1
|
Ren Q, Bakker W, de Haan L, Rietjens IMCM, Bouwmeester H. Induction of Nrf2-EpRE-mediated gene expression by hydroxyanthraquinones present in extracts from traditional Chinese medicine and herbs. Food Chem Toxicol 2023; 176:113802. [PMID: 37116774 DOI: 10.1016/j.fct.2023.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Hydroxyanthraquinones that can be present in traditional Chinese medicine (TCM) and herbal extracts have claimed beneficial intestinal effects. We examined the ability of a panel hydroxyanthraquinones, and methanolic extracts from selected TCM and herbal granules to activate Nrf2-EpRE mediated gene expression using a reporter-gene assay. The results indicate that purpurin, aloe-emodin, 2-hydroxy-3-methylanthraquinone and rhein induced Nrf2 mediated gene expressions with a high induction factor (IFs>10), with BMCL10 values (the lower confidence limit of the concentration giving 10% added response above background) of 16 μM, 1.1 μM, 23 μM and 2.3 μM, respectively, while aurantio-obtusin, obtusifolin, rubiadin 1-methyl ether and emodin were less potent (IFs<5), with BMCL10 values for added response above background level of 4.6 μM, 15 μM, 9.8 μM and 3.8 μM, respectively. All TCM extracts and the herbal extracts of Aloe Vera, Polygonum multiflorum, Rubia (cordifolia) and Rheum officinale activated the Nrf2-EpRE pathway. Of the TCM extracts, Chuan-Xin-Lian-Kang-Yan-Pian was the most potent Nrf2-inducer. LC-MS/MS analysis indicated the presence of selected hydroxyanthraquinones in the extracts and herbs, in part explaining their Nrf2-EpRE mediated activity. In conclusion, different hydroxyanthraquinones have different potencies of Nrf2 activation. The Nrf2 activation by extracts from TCM and herbs can be partially explained by the presence of selected hydroxyanthraquinones.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
2
|
Hung HY, Cheng KC, Kuo PC, Chen IT, Li YC, Hwang TL, Lam SH, Wu TS. Chemical Constituents of Hedyotis diffusa and Their Anti-Inflammatory Bioactivities. Antioxidants (Basel) 2022; 11:antiox11020335. [PMID: 35204218 PMCID: PMC8868389 DOI: 10.3390/antiox11020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Seven new anthraquinones with rare 2-isopropyldihydrofuran (1–3) and 2,2-dimethylpyrano (4–7) moieties together with thirty-four known compounds were isolated from the extracts of whole Hedyotis diffusa plants. Their structures were elucidated and established by various spectroscopic and spectrometric analytical methods. Among these isolates, selected compounds were examined for their anti-inflammatory activity. The results showed that rare substituted anthraquinones displayed potent inhibitory activity with IC50 values ranging from 0.15 ± 0.01 to 5.52 ± 1.59 µM on the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation and elastase release cellular models. Meanwhile, the proposed drug target of the active anthraquinone was studied by computer modeling. The binding affinity between the anti-inflammatory anthraquinone and elastase was evaluated by molecular docking. These results provided the scientific insight into the medicinal values of Hedyotis diffusa and vision of development as lead compounds.
Collapse
Affiliation(s)
- Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-Y.H.); (P.-C.K.); (Y.-C.L.)
| | | | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-Y.H.); (P.-C.K.); (Y.-C.L.)
| | - I-Tsen Chen
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yue-Chiun Li
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-Y.H.); (P.-C.K.); (Y.-C.L.)
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-Y.H.); (P.-C.K.); (Y.-C.L.)
- Correspondence: (S.-H.L.); (T.-S.W.); Tel.: +886-6-2353535 (ext. 6807) (S.-H.L.); +886-6-2757575 (ext. 65333) (T.-S.W.)
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-Y.H.); (P.-C.K.); (Y.-C.L.)
- Correspondence: (S.-H.L.); (T.-S.W.); Tel.: +886-6-2353535 (ext. 6807) (S.-H.L.); +886-6-2757575 (ext. 65333) (T.-S.W.)
| |
Collapse
|
3
|
An extensive review on genus “Tabebuia”, family bignoniaceae: Phytochemistry and biological activities (1967 to 2018). J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Han X, Zhang X, Wang Q, Wang L, Yu S. Antitumor potential of Hedyotis diffusa Willd: A systematic review of bioactive constituents and underlying molecular mechanisms. Biomed Pharmacother 2020; 130:110735. [PMID: 34321173 DOI: 10.1016/j.biopha.2020.110735] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 02/09/2023] Open
Abstract
Cancer is a major cause of death in the world. Chemotherapy can extend the life of cancer patients to some extent, but the quality of life is reduced. Therefore, the quest for more efficient and less toxic medication strategies is still at the forefront of current research. Hedyotis diffusa Willd (HDW), a Chinese herb medicine, has received great attention in the past two decades and has been well documented in clinics for antitumor activity in a variety of human cancers. This review discussed a total of 58 different kinds of active antitumor components isolated from HDW, including iridoids, flavonoids, flavonol glycosides, anthraquinones, phenolic acids, and their derivatives, sterols, and volatile oils. Their antitumor activities include inhibition of tumor cell proliferation, induction of tumor cell apoptosis and tumor angiogenesis, regulation of the host immune response, anti-inflammatory and antioxidant, and protective autophagy. Besides, we provide up-to-date and systematic evidence for HDW antitumor activities and the possible underlying molecular mechanisms and reference for further development of novel drugs and dosage formulation in control of human cancers.
Collapse
Affiliation(s)
- Xinru Han
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Xiang Zhang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Qian Wang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Lu Wang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China.
| | - Shuwen Yu
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China.
| |
Collapse
|
5
|
Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg Med Chem 2020; 28:115327. [PMID: 31992476 DOI: 10.1016/j.bmc.2020.115327] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/03/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic pro-inflammatory cytokine. Its deregulation is associated with chronic inflammation, and multifactorial auto-immune disorders. It mediates its biological roles through a hexameric complex composed of IL-6 itself, its receptor IL-6R, and glycoprotein 130 (IL-6/IL-6R/gp130). This complex, in turn, activates different signaling mechanisms (classical and trans-signaling) to execute various biochemical functions. The trans-signaling mechanism activates various pathological routes, like JAK/STAT3, Ras/MAPK, PI3K-PKB/Akt, and regulation of CD4+ T cells and VEGF levels, which cause cancer, multiple sclerosis, rheumatoid arthritis, anemia, inflammatory bowel disease, Crohn's disease, and Alzheimer's disease. Involvement of IL-6 in pathophysiology of these complex diseases makes it an important target for the treatment of these diseases. Though some anti-IL-6 monoclonal antibodies are being used clinically, but their high cost, only parenteral administration, and possibility of immunogenicity have limited their use, and warranted the development of novel small non-peptide molecules as IL-6 inhibitors. In the present report, all molecules reported in literature as IL-6 inhibitors have been classified as IL-6 production, IL-6R, and IL-6 signaling inhibitors. Reports available till date are critically studied to identify important and salient structural features common in these molecules. These analyses would assist medicinal chemists to design novel and potent IL-6 production and signaling inhibitors, through knowledge- and/or computer-based approaches, for the treatment of complex multifactorial diseases.
Collapse
Affiliation(s)
- Sukhvir Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| | - Raj Kumar
- Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
6
|
Chinese herbal medicine therapy and the risk of overall mortality for patients with liver cancer who underwent surgical resection in Taiwan. Complement Ther Med 2019; 47:102213. [DOI: 10.1016/j.ctim.2019.102213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
|
7
|
Song Y, Wang H, Pan Y, Liu T. Investigating the Multi-Target Pharmacological Mechanism of Hedyotis diffusa Willd Acting on Prostate Cancer: A Network Pharmacology Approach. Biomolecules 2019; 9:E591. [PMID: 31600936 PMCID: PMC6843553 DOI: 10.3390/biom9100591] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Hedyotis diffusa Willd (HDW) is one of the most well-known herbs used in the treatment of prostate cancer. However, the potential mechanisms of its anti-tumor effects have not been fully explored. Here, we applied a network pharmacology approach to explore the potential mechanisms of HDW against prostate cancer (PCa). We obtained 14 active compounds from HDW and 295 potential PCa related targets in total to construct a network, which indicated that quercetin and ursolic acid served as the main ingredients in HDW. Mitogen-activated Protein Kinase 8 (MAPK8), Interleukin 6 (IL6), Vascular Endothelial Growth Factor A (VEGFA), Signal Transducer and Activator of Transcription 3 (STAT3), Jun Proto-Oncogene (JUN), C-X-C Motif Chemokine Ligand 8 (CXCL8), Interleukin-1 Beta (IL1B), Matrix Metalloproteinase-9 (MMP9), C-C Motif Chemokine Ligand 2 (CCL2), RELA Proto-Oncogene (RELA), and CAMP Responsive Element Binding Protein 1 (CREB1) were identified as key targets of HDW in the treatment of PCa. The protein-protein interaction (PPI) cluster demonstrated that CREB1 was the seed in this cluster, indicating that CREB1 plays an important role in connecting other nodes in the PPI network. This enrichment demonstrated that HDW was highly related to translesion synthesis, unfolded protein binding, regulation of mitotic recombination, phosphatidylinositol and its kinase-mediated signaling, nucleotide excision repair, regulation of DNA recombination, and DNA topological change. The enrichment results also showed that the underlying mechanism of HDW against PCa may be due to its coordinated regulation of several cancer-related pathways, such as angiogenesis, cell differentiation, migration, apoptosis, invasion, and proliferation.
Collapse
Affiliation(s)
- Yanan Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
- Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Haiyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yajing Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Tonghua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Sun C, Yang J, Cheng HB, Shen WX, Jiang ZQ, Wu MJ, Li L, Li WT, Chen TT, Rao XW, Zhou JR, Wu MH. 2-Hydroxy-3-methylanthraquinone inhibits lung carcinoma cells through modulation of IL-6-induced JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152848. [PMID: 31035048 PMCID: PMC9618327 DOI: 10.1016/j.phymed.2019.152848] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND 2-hydroxy-3-methylanthraquinone (HMA), an anthraquinone monomer in traditional Chinese medicine Hedyotis diffusa, has been reported to inhibit the growth of several types of cancer, but its effect on lung cancer has not been adequately investigated. HYPOTHESIS/PURPOSE This study aimed to test the hypothesis that HMA inhibit the growth, migration, and invasion of lung cancer cells in part via downregulation of interleukin (IL)-6-induced JAK2/STAT3 pathway. METHODS Growth and apoptosis of lung cancer cells were quantitated by CCK-8 assay and Annexin V-FITC/PI flow cytometric analysis, respectively. Migration and invasion of A549 cells were determined by wound-healing assay and transwell invasion assay, respectively. The effect of HMA on cytokines expression in A549 cells was evaluated by the cytokine antibody array assay. Gene expression and protein levels of related molecular markers were quantitated by real time-PCR and Western blot analysis, respectively. RESULTS HMA significantly inhibited IL-6-stimulated growth and colony formation of A549 cells, increased the number of apoptotic cells, and inhibited invasion associated with downregulation of expression of IL-6-induced MMP-1, MMP-2, and MMP-9 genes. IL-6 increased the levels of tyrosine phosphorylation of JAK2 and STAT3 in A549 cells, which was reversed by HMA treatment. In addition, HMA reduced the expression of a series of inflammation-related cytokines in A549 cells supernatant, including IL-6, G-CSF, IL-6R, IL-8, MCP-1, RANTES, TNF-α. CONCLUSION These results suggest that HMA may inhibit the growth and invasion of lung cancer cells in part via downregulation of IL-6-induced JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Chao Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Institute of Oncology, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Translational Medicine Research Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Institute of Oncology, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hai-Bo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Translational Medicine Research Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wei-Xing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Translational Medicine Research Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ze-Qun Jiang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Institute of Oncology, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ming-Jie Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Li Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Institute of Oncology, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wen-Ting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Institute of Oncology, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ting-Ting Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Translational Medicine Research Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xi-Wu Rao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Translational Medicine Research Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| | - Mian-Hua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Institute of Oncology, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
9
|
Purification and characterization a polysaccharide from Hedyotis diffusa and its apoptosis inducing activity toward human lung cancer cell line A549. Int J Biol Macromol 2019; 122:64-71. [DOI: 10.1016/j.ijbiomac.2018.10.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
|
10
|
Su X, Li Y, Jiang M, Zhu J, Zheng C, Chen X, Zhou J, Li Y, Xiao W, Wang Y. Systems pharmacology uncover the mechanism of anti-non-small cell lung cancer for Hedyotis diffusa Willd. Biomed Pharmacother 2018; 109:969-984. [PMID: 30551551 DOI: 10.1016/j.biopha.2018.10.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has become one of the most general malignancies in the world and has been shown to be the leading cause of cancer-related deaths. Traditional Chinese medicine (TCM) is considered to be a useful medicine for survival, and has been used in Asia for thousands of years. Hedyotis diffusa Willd (HDW) is an important folk herb that is used in clinical treatment of various cancers in various Chinese medicine prescriptions. However, its underlying mechanism of action remains unclear. Presently, we used an innovative system-pharmacology platform to systematically uncover the pharmacological mechanisms of HDW in the treatment of NSCLC from molecules, targets, and pathway levels. The results show that HDW treatment of NSCLC may activate immunity, achieve anti-inflammatory, anti-proliferative and anti-migration therapeutic effects by regulating multiple pathways. This research provides a new idea for understanding the mechanism of TCM and promotes to develop potential drugs from HDW in modern medicine.
Collapse
Affiliation(s)
- Xing Su
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China
| | - Yueping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China
| | - Meng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Xuetong Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China
| | - Yan Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China.
| | - Yonghua Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China.
| |
Collapse
|
11
|
Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med 2017; 12:20. [PMID: 28702078 PMCID: PMC5506596 DOI: 10.1186/s13020-017-0140-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
In traditional Chinese medicine (TCM) theory, pathogenic heat and toxins, which are akin to the inflammatory factors, are the causes of cancer and could promote its virulent development. Therefore, heat-clearing and detoxicating (HCD) herbs are essential components of TCM formulas for cancer treatment. An increasing interest has been focused on the study of HCD herbs and accumulated evidences have shown that HCD herbs or HCD herbs-based formulas exhibited remarkable anticancer effects when used alone or combined with other therapeutic approaches. Some of the HCD herb-derived products have been tested in clinical trials. Studies revealed that extracts or pure compounds of the HCD herbs showed a broad anticancer spectrum against both solid and hematologic malignancies without significant toxic effects. Notably, some HCD herbs or formulas could strongly enhance the anticancer activities of chemo- or radio-therapy and alleviate their side effects. The anticancer activities of HCD herb exacts or the pure compounds were reported to be through multiple cellular or molecular mechanisms, such as induction of cancer cell apoptosis, differentiation and cell cycle arrest, inhibition of cancer cell growth, invasion and metastasis, and inhibition of tumor angiogenesis. In this review, we provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate the further study and application of HCD herbs.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Yeer Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| |
Collapse
|
12
|
Chen R, He J, Tong X, Tang L, Liu M. The Hedyotis diffusa Willd. (Rubiaceae): A Review on Phytochemistry, Pharmacology, Quality Control and Pharmacokinetics. Molecules 2016; 21:E710. [PMID: 27248992 PMCID: PMC6273454 DOI: 10.3390/molecules21060710] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
Hedyotis diffusa Willd (H. diffusa) is a well-known Chinese medicine with a variety of activities, especially its anti-cancer effect in the clinic. Up to now, 171 compounds have been reported from H. diffusa, including 32 iridoids, 26 flavonoids, 24 anthraquinones, 26 phenolics and their derivatives, 50 volatile oils and 13 miscellaneous compounds. In vitro and in vivo studies show these phytochemicals and plant extracts to exhibit a range of pharmacological activities of anti-cancer, antioxidant, anti-inflammatory, anti-fibroblast, immunomodulatory and neuroprotective effects. Although a series of methods have been established for the quality control of H. diffusa, a feasible and reliable approach is still needed in consideration of its botanical origin, collecting time and bioactive effects. Meanwhile, more pharmacokinetics researches are needed to illustrate the characteristics of H. diffusa in vivo. The present review aims to provide up-to-date and comprehensive information on the phytochemistry, pharmacology, quality control and pharmacokinetic characteristics of H. diffusa for its clinical use and further development.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Jingyu He
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, Guangdong, China.
| | - Xueli Tong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Lan Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Menghua Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
13
|
Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice. Int J Mol Sci 2015; 16:27252-69. [PMID: 26580602 PMCID: PMC4661879 DOI: 10.3390/ijms161126021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 12/23/2022] Open
Abstract
Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography-diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones.
Collapse
|
14
|
Kuo YJ, Yang JS, Lu CC, Chiang SY, Lin JG, Chung JG. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray. ENVIRONMENTAL TOXICOLOGY 2015; 30:1162-1177. [PMID: 24677778 DOI: 10.1002/tox.21989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
The authors' previous study has shown that water extract of Hedyotis diffusa Willd (HDW) promoted immune response and exhibited anti-leukemic activity in BALB/c leukemic mice in vivo. In this study, the anti-proliferation effects of ethanol extract of H. diffusa Willd (EEHDW) on lung cancer cell lines (A549, H1355, and LLC), leukemia cell lines (HL-60, WEHI-3), and a mouse melanoma cell line (B16F10) in vitro were investigated. The results demonstrated that EEHDW suppressed the cell proliferation of A549, H1355, HL-60, WEHI-3, and B16F10 cells as well as reduced cell viability in a concentration-dependent manner. We found that EEHDW inhibited the cell proliferation of HL-60 cells in concentration-dependent manner. In addition, EEHDW triggered an arrest of HL-60 cells at G0/G1 phase and sub-G1 population (apoptotic cells). EEHDW provoked DNA condensation and DNA damage in HL-60 cells. The activities of caspase-3, caspase-8, and caspase-9 were elevated in EEHDW-treated HL-60 cells. DNA microarray to investigate and display the gene levels related to cell growth, signal transduction, apoptosis, cell adhesion, cell cycle, DNA damage and repair, transcription and translation was also used. These findings suggest that EEHDW may be a potential herbal medicine and therapeutic agent for the treatment of leukemia.
Collapse
Affiliation(s)
- Yu-Jui Kuo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Chi-Cheng Lu
- Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, 402, Taiwan
| | - Su-Yin Chiang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jaung-Geng Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan, People's Republic of China
| |
Collapse
|
15
|
Xu H, Zhao X, Liu X, Xu P, Zhang K, Lin X. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2735-44. [PMID: 26056434 PMCID: PMC4445699 DOI: 10.2147/dddt.s80902] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM) has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented.
Collapse
Affiliation(s)
- Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Keming Zhang
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Extraction characteristics and kinetic studies of oleanolic and ursolic acids from Hedyotis diffusa under ultrasound-assisted extraction conditions. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.04.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Dong Q, Ling B, Gao B, Maley J, Sammynaiken R, Yang J. Hedyotis diffusa Water Extract Diminished the Cytotoxic Effects of Chemotherapy Drugs against Human Breast Cancer MCF7 Cells. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hedyotis diffusa is a Chinese herbal medicine widely used in combination with other herbal medicines such as Scutellaria barbata to treat various types of cancer. Late-stage and recurrent cancer patients usually use H. diffusa during chemotherapy in expecting to achieve additive or synergistic therapeutic effects. Several classes of active ingredients, including anthraquinones, iridoid glucosides and stigmasterols, have been isolated and characterized from H. diffusa. In the current study, we isolated alkaloid/flavonoid from H. diffusa and showed that the crude alkaloid/flavonoid extract rather than its three major components possessed antitumor activity against human breast cancer cell line MCF7. Co-administration of H. diffusa water extract diminished the cytotoxicities of chemotherapy drugs doxorubicin, cyclophosphamide and docetaxel towards the MCF7 cells, implicating that H. diffusa should not be used during breast cancer chemotherapy.
Collapse
Affiliation(s)
- Qiulin Dong
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Binbing Ling
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Bosong Gao
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Jason Maley
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Ramaswami Sammynaiken
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
18
|
Chen XZ, Li JN, Zhang YQ, Cao ZY, Liu ZZ, Wang SQ, Liao LM, Du J. Fuzheng Qingjie recipe induces apoptosis in HepG2 cells via P38 MAPK activation and the mitochondria-dependent apoptotic pathway. Mol Med Rep 2014; 9:2381-7. [PMID: 24737008 DOI: 10.3892/mmr.2014.2138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
Abstract
Fuzheng Qingjie (FZQJ) recipe is a polyherbal Chinese medicine capable of suppressing tumor growth and is used as an adjuvant therapy for various types of cancer. However, its anticancer mechanisms are yet to be fully elucidated. In the present study, we explored whether p38 mitogen-activated protein kinase (MAPK) was involved in FZQJ-mediated mitochondria-dependent apoptosis in human hepatocellular carcinoma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to measure the viability of HepG2 cells. 4,6-Diamidino-2-phenylindole (DAPI) and Annexin-V fluorescein isothiocyanate (FITC) were used to analyze the apoptosis of HepG2 cells. The mitochondrial membrane potential (∆ψ) and phosphorylated P38 MAPK protein were examined by a flow cytometer following 5,5',6,6'-tetrachloro‑1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) and Alexa Fluor® 647 mouse anti-phosphorylated P38 MAPK antibody staining, respectively. The activation of caspase-9 and caspase-3 were measured using colorimetric assays. Additionally, Bcl-2 and Bax expression were examined using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis. The results demonstrated that water extract of FZQJ was able to induce apoptosis of HepG2 cells in vitro. FZQJ-induced apoptosis was accompanied by the loss of ∆ψ, downregulation of Bcl-2 and upregulation of Bax expression, and the activation of caspase-3, -9 and P38 MAPK. These results indicated that FZQJ induced apoptosis in HepG2 cells at least via P38 MAPK activation and the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Xu-Zheng Chen
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jin-Nong Li
- Department of Pharmacognosy, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - You-Quan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Zhi-Yun Cao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhi-Zhen Liu
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Su-Qing Wang
- Department of Pharmacy, Fuzhou University, Fuzhou, Fujian 350122, P.R. China
| | - Lian-Ming Liao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jian Du
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
19
|
JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide. Biochem Pharmacol 2013; 86:1747-61. [PMID: 24144632 DOI: 10.1016/j.bcp.2013.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Chemical derivatization of resveratrol has been widely conducted in an effort to overcome its chemical instability and therapeutic potential. In the present study, we examined the anti-inflammatory effects of resveratrol derivatives containing an amide functionality using in vitro macrophage models that were stimulated by Toll-like receptor (TLR) ligands, and using several animal inflammatory disease models. Of the resveratrol derivatives tested, compound 8 (2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide) most strongly inhibited the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2), as well as the mRNA expression of inducible NO synthase (iNOS), TNF-α, and cyclooxygenase (COX)-2 in lipopolysaccharide (LPS)-activated RAW264.7 cells, differentiated U937 cells, and peritoneal macrophages. The inhibitory activity of compound 8 was apparently mediated by suppressing the phosphorylation of signal transducer and activator of transcription (STAT)-1, STAT-3, STAT-5, and interferon regulatory factor (IRF)-3. The direct target of compound 8 was revealed to be Janus kinase 2 (JAK2) but not TANK-binding kinase (TBK) 1 using the direct kinase assay and analyses of complex formation with these molecules. Additionally, upstream kinase of TBK1 seems to be also inhibited by compound 8. This compound also strongly ameliorated mouse inflammatory symptoms seen in arachidonic acid-induced ear edema, dextran sodium sulfate (DSS)-treated colitis, EtOH/HCl-induced gastritis, collagen type II-triggered arthritis, and acetic acid-induced writhing. Therefore, of the resveratrol derivatives that we tested, compound 8 was determined to have the strongest anti-inflammatory activities in vitro and in vivo and may potentially be developed for use as a novel anti-inflammatory drug.
Collapse
|
20
|
Abstract
Lycorine is a kind of natural alkaloid extracted from Amaryllidaceae that has shown various pharmacological effects. Recent studies have focused on the potential antitumor activity of lycorine. The inhibition effects of lycorine on the cell proliferation of leukemia HL-60 cells, K562 cells, chronic lymphocytic leukemia, U937 cells and structure-activity studies on the lycorine pharmacophore in leukemia cells were summarized in the article. The review of pharmacological effects and structure-activity on leukemia of lycorine can provide a reference for the further development and utilization on the kind of natural products.
Collapse
|
21
|
WU QIULING, LV TINGTING, CHEN YAN, WEN LU, ZHANG JUNLI, JIANG XUDONG, LIU FANG. Apoptosis of HL-60 human leukemia cells induced by Asiatic acid through modulation of B-cell lymphoma 2 family proteins and the mitogen-activated protein kinase signaling pathway. Mol Med Rep 2012; 12:1429-34. [DOI: 10.3892/mmr.2015.3534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/20/2015] [Indexed: 11/06/2022] Open
|