.
Collapse
Affiliation(s)
- Eri Asami
- Division of Dental Pharmacology, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Takako Ida
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| |
Collapse
|
8
|
Michailidou G, Zamboulis A, Bikiaris DN. Exploring the Blends' Miscibility of a Novel Chitosan Derivative with Enhanced Antioxidant Properties; Prospects for 3D Printing Biomedical Applications. Mar Drugs 2023; 21:370. [PMID: 37504901 PMCID: PMC10381676 DOI: 10.3390/md21070370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Chitosan is a polysaccharide vastly examined in polymer science for its unique structure. In the present study, CS was derivatized with 2-methoxy-4vinylphenol (MVP) in four different ratios through a free radical reaction. The CS-MVP derivatives were characterized through FTIR, 1H-NMR, XRD, swelling, and solubility measurements. Owing to the enhanced antioxidant character of the MVP monomer, the antioxidant activity of the CS-MVP derivatives was assessed. In the optimum CS-MVP ratio, blends between CS and CS-MVP were prepared in ratios of 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, and 10:90 w/w, and their miscibility was examined by scanning electron microscopy (SEM) and viscosity measurements. In the optimum ratios, highly concentrated inks were prepared, and their viscosity measurements revealed the successful formation of highly viscous gels with shear thinning behavior. These inks could be appropriate candidates for biomedical and drug delivery applications.
Collapse
Affiliation(s)
- Georgia Michailidou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
9
|
Canli K, Turu D, Benek A, Bozyel ME, Simsek Ö, Altuner EM. Biochemical and Antioxidant Properties as well as Antimicrobial and Antibiofilm Activities of Allium scorodoprasum subsp. jajlae (Vved.) Stearn. Curr Issues Mol Biol 2023; 45:4970-4984. [PMID: 37367065 DOI: 10.3390/cimb45060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, the chemical composition and biological activity of Allium scorodoprasum subsp. jajlae (Vved.) Stearn were investigated for the first time, focusing on its antimicrobial, antioxidant, and antibiofilm properties. A GC-MS analysis was employed to evaluate the composition of its secondary metabolites, identifying linoleic acid, palmitic acid, and octadecanoic acid 2,3-dihydroxypropyl ester as the major compounds in ethanol extract. The antimicrobial activity of A. scorodoprasum subsp. jajlae was assessed against 26 strains, including standard, food isolate, clinical isolate, and multidrug-resistant ones, as well as three Candida species using the disc diffusion method and the determination of the minimum inhibitory concentration (MIC). The extract showed strong antimicrobial activity against Staphylococcus aureus strains, including methicillin-resistant and multidrug-resistant strains, as well as Candida tropicalis and Candida glabrata. Its antioxidant capacity was evaluated using the DPPH method, revealing a high level of antioxidant activity in the plant. Additionally, the antibiofilm activity of A. scorodoprasum subsp. jajlae was determined, demonstrating a reduction in biofilm formation for the Escherichia coli ATCC 25922 strain and an increase in biofilm formation for the other tested strains. The findings suggest potential applications of A. scorodoprasum subsp. jajlae in the development of novel antimicrobial, antioxidant, and antibiofilm agents.
Collapse
Affiliation(s)
- Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Turkey
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Turkey
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Science, Dokuz Eylül University, Izmir 35390, Turkey
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Turkey
| | - Mustafa Eray Bozyel
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Turkey
| | - Özcan Simsek
- Department of Forestry, Yenice Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17950, Turkey
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Turkey
| |
Collapse
|
10
|
Ijaz MU, Shahzadi S, Hamza A, Azmat R, Anwar H, Afsar T, Shafique H, Bhat MA, Naglah AM, Al-Omar MA, Razak S. Alleviative effects of pinostrobin against cadmium-induced renal toxicity in rats by reducing oxidative stress, apoptosis, inflammation, and mitochondrial dysfunction. Front Nutr 2023; 10:1175008. [PMID: 37342552 PMCID: PMC10278233 DOI: 10.3389/fnut.2023.1175008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Cadmium (Cd) is a highly toxic heavy metal that can be found everywhere in the environment and can have harmful effects on both human and animal health. Pinostrobin (PSB) is a bioactive natural flavonoid isolated from Boesenbergia rotunda with several pharmacological properties, such as antiinflammatory, anticancer, antioxidant, and antiviral. This investigation was intended to assess the therapeutic potential of PSB against Cd-induced kidney damage in rats. Methods In total, 48 Sprague Dawley rats were divided into four groups: a control, a Cd (5 mg/kg), a Cd + PSB group (5 mg/kg Cd and 10 mg/kg PSB), and a PSB group (10 mg/kg) that received supplementation for 30 days. Results Exposure to Cd led to a decrease in the activities of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), whereas levels of reactive oxygen species (ROS) and malondialdehyde (MDA) increased. Cd exposure also caused a substantial increase in urea, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and creatinine levels. Moreover, a noticeable decline was noticed in creatinine clearance. Moreover, Cd exposure considerably increased the levels of inflammatory indices, including interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), nuclear factor kappa-B (NF-kB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) activity. Cd treatment decreased the expression of the antiapoptotic markers (Bcl-2) while increasing the expression of apoptotic markers (Bax and Caspase-3). Furthermore, Cd treatment substantially reduced the TCA cycle enzyme activity, such as alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase. Moreover, mitochondrial electron transport chain enzymes, succinatedehydrogenase, NADH dehydrogenase, cytochrome c-oxidase, and coenzyme Q-cytochrome reductase activities were also decreased following Cd exposure. PSB administration substantially reduced the mitochondrial membrane potential while inducing significant histological damage. However, PSB treatment significantly reduced Cd-mediated renal damage in rats. Conclusion Thus, the present investigation discovered that PSB has ameliorative potential against Cd-induced renal dysfunction in rats.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabahat Shahzadi
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Rabia Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Huma Shafique
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Dalawai D, Murthy HN, Dewir YH, Sebastian JK, Nag A. Phytochemical Composition, Bioactive Compounds, and Antioxidant Properties of Different Parts of Andrographis macrobotrys Nees. Life (Basel) 2023; 13:life13051166. [PMID: 37240810 DOI: 10.3390/life13051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Andrographis macrobotrys Nees is an ethnomedicinal plant belonging to the family Acanthaceae, distributed in the moist deciduous and semi-evergreen forests of the southern Western Ghats of India. The objective of this research was to determine the phytochemical composition and bioactive chemical components using gas chromatography and mass spectrometry (GC-MS) and to check the antioxidant potential of the plant part extracts. A. macrobotrys roots, stems, and leaves were obtained from the species' natural habitat in the Western Ghats, India. The bioactive compounds were extracted using a Soxhlet extractor at 55-60 °C for 8 h in methanol. Identification analysis of A. macrobotrys bioactive compound was performed using GC-MS. Quantitative estimation of phytochemicals was carried out, and the antioxidant capacity of the plant extracts was determined by 2,2'-diphenyl-1-picrylhydrazyl radical scavenging (DPPH) and ferric reducing assays (FRAP). A. macrobotrys has a higher concentration of phenolics in its stem extract than in its root or leaf extracts (124.28 mg and 73.01 mg, respectively), according to spectrophotometric measurements. GC-MS analysis revealed the presence of phytochemicals such as azulene, 2,4-di-tert-butylphenol, benzoic acid, 4-ethoxy-ethyl ester, eicosane, 3-heptadecanol, isopropyl myristate, hexadecanoic acid methyl ester, hexadecanoic acid, 1-butyl-cyclohexanol, 9,12-octadecadienoic acid, alpha-monostearin, and 5-hydroxy-7,8-dimethoxyflavone belonging to various classes of flavonoids, terpenoids, phenolics, fatty acids, and aromatic compounds. Significant bioactive phytochemicals include 2,4-di-tert-butylphenol, 2-methoxy-4-vinylphenol, 5-hydroxy-7,8-dimethoxyflavone, azulene, salvigenin, squalene, and tetrapentacontane. In addition, the antioxidant capability of each of the three extracts was assessed. The stem extract demonstrated impressive DPPH scavenging and ferric reduction activities, with EC50 values of 79 mg/mL and 0.537 ± 0.02 OD at 0.2 mg/mL, respectively. The results demonstrated the importance of A. macrobotrys as a source of medicine and antioxidants.
Collapse
Affiliation(s)
- Dayanand Dalawai
- Department of Botany, Karnatak University, Dharwad 580003, India
| | - Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad 580003, India
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Anish Nag
- Department of Life Sciences, Christ University, Bangalore 560029, India
| |
Collapse
|
12
|
Shukurlu EN, Vitalini S, Iriti M, Garzoli S. Chemical characterization by GC/MS analysis of Lactuca tatarica (L.) C.A.Mey. aerial parts and seeds. Nat Prod Res 2023; 37:1377-1381. [PMID: 34763596 DOI: 10.1080/14786419.2021.2003356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lactuca tatarica is a wild species belonging to Asteraceae family omnipresent in Southern Caucasus region including Azerbaijan. Previous studies on the chemical content of some extracts obtained from its different organs have reported the presence of lactone sesquiterpenes, triterpenoids and flavonoids. For the first time, we investigated the volatile composition of L. tatarica aerial parts and seeds by GC/MS technique. The results showed the predominant presence of fatty acids, both saturated and unsaturated. Palmitic acid was prevalent in the aerial parts (up to 89.9%) while linoleic acid (up to 82.6%) was the most abundant component in the seeds. Other minor components were terpene and hydrocarbon derivatives. Some of the detected constituents in L. tatarica have already demonstrated antibacterial, antifungal, anti-inflammatory and antioxidant activity. Therefore, this species could be better studied for its biological properties and considered as a source of active ingredients useful in various fields including the pharmaceutical one.
Collapse
Affiliation(s)
- Emil Namik Shukurlu
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
- Center for Studies on Bioispired Agro-environmental Technology (BAT Center), Università degli Studi di Napoli 'Federico II', Portici, Italy
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Nie C, Zou Y, Liao S, Gao Q, Li Q. Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing. Nutrients 2023; 15:nu15040883. [PMID: 36839242 PMCID: PMC9963849 DOI: 10.3390/nu15040883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Chinese yam (Dioscorea opposita) tuber has a significant effect of invigorating the intestine and improving the symptoms of long-term diarrhea according to the records of the Chinese Pharmacopoeia. Phenanthrene polyphenols from Chinese yam, with higher inhibition of cyclooxygenase-2 (COX-2) than anti-inflammatory drugs, are an important material basis in alleviating ulcerative colitis via nuclear factor kappa-B (NF-κB)/COX-2 pathway, based on our previous research. The present study further explored the target and molecular mechanisms of phenanthrenes' modulation of the NF-κB/COX-2 signaling pathway by means of molecular docking and gene silencing. Firstly, interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) expression of 6-hydroxy-2,4,7-trimethoxyphenanthrene (PC2)/6,7-dihydroxy-2,4-dimethoxyphe-nanthrene (PC4) were compared on TNF-α induced human colon adenocarcinoma (Caco-2) cells. Secondly, molecular docking and dynamics simulation were implemented for PC2/PC4 and COX-2. Finally, COX-2 silencing was performed on TNF-α induced Caco-2 cells to confirm the target of PC4 on NF-κB/COX-2 pathway. Lower expression of IL-8 and TNF-α in PC4 treated Caco-2 cells indicated that PC4 had stronger anti-inflammatory activity than PC2. The binding of PC4 and COX-2 was stronger due to the hydrogen bond between hydroxyl group and Tyr385. No significant differences were found in phosphorylation nuclear factor kappa-B inhibitor alpha (pIkBα), phosphorylation NF-κB (pNF-κB) and phosphorylation extracellular signal-regulated kinase 1/2 (pERK1/2) expression between control and PC4 group after silencing, while these protein expressions significantly decreased in PC4 group without silencing, which confirmed that COX-2 was the important target for PC4 in alleviating ulcerative colitis. These findings indicate that PC4 was supposed to have inhibited NF-κB pathway mediated inflammation via suppression of positive feedback targeting COX-2.
Collapse
Affiliation(s)
- Congyi Nie
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Correspondence: ; Tel.: +86-13430362787
| |
Collapse
|
14
|
Olofinsan K, Olawale F, Karigidi K, Shityakov S, Iwaloye O. Probing the bioactive compounds of Kigelia africana as novel inhibitors of TNF-α converting enzyme using HPLC/GCMS analysis, FTIR and molecular modelling. J Biomol Struct Dyn 2023; 41:12838-12862. [PMID: 36688375 DOI: 10.1080/07391102.2023.2168758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Tumor Necrosis Factor Alpha Converting Enzyme (TACE) mediates inflammatory disorder and contributes to the pathophysiology of a variety of illnesses, such as chronic inflammation and cancer. This study identified metabolites in solvent extracts of Kigelia africana as putative TACE inhibitors due to the plant's known anti-inflammatory properties. HPLC-MS/GCMS analysis was used to characterize tentative phytochemicals from K. africana. The identified metabolites (n = 123) were docked with TACE to reveal the lead compounds. Binding free energy, ADMET prediction, molecular dynamics simulation at 100 ns, and DFT calculation were further conducted. The results revealed that K. africana contains sterol, phenols, alkaloids, terpenes and flavonoids. The FTIR shows that the extracts had peaks that correspond to the presence of different functional groups. The quantum polarized ligand docking (QPLD) analysis identified compound (n = 3) with binding affinity higher than standard compound IK-682. The hits also had modest ADMET profiles, interacted with essential residues within TACE binding pockets, and formed stable complexes with the protein. The 100 ns MD simulation shows that the compounds formed fairly stable interactions and complex with the protein as evidenced through RMSF, RMSD and MM-GBA results. The HOMO/LUMO, global descriptive molecular electrostatic potential Fukui function aid in the identification of the compounds' atomic sites prone to electrophilic/neutrophilic attacks, and non-covalent interactions. This study suggests that K. africana's bioactive compounds are capable of mitigating inflammation by inhibiting TACE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Femi Olawale
- Department of Biochemistry, University of Lagos, Lagos, Nigeria
- Department of Biochemistry, School of Life Science, University of KwaZulu Natal, Durban, South Africa
| | - Kayode Karigidi
- Department of Biochemistry, Olusegun Agagu University of Science and Technology, Igbanran, Nigeria
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
- Teady Bioscience Research Laboratory, Akure, Ondo State, Nigeria
| |
Collapse
|
15
|
Sarveswari HB, Gupta KK, Durai R, Solomon AP. Development of a smart pH-responsive nano-polymer drug, 2-methoxy-4-vinylphenol conjugate against the intestinal pathogen, Vibrio cholerae. Sci Rep 2023; 13:1250. [PMID: 36690664 PMCID: PMC9871008 DOI: 10.1038/s41598-023-28033-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Vibrio cholerae causes cholera, an acute diarrhoeal disease. The virulence in V. cholerae is regulated by the quorum-sensing mechanism and response regulator LuxO positively regulates the expression of virulence determinants adhesion, biofilm formation, and cholera toxin production. Previous in-silico studies revealed that 2-methoxy-4-vinylphenol could bind to the ATP binding site of LuxO and the complex was compact and stable in pHs like intestinal pHs. Here, we have explored the polymeric nano-formulation of 2-methoxy-4-vinylphenol using cellulose acetate phthalate for controlled drug release and their effectiveness in attenuating the expression of V. cholerae virulence. Physico-chemical characterization of the formulation showed particles with a mean size of 91.8 ± 14 nm diameter and surface charge of - 14.7 ± 0.07 mV. The uniform round polymeric nanoparticles formed displayed about 51% burst release of the drug at pH 7 by 3rd h, followed by a controlled linear release in alkaline pH. The polymeric nanoparticles demonstrated a tenfold increase in intestinal membrane permeability ex-vivo. At lower concentrations, the 2-methoxy-4-vinylphenol polymeric nanoparticles were non-cytotoxic to Int 407 cells. In-vitro analysis at pH 6, pH 7, pH 8, and pH 9 revealed that cellulose acetate phthalate-2-methoxy-4-vinylphenol nanoparticles were non-bactericidal at concentrations up to 500 μg/mL. At 31.25 μg/mL, the nanoparticles inhibited about 50% of the biofilm formation of V. cholerae MTCC 3905 and HYR14 strains. At this concentration, the adherence of V. cholerae MTCC 3905 and HYR14 to Int 407 cell lines were also significantly affected. Gene expression analysis revealed that the expression of tcp, qrr, and ct at pH 6, 7, 8, and 9 has reduced. The CAP-2M4VP nanoparticles have demonstrated the potential to effectively reduce the virulence of V. cholerae in-vitro.
Collapse
Affiliation(s)
- Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Krishna Kant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Ramyadevi Durai
- Pharmaceutical Technology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| |
Collapse
|
16
|
Lipińska MM, Haliński ŁP, Gołębiowski M, Kowalkowska AK. Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives-A Review. Int J Mol Sci 2023; 24:739. [PMID: 36614181 PMCID: PMC9821772 DOI: 10.3390/ijms24010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Orchids are widely used in traditional medicine for the treatment of a whole range of different health conditions, and representatives of the Neotropical subtribe Maxillariinae are not an exception. They are utilized, for instance, for their spasmolytic and anti-inflammatory activities. In this work, we analyze the literature concerning the chemical composition of the plant extracts and secretions of this subtribe's representatives published between 1991 and 2022. Maxillariinae is one of the biggest taxa within the orchid family; however, to date, only 19 species have been investigated in this regard and, as we report, they produce 62 semiochemicals of medical potential. The presented review is the first summary of biologically active compounds found in Maxillariinae.
Collapse
Affiliation(s)
- Monika M. Lipińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Foundation Polish Orchid Association, 81-825 Sopot, Poland
| | - Łukasz P. Haliński
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka K. Kowalkowska
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
17
|
Nazlić M, Akrap K, Kremer D, Dunkić V. Hydrosols of Veronica Species -Natural Source of Free Volatile Compounds with Potential Pharmacological Interest. Pharmaceuticals (Basel) 2022; 15:1378. [PMID: 36355550 PMCID: PMC9695910 DOI: 10.3390/ph15111378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 09/29/2023] Open
Abstract
In this study, free volatile compounds (FVCs) were isolated from the water fractions (hydrosols) of 10 Croatian Veronica species obtained by hydrodistillation (HD) and microwave-assisted extraction (MAE). The use of different isolation techniques is important for the analysis of the influence of extraction conditions on the qualitative and quantitative composition of the isolated constituents. The composition of the hydrosols was analyzed using gas chromatography and mass spectrometry. The compounds β-ionone and benzene acetaldehyde were detected in all 10 Veronica hydrosols studied. E-caryophyllene was also identified in all isolates except the MAE isolate of V. arvensis L. Caryophyllene oxide was isolated in all isolates apart from the HD isolate of V. catenata Pennell. (E)-β-Damascenone is significantly present in all isolates except the MAE isolates of V. catanata and V. cymbalaria Bodard. In these two species, α-muurolol was identified in a high percentage. The same basic phytochemical constituents and compounds characteristic of a given Veronica species suggest the importance of further research. Antioxidant activity was tested for all extracts using two methods, ORAC and DPPH. Therefore, it is crucial to identify as many specialized metabolites from Veronica species as possible, especially hydrosols, which are natural products of potential pharmacological interest.
Collapse
Affiliation(s)
- Marija Nazlić
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia
| | - Karla Akrap
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia
| | - Dario Kremer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia
| | - Valerija Dunkić
- Faculty of Science, University of Split, Ruđera Boškovića 33, HR-21000 Split, Croatia
| |
Collapse
|
18
|
Wang S, Wang Y, Han B, Chen Y, Bai X, Yu S, Liu M. Huanglian ointment alleviates eczema by maintaining the balance of c-Jun and JunB and inhibiting AGE-RAGE-mediated pro-inflammation signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154372. [PMID: 35932609 DOI: 10.1016/j.phymed.2022.154372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Huanglian ointment exhibits clinical efficacy for repairing skin barriers and inhibiting skin inflammation, and has been used to ameliorate eczema for many years. However, the active components and mechanism of Huanglian ointment have not yet been elucidated. PURPOSE This study aimed to demonstrate the main active components and molecular mechanisms of Huanglian ointment for the treatment of eczema. METHODS The main active components of Huanglian ointment were identified by gas chromatography-mass spectrometry. Network pharmacology approach and molecular docking techniques to predict the potential molecular mechanisms of Huanglian ointment alleviating eczema. Furthermore, Biostir-AD®-induced guinea pigs and tumor necrosis α (TNF-α)/interferon γ (IFN-γ)-induced HaCaT cells were employed to investigate the effectiveness and mechanisms of Huanglian ointment using histopathological staining, enzyme-linked immunosorbent assay, MTT assay, and western blot analysis. RESULTS Fourteen chemistry components were identified in Huanglian ointment. In total, 78 intersecting gene targets were identified between Huanglian ointment and eczema, including Jun, inflammatory regulators, and chemokine factors. Intersecting gene targets were enriched for cytokine and chemokine receptor binding, and inflammatory related signaling pathways. The molecular docking results showed that the identified components had a stable binding conformation with core targets. In vivo experiments showed that Huanglian ointment markedly ameliorated eczema-like skin lesions, restored histopathological morphology, and decreased levels of TNF-α, IFN-γ, and interleukin 6. Moreover, Huanglian ointment effectively protected HaCaT cells against TNF-α/IFN-γ-induced cell death and overproduction of thymus- and activation-regulated chemokine, macrophage-derived chemokine, and regulated upon activation normal T cell-expressed and secreted factor. Subsequently, we found that Huanglian ointment repaired skin barriers by affecting c-Jun, JunB, and filaggrin expression, and suppressed inflammatory response by inhibiting AGE-RAGE signaling pathway, both in vivo and in vitro. CONCLUSION Our results demonstrated that Huanglian ointment repaired skin barriers and inhibited inflammation by maintaining the balance of c-Jun and JunB, and suppressing AGE-RAGE signaling pathway, thereby relieving eczema. These findings providing a molecular basis for treatment of eczema by Huanglian ointment.
Collapse
Affiliation(s)
- Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130117, China
| | - Yuanxi Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130117, China
| | - Bing Han
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130117, China
| | - Yanyan Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130117, China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130117, China
| | - Shiting Yu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130117, China.
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130117, China.
| |
Collapse
|
19
|
Naibaho J, Bobak Ł, Pudło A, Wojdyło A, Andayani SN, Pangestika LMW, Korzeniowska M, Yang B. Chemical compositions, antioxidant activities and techno‐functionality of spent grain treated by autoclave treatment: evaluation of water and temperature levels. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science Wroclaw University of Environmental and Life Sciences 51‐630 Wroclaw Poland
| | - Łukasz Bobak
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science Wroclaw University of Environmental and Life Sciences 51‐630 Wroclaw Poland
| | - Anna Pudło
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science Wroclaw University of Environmental and Life Sciences 51‐630 Wroclaw Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science Wrocław University of Environmental and Life Sciences 51‐630 Wroclaw Poland
| | - Safira Noor Andayani
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pendidikan Ganesha 81116 Singaraja Indonesia
| | | | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science Wroclaw University of Environmental and Life Sciences 51‐630 Wroclaw Poland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies University of Turku 20014 Turku Finland
| |
Collapse
|
20
|
Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fruits of species of the genus Bromelia contain compounds with health benefits and potential biotechnological applications. For example, Bromelia karatas fruits contain antioxidants and proteins with bactericidal activity, but studies regarding the activity of these metabolites and potential benefits are required. We evaluated the bactericidal activity of the methanolic extract (treated and not treated with activated charcoal) and its fractions (hexane, ethyl acetate, and methanol) from ripe B. karatas fruit (8 °Brix) against Escherichia coli, Enterococcus faecalis, Salmonella enteritidis, and Shigella flexneri. The methanolic extract (ME) minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined at eight concentrations. The methanolic extract MIC was 5 mg/mL for E. faecalis and 10 mg/mL for the other bacteria; the MBC was 20 mg/mL for E. coli and E. faecalis, and 40 mg/mL for S. enteritidis and S. flexneri. Through gas chromatography–mass spectrometry, 131 compounds were identified, some of which had previously been reported to have biological activities, such as bactericidal, fungicide, anticancer, anti-inflammatory, enzyme inhibiting, and anti-allergic properties. The most abundant compounds found in the ME of B. karatas fruits were maleic anhydride, 5-hydroxymethylfurfural, and itaconic anhydride. This study shows that B. karatas fruits contain metabolites that are potentially beneficial for health.
Collapse
|
21
|
Fu YP, Yuan H, Xu Y, Liu RM, Luo Y, Xiao JH. Protective effects of Ligularia fischeri root extracts against ulcerative colitis in mice through activation of Bcl-2/Bax signalings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154006. [PMID: 35299029 DOI: 10.1016/j.phymed.2022.154006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by high levels of proinflammatory cytokines and epithelial barrier dysfunction. The root of Ligularia fischeri (Ledeb.) Turcz. is a traditional Chinese medicinal herb with diverse therapeutic properties, which has been successfully used to treat inflammation-related diseases. However, little is known about its effect and mechanism against UC. PURPOSE To investigate the efficacy and mechanism of L. fischeri root extracts against UC. METHODS L. fischeri root samples were prepared using the alcohol extraction method and liquid-liquid extraction method. A dextran sodium sulfate-induced UC mouse model and a lipopolysaccharide (LPS)-induced inflammatory cell model were employed in the present study. Cell apoptosis was detected by TUNEL staining, and an enzyme-linked immunosorbent assay was used to quantify the abundance of inflammatory factors in tissues. Hematoxylin and eosin staining and Masson staining were employed to analyze drug toxicity to the liver and kidney. A myeloperoxidase (MPO) assay kit was used to detect neutrophil infiltration in colon tissues. RT-qPCR was then employed to quantify the transcriptional levels of proinflammatory and apoptotic-related genes, while tight junction and apoptosis-related proteins were quantified via western blotting. Gas Chromatography/Mass Spectrometry analysis was then performed to identify the natural compounds in L. fischeri root extracts. RESULTS The water decoction extract, methanol extract, and especially the chloroform extract (CE) exerted potent therapeutic effects in UC mice. Similar to the positive control group (5-aminosalicylic acid), oral administration of CE (30, 60, and 90 mg/kg/d) elicited distinct therapeutic effects on UC mice in the medium- and high-dose groups. CE decreased disease activity index, histopathological score, and MPO level significantly, and effectively retained the colon length. Furthermore, CE significantly reduced the levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and enhanced the expression of tight junction proteins, such as zonula occludens (ZO)-1, ZO-2, claudin-1, and occludin, as well as the transcriptional levels of mucins, such as MUC-1 and MUC-2, in UC mice. Notably, CE prevented apoptosis of colonic epithelial cells by up-regulating Bcl-2 and down-regulating Bax. Also, CE inhibited the secretion of pro-inflammatory cytokines and apoptosis in LPS-induced RAW264.7 macrophages via the activation of Bcl-2/Bax signals. CONCLUSIONS Collectively, L. fischeri root extracts, especially CE, have obvious therapeutic effects against UC. CE reduces inflammation and protects the intestinal epithelial cells and intestinal epithelial barrier via activation of the Bcl-2/Bax signaling pathway, and may be a promising therapeutic agent for UC treatment.
Collapse
Affiliation(s)
- Yong-Ping Fu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Huan Yuan
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Ru-Ming Liu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China.
| |
Collapse
|
22
|
Autor E, Cornejo A, Bimbela F, Maisterra M, Gandía LM, Martínez-Merino V. Extraction of Phenolic Compounds from Populus Salicaceae Bark. Biomolecules 2022; 12:539. [PMID: 35454128 PMCID: PMC9025220 DOI: 10.3390/biom12040539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic residues have the potential for obtaining high value-added products that could be better valorized if biorefinery strategies are adopted. The debarking of short-rotation crops yields important amounts of residues that are currently underexploited as low-grade fuel and could be a renewable source of phenolic compounds and other important phytochemicals. The isolation of these compounds can be carried out by different methods, but for attaining an integral valorization of barks, a preliminary extraction step for phytochemicals should be included. Using optimized extraction methods based on Soxhlet extraction can be effective for the isolation of phenolic compounds with antioxidant properties. In this study, poplar bark (Populus Salicaceae) was used to obtain a series of extracts using five different solvents in a sequential extraction of 24 h each in a Soxhlet extractor. Selected solvents were put in contact with the bark sample raffinate following an increasing order of polarity: n-hexane, dichloromethane, ethyl acetate, methanol, and water. The oily residues of the extracts obtained after each extraction were further subjected to flash chromatography, and the fractions obtained were characterized by gas chromatography coupled with mass spectrometry (GC-MS). The total phenolic content (TPC) was determined using the Folin-Ciocalteu method, and the antioxidant activity (AOA) of the samples was evaluated in their reaction with the free radical 2,2-Diphenyl-picrylhydrazyl (DPPH method). Polar solvents allowed for higher individual extraction yields, with overall extraction yields at around 23% (dry, ash-free basis). Different compounds were identified, including hydrolyzable tannins, phenolic monomers such as catechol and vanillin, pentoses and hexoses, and other organic compounds such as long-chain alkanes, alcohols, and carboxylic acids, among others. An excellent correlation was found between TPC and antioxidant activity for the samples analyzed. The fractions obtained using methanol showed the highest phenolic content (608 μg of gallic acid equivalent (GAE)/mg) and the greatest antioxidant activity.
Collapse
Affiliation(s)
- Elsa Autor
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Alfonso Cornejo
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Fernando Bimbela
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Maitane Maisterra
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Luis M. Gandía
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Víctor Martínez-Merino
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| |
Collapse
|
23
|
The antioxidant properties and microbial load of Moringa oleifera leaves dried using a prototype convective air-dryer. Saudi J Biol Sci 2022; 29:103290. [PMID: 35521359 PMCID: PMC9065894 DOI: 10.1016/j.sjbs.2022.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022] Open
Abstract
The recent COVID-19 pandemic resulted in major postharvest losses because most fresh produce could not be sold. Drying is an important thermal-based food preservation method which could have prolonged the shelf-life of these produce, but most drying technologies are costly, and cannot be afforded by small-time farmers. From this context, we were interested in evaluating the drying of Moringa oleifera leaves (MOL) using a low-cost self-built prototype convective-air dryer (CAD), alongside conventional drying methods for its antioxidant properties, microbial load and phytoconstituents. Results showed total polyphenol content was the highest (p < 0.05) in our CAD samples, and it retained among the highest total flavonoid content, total antioxidant capacity, total alkaloid content and DPPH radical scavenging activity. Furthermore, methanolic CAD extract presented lower coliform and yeast and mold count than the aqueous CAD extract. We also briefly explored MOL as a sanitizer where the microbial load of the methanolic extract was comparable (p > 0.05) with several commercial non-alcoholic sanitizers, indicating its commercialization potential as a bio-friendly sanitizer. Finally, using GC–MS, we are the first to report (best of our knowledge) on the presence of caprolactam, an important bio-medical field compound, in the CAD sample’s aqueous extract.
Collapse
|
24
|
Ijaz MU, Mustafa S, Batool R, Naz H, Ahmed H, Anwar H. Ameliorative effect of herbacetin against cyclophosphamide-induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Hum Exp Toxicol 2022; 41:9603271221132140. [DOI: 10.1177/09603271221132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Herbacetin (HBN) is a glycosylated flavonoid, which possesses numerous pharmacological properties. Cyclophosphamide (CYC) is a chemotherapeutic drug that adversely affects the kidneys. The present investigation aimed to evaluate the curative potential of HBN against CYC-induced nephrotoxicity. Sprague Dawley rats ( n = 48) were randomly divided into four groups: control (0.1% DMSO + food), CYC (150 mg/kg b.wt.), CYC+HBN (150 + 40 mg/kg b.wt.), and HBN (40mg/kg b.wt.). CYC treatment significantly decreased the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR) while elevating the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA). Treatment with HBN significantly recovered the activity of CAT, SOD, GPx, and GSR while reducing the concentrations of ROS and MDA. Moreover, an increase in the level of renal functional markers, including Urea, creatinine, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL), and a decrease in creatinine clearance after CYC administration was recovered to control values by HBN treatment. Furthermore, HBN treatment normalized the increased levels of inflammatory markers such as nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) after CYC administration. Besides, HBN administration increased the expression of anti-apoptotic markers (Bcl-2) while decreasing the apoptotic markers (Bax and Caspase-3). Furthermore, HBN decreased the activities of tricarboxylic acid (TCA) cycle enzymes (ICDH, αKGDH, SDH, and MDH) as well as renal mitochondrial respiratory-chain complexes (I-IV) and repolarized mitochondrial membrane potential (ΔΨm). Additionally, HBN administration significantly protected against renal histological damage induced by CYC. In conclusion, CYC-induced toxicity was effectively ameliorated by the HBN administration. These results indicate that HBN might be considered as a potential protective agent against nephrotoxicity. The observed protection may be due to its antioxidant, anti-inflammatory, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Riffat Batool
- Directorate of Board of Advanced Studies and Research, Allama Iqbal Open University, Islamabad, Pakistan
| | - Huma Naz
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
25
|
Antifungal activity of volatile compounds generated by endophytic fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense. PLoS One 2021; 16:e0260747. [PMID: 34855862 PMCID: PMC8639089 DOI: 10.1371/journal.pone.0260747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
The soil-born filamentous fungal pathogen Fusarium oxysporum f. sp. cubense (FOC), which causes vascular wilt disease in banana plants, is one of the most economically important Fusarium species. Biocontrol using endophytic microorganisms is among the most effective methods for controlling banana Fusarium wilt. In this study, volatile organic compounds (VOCs) showed strong antifungal activity against FOC. Seventeen compounds were identified from the VOCs produced by endophytic fungi Sarocladium brachiariae HND5, and three (2-methoxy-4-vinylphenol, 3,4-dimethoxystyrol and caryophyllene) showed antifungal activity against FOC with 50% effective concentrations of 36, 60 and 2900 μL/L headspace, respectively. Transmission electron microscopy (TEM) and double fluorescence staining revealed that 2-methoxy-4-vinylphenol and 3,4-dimethoxystyrol damaged the plasma membranes, resulting in cell death. 3,4-dimethoxystyrol also could induce expression of chitin synthases genes and altered the cell walls of FOC hyphae. Dichloro-dihydro-fluorescein diacetate staining indicated the caryophyllene induced accumulation of reactive oxygen species (ROS) in FOC hyphae. FOC secondary metabolism also responded to active VOC challenge by producing less fusaric acid and expressions of genes related to fusaric acid production were interrupted at sublethal concentrations. These findings indicate the potential of S. brachiariae HND5 as a biocontrol agent against FOC and the antifungal VOCs as fumigants.
Collapse
|
26
|
Gromkowska-Kępka KJ, Markiewicz-Żukowska R, Nowakowski P, Naliwajko SK, Moskwa J, Puścion-Jakubik A, Bielecka J, Grabia M, Mielcarek K, Soroczyńska J, Socha K. Chemical Composition and Protective Effect of Young Barley ( Hordeum vulgare L.) Dietary Supplements Extracts on UV-Treated Human Skin Fibroblasts in In Vitro Studies. Antioxidants (Basel) 2021; 10:antiox10091402. [PMID: 34573034 PMCID: PMC8467029 DOI: 10.3390/antiox10091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Young barley seems to be a promising material for use as nutricosmetic due to the presence of many biologically active compounds. The aim of this study was to evaluate the effect of Hordeum vulgare L. extracts on human skin fibroblasts exposed to ultraviolet radiation B (UVB) radiation. Analysis of the chemical composition showed a predominance of 9,12,15-octadecatrienoic acid. The quality assessment showed that young barley preparations have high total polyphenolic content (TPC) and favourable total antioxidant status (TAS). They also contain antioxidant elements such as zinc, copper, and selenium. Furthermore, the analyzed products were found to be safe in terms of toxic elements (lead, cadmium and mercury) and lack of cytotoxic effect of young barley extracts on cells. In vitro bioactivity assays showed that young barley extract increased the survival rate and accelerated the migration of fibroblasts in research models with UVB radiation. The application of both extracts caused an increase in DNA biosynthesis, and in the number of cells arrested in S phase. Moreover, an inhibitory effect of the tested extracts on the expression of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) was observed. The results indicate that young barley extracts, due to protective as well as restorative effect, could potentially be used in the production of nutricosmetics and skin care products.
Collapse
|
27
|
Sajid-Ur-Rehman M, Ishtiaq S, Khan MA, Alshamrani M, Younus M, Shaheen G, Abdullah M, Sarwar G, Khan MS, Javed F. Phytochemical profiling, in vitro and in vivo anti-inflammatory, analgesic and antipyretic potential of Sesuvium sesuvioides (Fenzl) Verdc. (Aizoaceae). Inflammopharmacology 2021; 29:789-800. [PMID: 34061285 DOI: 10.1007/s10787-021-00824-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Sesuvium sesuvioides (Fenzl) Verdc is traditionally used in the treatment of inflammatory diseases such as arthritis and gout The aim of present study was to assess the possible anti-inflammatory, analgesic and antipyretic potential of the methanol extract of Sesuvium sesuvioides (SsCr) to prove scientifically its folklore use in the inflammatory diseases and to screen its total antioxidant capacity by multiple methods and phytocompounds by GC-MS. The preliminary phytochemical studies showed the presence of phenols, flavonoids, glycosides, coumarin, terpenoids, saponins, fats and carbohydrates in crude extract. The total phenolic contents (27.31 ± 0.28 mg GAE/g) and total flavonoids (3.58 ± 0.12 mgRE/g) values were observed. The antioxidant capacity of SsCr showed significant DPPH, ABTS, CUPRAC, FRAP, PBD and metal chelating results. GC-MS analysis displayed the phytoconstituents with anti-inflammatory potentials such as 2-methoxy-4-vinylphenol, vanillin, umbelliferone, methyl ferulate, palmitoleic acid, methyl palmitate and phytol. SsCr presented noteworthy HRBC membrane stability with maximum inhibition of cell hemolysis (47.79%). In carrageenan-induced hind paw edema assay result showed dose-dependent anti-inflammatory action. SsCr presented significant (p < 0.05) analgesic activity in hot-plate and tail flicking tests similarly it also showed the noteworthy inhibition in pain latency against formalin induced analgesia at 1st and 2nd phases. SsCr reduced the acetic acid-induced writhes at different doses (250, 500 and 750 mg). Results of antipyretic activity of SsCr extract were significant at 500 and 750 mg. The results of in vitro and in vivo experimental studies verified the anti-inflammatory, analgesic and antipyretic potential of Sesuvium sesuvioides and supported the folklore uses of this plant.
Collapse
Affiliation(s)
- M Sajid-Ur-Rehman
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan. .,Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Saiqa Ishtiaq
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Younus
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Shaheen
- Department of Eastern Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Sarwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Sohaib Khan
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faraza Javed
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
28
|
Nanok K, Sansenya S. Combination effects of rice extract and five aromatic compounds against α-glucosidase, α-amylase and tyrosinase. J Biosci Bioeng 2021; 132:9-17. [PMID: 33934979 DOI: 10.1016/j.jbiosc.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Rice is a source of bioactive compounds related to human health and has been used for both consumption and traditional medicine. The authors investigated the synergistic and additive effect of rice extract (RE) combined with five aromatic compounds against three enzymes: α-glucosidase, α-amylase and tyrosinase. RE was purified by thin-layer chromatography (TLC) and preparative TLC (PTLC) with different solvent systems. RE had higher α-glucosidase and α-amylase inhibitory activity than the five aromatic compounds, while the five aromatic compounds had higher tyrosinase inhibitory activity than RE. The combination of RE/acarbose produced synergic inhibition of α-glucosidase and α-amylase, whereas RE showed additive inhibition of both enzymes when combined with aromatic compounds. The five aromatic compounds showed additive inhibition of tyrosinase when combined with RE. The combination of 2-methoxy-4-vinylphenol/vanillin/guaiacol produced synergistic inhibition of α-amylase while showing antagonism of α-glucosidase and tyrosinase. Interestingly, the RE produced additive inhibition of α-glucosidase, α-amylase and tyrosinase when combined with the 2-methoxy-4-vinylphenol/vanillin/guaiacol combination. RE had rich bioactive compounds related to α-glucosidase, α-amylase and tyrosinase inhibitory activity. Volatile compounds, including 2-methoxy-4-vinylphenol, vanillin and guaiacol, enhanced the inhibitory activity of RE against α-glucosidase, α-amylase and tyrosinase activities.
Collapse
Affiliation(s)
- Kesinee Nanok
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.
| |
Collapse
|
29
|
Zhang Y, Li S, Liang Y, Liu R, Lv X, Zhang Q, Xu H, Bi K, Li Z, Li Q. A systematic strategy for uncovering quality marker of Asari Radix et Rhizoma on alleviating inflammation based chemometrics analysis of components. J Chromatogr A 2021; 1642:461960. [PMID: 33684872 DOI: 10.1016/j.chroma.2021.461960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Asari Radix et Rhizoma (Asarum), a traditional Chinese medicine (TCM), has been applied in clinical generally. However, due to the lack of valid methods for Asarum quality control, inhomogenous quality and therapy issues have become severe with each passing day. In this study, we aimed to establish a comprehensive multi-system to explore the quality control markers underlying pharmaceutical effects based on chemometrics analysis on the total ingredients of Asarum. In brief, DNA barcoding technology was used to screen out the unadulterated herbs in the 15 batches Asarum collected from different origins. Then, the chemical profiles of volatile/nonvolatile components of 10 batches Asarum with definite resource were obtained by HPLC Q-TOF/MS and GC/MS. Combination with chemometrics methods, 14 characteristic ingredients and 4 qualitative and quantitative markers were figured out preliminarily. Moreover, correlation analysis between the characteristic ingredients and the cytokines integrating the virtual targets prediction of network pharmacology, 3 potential bioactive substance were ascertained. In conclusion, l-asarinin, 2-Methoxy-4-vinylphenol and safrole were considered as the potent candidates for quality control markers based on the comprehensive understanding for therapeutic effects and the chemical information of Asarum, which provided a novel perspective of the development for the quality control of TCM.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Saiyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuting Liang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
30
|
Majeke BM, Collard FX, Tyhoda L, Görgens JF. The synergistic application of quinone reductase and lignin peroxidase for the deconstruction of industrial (technical) lignins and analysis of the degraded lignin products. BIORESOURCE TECHNOLOGY 2021; 319:124152. [PMID: 32992274 DOI: 10.1016/j.biortech.2020.124152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The effect of combined quinone reductase (QR) and lignin peroxidase (LiP) on the depolymerization of technical lignins isolated from soda-anthraquinone (SAQ), steam explosion (S-E), and two sulfite processes (NaE and NaPE) was investigated. While LiP is best known for its ability to degrade lignins, it may also cause lignin re-polymerization due to the random coupling of phenoxy radicals and quinoid intermediates. This study evidenced that the addition of the bioreactor produced QR can to some extent limit the lignin re-polymerization by LiP. The synergistic application of QR and LiP lowered the molecular weights (Mw) of SAQ, NaE, S-E, and NaPE lignins by 31%, 34%, 41%, and 52%, respectively. The thermogravimetric analysis also showed that the thermal stability of the four lignins was reduced, whereas gas chromatography-mass spectrometry analysis showed that the degradation products included monomeric phenols. Therefore, the combined QR and LiP system is a promising approach for lignin valorization.
Collapse
Affiliation(s)
- B M Majeke
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - F-X Collard
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - L Tyhoda
- Department of Forestry and Wood Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - J F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
31
|
Lalthanpuii PB, Lalchhandama K. Phytochemical analysis and in vitro anthelmintic activity of Imperata cylindrica underground parts. BMC Complement Med Ther 2020; 20:332. [PMID: 33158437 PMCID: PMC7648271 DOI: 10.1186/s12906-020-03125-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Imperata cylindrica is considered as an agricultural weed, but it is a valuable plant in the traditional medicines of Southeast Asia. In the Mizo traditional medicine of India and Myanmar, the rhizomes and roots are used as a remedy for bacterial, fungal and intestinal helminth infections. Methods An extract of the whole underground parts was prepared in Soxhlet apparatus using chloroform as a solvent. After concentrating in a vacuum rotary evaporator, the extract was analysed using gas chromatography-mass spectrometry. Anthelmintic activity was tested in vitro against the tapeworm Raillietina tetragona and the roundworm Ascaridia galli. Scanning electron microscopy was used to examine the structural changes on the helminths after treatment with the plant extract. Results Twenty-two compounds were identified from the plant extract out of which fatty acids were the predominant compounds. Palmitic acid was the most abundant. Bioactive phytosterols such as campesterol and stigmasterol were also detected. The plant extract was significantly effective on both the helminths and showed dose-dependent anthelmintic activity as that of albendazole. The tapeworm treated with the plant extract showed deformities on the suckers, clumping of the spines, tegumental folds and erosion of microtriches. Extensive damage was also seen on the roundworm including cuticular shrinkage, collapse of the lips, and formation of warty surface throughout the body. Conclusion I. cylindrica extract effectively killed and caused detrimental effects on parasitic tapeworm and roundworm. The study therefore validates the traditional usage among the Mizo people, and guarantees further investigation on the exact compound(s) and mechanism of action.
Collapse
Affiliation(s)
| | - Kholhring Lalchhandama
- Department of Life Sciences, Pachhunga University College, Aizawl, Mizoram, 796001, India.
| |
Collapse
|
32
|
Sansenya S, Payaka A, Wannasut W, Hua Y, Chumanee S. Biological activity of rice extract and the inhibition potential of rice extract, rice volatile compounds and their combination against α‐glucosidase, α‐amylase and tyrosinase. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sompong Sansenya
- Department of Chemistry Faculty of Science and Technology Rajamangala University of Technology Thanyaburi, Pathum Thani12110Thailand
| | - Apirak Payaka
- School of Science Walailak University Nakhon Si Thammarat80160Thailand
- Research Group in Applied, Computational and Theoretical Science (ACTS) Walailak University Nakhon Si Thammarat80160Thailand
| | - Wachirawit Wannasut
- Department of Chemistry Faculty of Science and Technology Rajamangala University of Technology Thanyaburi, Pathum Thani12110Thailand
| | - Yanling Hua
- The Center for Scientific and Technological Equipment Suranaree University of Technology Nakhon Ratchasima30000Thailand
| | - Saowapa Chumanee
- Division of Chemistry Faculty of Science and Technology Phetchabun Rajabhat University Mueang, Phetchabun67000Thailand
| |
Collapse
|
33
|
Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:325-337. [PMID: 31620822 DOI: 10.1007/s00210-019-01741-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022]
Abstract
Cyclophosphamide (CYP) is a chemotherapeutic agent used in the treatment of autoimmune disorders and malignant diseases. However, its usage is restricted due to its severe side effects, especially hepatotoxicity and nephrotoxicity. This study aimed to investigate the protective role of chrysin (CH) against CYP-induced hepatotoxicity and nephrotoxicity in rats. In the present study, 35 male Wistar rats were randomly divided into 5 groups with each group consisting of 7 rats. The rats were pretreated with CH orally in doses of 25- and 50-mg/kg body weight for 7 consecutive days, and CYP (200-mg/kg body weight, i.p.) was administrated on the 7th day 1 h after the last dose of CH. It was found that CH could ameliorate CYP-induced elevations of ALT, ALP, AST, urea, creatinine, MDA, and hepatorenal deterioration, and enhance antioxidant enzymes' activities such as SOD, CAT, and GPx, and GSH's level. Furthermore, CH reversed the changes in levels of inflammatory, apoptotic, and autophagic parameters such as NF-κB, TNF-α, IL-1β, IL-6, iNOS, COX-2, Bax, Bcl-2, and LC3B in liver and kidney tissues. To conclude, the findings of this study demonstrated that CH has a protective effect against CYP-induced hepatorenal toxicity.
Collapse
|
34
|
Ko W, Quang TH, Sohn JH, Yim JH, Kang DG, Lee HS, Kim YC, Oh H. Anti-inflammatory effect of 3,7-dimethyl-1,8-hydroxy-6-methoxyisochroman via nuclear factor erythroid 2-like 2-mediated heme oxygenase-1 expression in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Immunopharmacol Immunotoxicol 2019; 41:337-348. [DOI: 10.1080/08923973.2019.1608559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Tran Hong Quang
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Caugiay, Vietnam
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, Yeonsu-gu, Republic of Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
35
|
Anti-inflammatory activity of ethanol extract of leaf and leaf callus of basil (Ocimum basilicum L.) on RAW 264.7 macrophage cells. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00372-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Mahamadu A, Dortbudak MB. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed Pharmacother 2018; 105:981-991. [DOI: 10.1016/j.biopha.2018.06.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
|
37
|
Chen L, Teng H, Jia Z, Battino M, Miron A, Yu Z, Cao H, Xiao J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit Rev Food Sci Nutr 2017; 58:2908-2924. [PMID: 28682647 DOI: 10.1080/10408398.2017.1345853] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dietary flavonoids, which occur in many plant foods, are considered as the most active constituents among the plant-derived ones in vitro and in vivo. To date, many studies have addressed the anti-inflammatory activity of flavonoids. However, their considerable structural diversity and in vivo bioavailability make them able to modulate different signaling pathways. The present review attempted to summarize and highlight a broad range of inflammation-associated signaling pathways modulated by flavonoids. Finally, based on the current scientist's literature, structure-activity relationships were concluded. Dietary flavonoids have the ability to attenuate inflammation by targeting different intracellular signaling pathways triggered by NF-κB, AP-1, PPAR, Nrf2, and MAPKs. Identification of the main structural features required for the modulation of these inflammation-related pathways (hydroxylation pattern, C2=C3 double bond) have an important role to play in the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Lei Chen
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Hui Teng
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Zhen Jia
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Maurizio Battino
- b Center for Nutrition & Health , Universidad Europea del Atlantico, Santander, Spain and Dept. of Clinical Sciences, Universitr Nutrition & Health, Universidad Europea
| | - Anca Miron
- c Faculty of Pharmacy , Grigore T. Popa University of Medicine and Pharmacy Iasi , Romania
| | - Zhiling Yu
- d Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine , University of Macau, Avenida da Universidade , Taipa , Macau
| | - Hui Cao
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
- d Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine , University of Macau, Avenida da Universidade , Taipa , Macau
| | - Jianbo Xiao
- d Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine , University of Macau, Avenida da Universidade , Taipa , Macau
| |
Collapse
|
38
|
Fard MT, Arulselvan P, Karthivashan G, Adam SK, Fakurazi S. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages. Pharmacogn Mag 2016; 11:S556-63. [PMID: 27013794 PMCID: PMC4787088 DOI: 10.4103/0973-1296.172961] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model. M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages. M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages.
Collapse
Affiliation(s)
- Masoumeh Tangestani Fard
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Govindarajan Karthivashan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siti Khadijah Adam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Salvamani S, Gunasekaran B, Shukor MY, Abu Bakar MZ, Ahmad SA. Phytochemical investigation, hypocholesterolemic and anti-atherosclerotic effects of Amaranthus viridis leaf extract in hypercholesterolemia-induced rabbits. RSC Adv 2016. [DOI: 10.1039/c6ra04827g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypercholesterolemia is one of the main causes for coronary heart disease, which occurs due to high levels of serum cholesterol.
Collapse
Affiliation(s)
- Shamala Salvamani
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Baskaran Gunasekaran
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Mohd Yunus Shukor
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Md. Zuki Abu Bakar
- Department of Veterinary Pre Clinical
- Faculty of Veterinary Medicine
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
40
|
Olszowy P, Donnelly MR, Lee C, Ciborowski P. Profiling post-translational modifications of histones in human monocyte-derived macrophages. Proteome Sci 2015; 13:24. [PMID: 26412985 PMCID: PMC4582717 DOI: 10.1186/s12953-015-0080-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. METHODS To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. RESULTS We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. CONCLUSIONS This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human macrophages.
Collapse
Affiliation(s)
- Pawel Olszowy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA ; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 Street, 87-100 Torun, Poland
| | - Maire Rose Donnelly
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Chanho Lee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
41
|
Hwang YJ, Song J, Kim HR, Hwang KA. Oleanolic acid regulates NF-κB signaling by suppressing MafK expression in RAW 264.7 cells. BMB Rep 2015; 47:524-9. [PMID: 25059280 PMCID: PMC4206729 DOI: 10.5483/bmbrep.2014.47.9.149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and inflammation are common to many pathological conditions. Defense mechanisms protect cells from oxidative stress, but can become over-activated following injury and inflammation. NF-κB and Nrf2 transcription factors regulate proinflammatory and antioxidant gene expression, respectively. Studies have shown that many natural dietary compounds regulate NF-κB and Nrf2, preventing inflammation and oxidative stress. Here, we report major compounds of Prunella vulgaris var. lilacina such as rosmarinic acid, oleanolic acid, ursolic acid and caffeic acid as a potential therapeutic for oxidative stress and inflammation. The major compounds exhibited high anti-inflammatory activity, inhibiting NO, PGE2 production, NF-κB expression and activating Nrf2 expression. In addition, we examined the effect of major compounds on MafK expression. Among the compounds, oleanolic acid significantly decreased MafK expression and MafK-mediated p65 acetylation. These findings suggest that oleanolic acid as NF-κB inhibitors can potentially be used in therapeutic applications for the treatment of oxidative stressnduced diseases. [BMB Reports 2014; 47(9): 524-529]
Collapse
Affiliation(s)
- Yu-Jin Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju 565-850, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Haeng-Ran Kim
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju 565-850, Korea
| | - Kyung-A Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju 565-850, Korea
| |
Collapse
|
42
|
Ganai AA, Khan AA, Malik ZA, Farooqi H. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol Appl Pharmacol 2015; 283:139-46. [DOI: 10.1016/j.taap.2015.01.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 12/27/2022]
|
43
|
Hu S, Liu H, Ha Y, Luo X, Motamedi M, Gupta MP, Ma JX, Tilton RG, Zhang W. Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radic Biol Med 2015; 79:176-85. [PMID: 25476852 PMCID: PMC4339438 DOI: 10.1016/j.freeradbiomed.2014.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
Abstract
The mammalian sirtuin 6 (Sirt6) is a site-specific histone deacetylase that regulates chromatin structure and many fundamental biological processes. It inhibits endothelial cell senescence and inflammation, prevents development of cardiac hypertrophy and heart failure, modulates glucose metabolism, and represses tumor growth. The basic molecular mechanisms underlying regulation of Sirt6 enzymatic function are largely unknown. Here we hypothesized that Sirt6 function can be regulated via posttranslational modification, focusing on the role of peroxynitrite, one of the major reactive nitrogen species formed by excessive nitric oxide and superoxide generated during disease processes. We found that incubation of purified recombinant Sirt6 protein with 3-morpholinosydnonimine (SIN-1; a peroxynitrite donor that generates nitric oxide and superoxide simultaneously) increased Sirt6 tyrosine nitration and decreased its intrinsic catalytic activity. Similar results were observed in SIN-1-treated Sirt6, which was overexpressed in HEK293 cells, and in endogenous Sirt6 when human retinal microvascular endothelial cells were treated with SIN-1. To further investigate whether Sirt6 nitration occurs under pathological conditions, we determined Sirt6 nitration and activity in retina using a model of endotoxin-induced retinal inflammation. Our data showed that Sirt6 nitration was increased, whereas its activity was decreased, in this model. With mass spectrometry, we identified that tyrosine 257 in Sirt6 was nitrated after SIN-1 treatment. Mutation of tyrosine 257 to phenylalanine caused loss of Sirt6 activity and abolished SIN-1-induced nitration and decrease in its activity. Mass spectrometry analysis also revealed oxidation of methionine and tryptophan in Sirt6 after SIN-1 treatment. Our results demonstrate a novel regulatory mechanism controlling Sirt6 activity through reactive nitrogen species-mediated posttranslational modification under oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Shuqun Hu
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Hua Liu
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Yonju Ha
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Xuemei Luo
- Biomolecular Resource Facility, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA; Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Mahesh P Gupta
- Department of Surgery, Committee on Molecular and Cellular Physiology, University of Chicago, Chicago, IL 60637, USA
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 731 04, USA
| | - Ronald G Tilton
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA; Internal Medicine, Division of Endocrinology and Stark Diabetes Center, and The University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA; Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA; Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA.
| |
Collapse
|
44
|
Tseng CK, Lin CK, Chang HW, Wu YH, Yen FL, Chang FR, Chen WC, Yeh CC, Lee JC. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat. PLoS One 2014; 9:e86557. [PMID: 24475143 PMCID: PMC3903563 DOI: 10.1371/journal.pone.0086557] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/10/2013] [Indexed: 01/13/2023] Open
Abstract
In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.
Collapse
Affiliation(s)
- Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chen Yeh
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Kadiyala CSR, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M, Kern TS. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem 2012; 287:25869-80. [PMID: 22648458 DOI: 10.1074/jbc.m112.375204] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetylation was significantly increased in retinas from diabetic rats, and this acetylation was inhibited in diabetics treated with minocycline, a drug known to inhibit early diabetic retinopathy in animals. Histone acetylation and expression of inflammatory proteins that have been implicated in the pathogenesis of diabetic retinopathy were increased likewise in cultured retinal Müller glia grown in a diabetes-like concentration of glucose. Both the acetylation and induction of the inflammatory proteins in elevated glucose levels were significantly inhibited by inhibitors of histone acetyltransferase (garcinol and antisense against the histone acetylase, p300) or activators of histone deacetylase (theophylline and resveratrol) and were increased by the histone deacetylase inhibitor, suberolylanilide hydroxamic acid. We conclude that hyperglycemia causes acetylation of retinal histones (and probably other proteins) and that the acetylation contributes to the hyperglycemia-induced up-regulation of proinflammatory proteins and thereby to the development of diabetic retinopathy.
Collapse
|