1
|
Li X, Dong S, Pan Q, Liu N, Zhang Y. Antibiotic conjugates: Using molecular Trojan Horses to overcome drug resistance. Biomed Pharmacother 2025; 186:118007. [PMID: 40268370 DOI: 10.1016/j.biopha.2025.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 04/25/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis due to the rapid emergence of multi-drug-resistant bacteria. The paucity of novel antibiotics in the clinical pipeline has exacerbated this issue, thereby warranting the development of new antibacterial therapies. The 'Trojan Horse' strategy entails conjugating antibiotics with bioactive components that not only facilitate the entry of antibiotic molecules into bacterial cells by circumventing the membrane barriers, but also augment the effects of conventional antibiotics against recalcitrant pathogens. These Trojan Horse elements can also serve as a promising tool for repurposing drugs with hitherto unexamined antimicrobial activity, or drugs with limited clinical utility due to considerable toxic side effects. In this review, we have discussed the current state of research on antibiotic conjugates with monoclonal antibodies (mAbs), antimicrobial peptides (AMPs) and the iron-chelating siderophores. The rationale and mechanisms of different antibiotic conjugates have been summarized, and the preclinical and clinical evidence pertaining to the activity of these conjugates against drug-resistant pathogens have been reviewed. Furthermore, the challenges associated with the clinical translation of these novel antimicrobials, and the future research directions have also been discussed. While antibiotic conjugates offer an attractive alternative to conventional antimicrobials, there are several obstacles to their clinical translation. A greater understanding of the mechanisms underlying AMR, and continuing advances in genetic engineering, synthetic biology, and bioinformatics will be crucial in designing more selective, potent, and safe antibiotic conjugates for tackling multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyuan Dong
- Department of Thoracic surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China
| | - Ning Liu
- Department of Rehabilitation, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Cao J, Zhou W, Yu Q, Ji J, Zhang J, He S, Zhu Z. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning. IEEE J Biomed Health Inform 2025; 29:1714-1725. [PMID: 38147420 DOI: 10.1109/jbhi.2023.3347138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Anticancer peptides (ACPs) have emerged as one of the most promising therapeutic agents for cancer treatment. They are bioactive peptides featuring broad-spectrum activity and low drug-resistance. The discovery of ACPs via traditional biochemical methods is laborious and costly. Accordingly, various computational methods have been developed to facilitate the discovery of ACPs. However, the data resources and knowledge of ACPs are still very scarce, and only a few of them are clinically verified, which limits the competence of computational methods. To address this issue, in this article, we propose an ACP prediction model based on multi-domain transfer learning, namely MDTL-ACP, to discriminate novel ACPs from plentiful inactive peptides. In particular, we collect abundant antimicrobial peptides (AMPs) from four well-studied peptide domains and extract their inherent features as the input of MDTL-ACP. The features learned from multiple source domains of AMPs are then transferred into the target prediction task of ACPs via artificial neural network-based shared-extractor and task-specific classifiers in MDTL-ACP. The knowledge captured in the transferred features enhances the prediction of ACPs in the target domain. Experimental results demonstrate that MDTL-ACP can outperform the traditional and state-of-the-art ACP prediction methods.
Collapse
|
3
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Fazry S, Najm AA, Mahdi IM, Ang A, Lee L, Loh CT, Syed Alwi SS, Li F, Law D. In silico directed evolution of Anabas testudineus AtMP1 antimicrobial peptide to improve in vitro anticancer activity. PeerJ 2024; 12:e17894. [PMID: 39346049 PMCID: PMC11439379 DOI: 10.7717/peerj.17894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024] Open
Abstract
Various studies have demonstrated that directed evolution is a powerful tool in enhancing protein properties. In this study, directed evolution was used to enhance the efficacy of synthesised Anabas testudineus AtMP1 antimicrobial peptides (AMPs) in inhibiting the proliferation of cancer cells. The modification of antimicrobial peptides (AMPs) and prediction of peptide properties using bioinformatic tools were carried out using four databases, including ADP3, CAMP-R3, AMPfun, and ANTICP. One modified antimicrobial peptide (AMP), ATMP6 (THPPTTTTTTTTTTTTTAAPARTT), was chosen based on its projected potent anticancer effect, taking into account factors such as amino acid length, net charge, anticancer activity score, and hydrophobicity. The selected AMPs were subjected to study in deep-learning databases, namely ToxIBTL and ToxinPred2, to predict their toxicity. Furthermore, the allergic properties of these antimicrobial peptides (AMPs) were verified by utilising AllerTOP and AllergenFP. Based on the results obtained from the database study, it was projected that antimicrobial peptides (AMPs) demonstrate a lack of toxicity towards human cells that is indicative of the broader population. After 48 hours of incubation, the IC50 values of ATMP6 against the HS27 and MDA-MB-231 cell lines were found to be 48.03 ± 0.013 µg/ml and 7.52 ± 0.027 µg/ml, respectively. The IC50 values of the original peptide ATMP1 against the MDA-MB-231 and HS27 cell lines were determined to be 59.6 ± 0.14 µg/ml and 8.25 ± 0.14 µg/ml, respectively, when compared. Furthermore, the results indicated that the injection of ATMP6 induced apoptosis in the MDA-MB-231 cell lines. The present investigation has revealed new opportunities for advancing novel targeted peptide therapeutics to tackle cancer.
Collapse
Affiliation(s)
- Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ahmed Abdulkareem Najm
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ibrahim Mahmood Mahdi
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
- Dentistry Department, Al-Rafidain University College, Baghad, Iraq
| | - Arnold Ang
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - LiTing Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Choy-Theng Loh
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
- Hangzhou Foreseebio Biotechnology Co., Ltd, Hangzhou, China
| | | | - Fang Li
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Douglas Law
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
5
|
Furukawa N, Yang W, Chao AR, Patil A, Mirando AC, Pandey NB, Popel AS. Chemokine-derived oncolytic peptide induces immunogenic cancer cell death and significantly suppresses tumor growth. Cell Death Discov 2024; 10:161. [PMID: 38565596 PMCID: PMC10987543 DOI: 10.1038/s41420-024-01932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Chemokinostatin-1 (CKS1) is a 24-mer peptide originally discovered as an anti-angiogenic peptide derived from the CXCL1 chemokine. Here, we demonstrate that CKS1 acts not only as an anti-angiogenic peptide but also as an oncolytic peptide due to its structural and physical properties. CKS1 induced both necrotic and apoptotic cell death specifically in cancer cells while showing minimal toxicity in non-cancerous cells. Mechanistically, CKS1 disrupted the cell membrane of cancer cells quickly after treatment and activated the apoptotic pathway at later time points. Furthermore, immunogenic molecules were released from CKS1-treated cells, indicating that CKS1 induces immunogenic cell death. CKS1 effectively suppressed tumor growth in vivo. Collectively, these data demonstrate that CKS1 functions as an oncolytic peptide and has a therapeutic potential to treat cancer.
Collapse
Affiliation(s)
- Natsuki Furukawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Wendy Yang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex R Chao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akash Patil
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Bermúdez-Puga S, Dias M, Freire de Oliveira T, Mendonça CMN, Yokomizo de Almeida SR, Rozas EE, do Nascimento CAO, Mendes MA, Oliveira De Souza de Azevedo P, Almeida JR, Proaño-Bolaños C, Oliveira RPDS. Dual antibacterial mechanism of [K4K15]CZS-1 against Salmonella Typhimurium: a membrane active and intracellular-targeting antimicrobial peptide. Front Microbiol 2023; 14:1320154. [PMID: 38156004 PMCID: PMC10752938 DOI: 10.3389/fmicb.2023.1320154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Salmonella genus is a leading cause of food-borne infections with strong public health impact and economic ramifications. The development of antimicrobial resistance added complexity to this scenario and turned the antibiotic drug discovery into a highly important challenge. The screening of peptides has served as a successful discovery platform to design new antibiotic candidates. Motivated by this, the antimicrobial and cytotoxic properties of three cruzioseptins against Salmonella Typhimurium and RAW 264.7 murine macrophage cells, respectively, were investigated. [K4K15]CZS-1 was the most potent antimicrobial peptide identified in the screening step with a minimum inhibitory concentration (MIC) of 16 μg/mL (7.26 μM) and moderate cytotoxicity. From a structural point of view, in vitro and in silico techniques evidenced that [K4K15]CZS-1 is a α-helical cationic antimicrobial peptide. In order to capture mechanistic details and fully decipher their antibacterial action, we adopted a multidimensional approach, including spectroscopy, electron microscopy and omics analysis. In general lines, [K4K15]CZS-1 caused membrane damage, intracellular alterations in Salmonella and modulated metabolic pathways, such as the tricarboxylic acid (TCA) cycle, fatty acid biosynthesis, and lipid metabolism. Overall, these findings provide deeper insights into the antibacterial properties and multidimensional mode of action of [K4K15]CZS-1 against Salmonella Typhimurium. In summary, this study represents a first step toward the screening of membrane-acting and intracellular-targeting peptides as potential bio-preservatives to prevent foodborne outbreaks caused by Salmonella.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Meriellen Dias
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taciana Freire de Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Enrique Eduardo Rozas
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
7
|
Kordzadeh A, Ramazani Sa A, Mashayekhan S. Adsorption and encapsulation of melittin on covalently functionalized carbon nanotubes; a molecular dynamics simulation study. Comput Biol Med 2023; 166:107393. [PMID: 37741226 DOI: 10.1016/j.compbiomed.2023.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
For the first time, molecular dynamics (MD) simulation was used to examine melittin's adsorption and encapsulation on covalently functionalized carbon nanotubes (fCNTs). The CNT wall and terminals were functionalized with carboxy, hydroxyl, and amine functional groups. The findings demonstrated that the melittin would be adsorbed on the fCNT's outer surface when just the CNT terminal is functionalized. On the other hand, melittin is encapsulated inside the nanotube space when the CNTs' walls and terminals are functionalized. Encapsulated melittin has an alpha-helix structure similar to melittin in a water medium. With the use of parameters like root mean square fluctuations (RMSF) and radius of gyration (Rg), the melittin conformational changes were evaluated. According to the findings, the amine functional group significantly alters the melittin's conformation. The wall and terminals fCNTs with hydroxyl and carboxyl could encapsulate melittin inside them with a stable structure. This result will be useful for the design of peptide carriers.
Collapse
Affiliation(s)
- Azadeh Kordzadeh
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Ahmad Ramazani Sa
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran; Institute for Convergence Science & Technology, Center for Bioscience & Technology, Sharif University of Technology, Tehran, 1458889694, Iran.
| | - Shohreh Mashayekhan
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Furukawa N, Yang W, Chao A, Patil A, Mirando A, Pandey N, Popel A. Chemokine-derived oncolytic peptide induces immunogenic cancer cell death and significantly suppresses tumor growth. RESEARCH SQUARE 2023:rs.3.rs-3335225. [PMID: 37886580 PMCID: PMC10602061 DOI: 10.21203/rs.3.rs-3335225/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chemokinostatin-1 (CKS1) is a 24-mer peptide originally discovered as an anti-angiogenic peptide derived from the CXCL1 chemokine. Here, we demonstrate that CKS1 acts not only as an anti-angiogenic peptide but also as an oncolytic peptide due to its structural and physical properties. CKS1 induced both necrotic and apoptotic cell death specifically in cancer cells while showing minimal toxicity in non-cancerous cells. Mechanistically, CKS1 disrupted the cell membrane of cancer cells quickly after treatment and activated the apoptotic pathway at later time points. Furthermore, immunogenic molecules were released from CKS1 treated cells, indicating that CKS1 induces immunogenic cell death. CKS1 effectively suppressed tumor growth in vivo. Collectively, these data demonstrate that CKS1 is a unique peptide that functions both as an anti-angiogenic peptide and as an oncolytic peptide and has a therapeutic potential to treat cancer.
Collapse
Affiliation(s)
| | - Wendy Yang
- Johns Hopkins University School of Medicine
| | - Alex Chao
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
9
|
Chen Q, Wu J, Li X, Ye Z, Yang H, Mu L. Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects. Int J Mol Sci 2023; 24:13985. [PMID: 37762285 PMCID: PMC10530844 DOI: 10.3390/ijms241813985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that seriously threaten human life. Traditional anticancer therapies have achieved remarkable efficacy but have also some unavoidable side effects. Therefore, more and more research focuses on highly effective and less-toxic anticancer substances of natural origin. Amphibian skin is rich in active substances such as biogenic amines, alkaloids, alcohols, esters, peptides, and proteins, which play a role in various aspects such as anti-inflammatory, immunomodulatory, and anticancer functions, and are one of the critical sources of anticancer substances. Currently, a range of natural anticancer substances are known from various amphibians. This paper aims to review the physicochemical properties, anticancer mechanisms, and potential applications of these peptides and proteins to advance the identification and therapeutic use of natural anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Yang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lixian Mu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
10
|
Law D, Abdulkareem Najm A, Chong JX, K’ng JZY, Amran M, Ching HL, Wong RR, Leong MH, Mahdi IM, Fazry S. In silico identification and in vitro assessment of a potential anti-breast cancer activity of antimicrobial peptide retrieved from the ATMP1 Anabas testudineus fish peptide. PeerJ 2023; 11:e15651. [PMID: 37483971 PMCID: PMC10362845 DOI: 10.7717/peerj.15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
A previous study has shown that synthetic antimicrobial peptides (AMPs) derived from Anabas testudineus (ATMP1) could in-vitro inhibit the progression of breast cancer cell lines. In this study, we are interested in studying altered versions of previous synthetic AMPs to gain some insight into the peptides functions. The AMPs were altered and subjected to bioinformatics prediction using four databases (ADP3, CAMP-R3, AMPfun, and ANTICP) to select the highest anticancer activity. The bioinformatics in silico analysis led to the selection of two AMPs, which are ATMP5 (THPPTTTTTTTTTTTYTAAPATTT) and ATMP6 (THPPTTTTTTTTTTTTTAAPARTT). The in silico analysis predicted that ATMP5 and ATMP6 have anticancer activity and lead to cell death. The ATMP5 and ATMP6 were submitted to deep learning databases (ToxIBTL and ToxinPred2) to predict the toxicity of the peptides and to (AllerTOP & AllergenFP) check the allergenicity. The results of databases indicated that AMPs are non-toxic to normal human cells and allergic to human immunoglobulin. The bioinformatics findings led to select the highest active peptide ATMP5, which was synthesised and applied for in-vitro experiments using cytotoxicity assay MTT Assay, apoptosis detection using the Annexin V FTIC-A assay, and gene expression using Apoptosis PCR Array to evaluate the AMP's anticancer activity. The antimicrobial activity is approved by the disc diffusion method. The in-vitro experiments analysis showed that ATMP5 had the activity to inhibit the growth of the breast cancer cell line (MDA-MB-231) after 48 h and managed to arrest the cell cycle of the MDA-MB-231, apoptosis induction, and overexpression of the p53 by interaction with the related apoptotic genes. This research opened up new opportunities for developing potential and selective anticancer agents relying on antimicrobial peptide properties.
Collapse
Affiliation(s)
- Douglas Law
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Ahmed Abdulkareem Najm
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Jia Xuan Chong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Joelene Zi Ying K’ng
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Mas Amran
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Huey Lih Ching
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Rui Rui Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - May Ho Leong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Ibrahim Mahmood Mahdi
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Molecular Diagnostic Department, Karl Kolb GmBH & Co, KG, Dreieich, Germany
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Yang XF, Liu X, Yan XY, Shang DJ. Effects of frog skin peptide temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells. Front Pharmacol 2023; 14:1139532. [PMID: 37021059 PMCID: PMC10067733 DOI: 10.3389/fphar.2023.1139532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose: Atherosclerosis is one of the most important pathological foundations of cardiovascular and cerebrovascular diseases with high morbidity and mortality. Studies have shown that macrophages play important roles in lipid accumulation in the vascular wall and thrombosis formation in atherosclerotic plaques. This study aimed to explore the effect of frog skin antimicrobial peptides (AMPs) temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells.Methods: CCK-8, ORO staining, and intracellular cholesterol measurements were used to study cellular activity, lipid droplet formation and cholesterol levels, respectively. ELISA, real-time quantitative PCR, Western blotting and flow cytometry analysis were used to study the expression of inflammatory factors, mRNA and proteins associated with ox-LDL uptake and cholesterol efflux in macrophage-derived foam cells, respectively. Furthermore, the effects of AMPs on inflammation signaling pathways were studied.Results: Frog skin AMPs could significantly increase the cell viability of the ox-LDL-induced foaming macrophages and decrease the formation of intracellular lipid droplets and the levels of total cholesterol and cholesterol ester (CE). Frog skin AMPs inhibited foaming formation by reducing the protein expression of CD36, which regulates ox-LDL uptake but had no effect on the expression of efflux proteins ATP binding cassette subfamily A/G member 1 (ABCA1/ABCG1). Then, decreased mRNA expression of NF-κB and protein expression of p-NF-κB p65, p-IκB, p-JNK, p-ERK, p-p38 and the release of TNF-α and IL-6 occurred after exposure to the three frog skin AMPs.Conclusion: Frog skin peptide temporin-1CEa and its analogs can improve the ox-LDL induced formation of macrophage-derived foam cells, in addition, inhibit inflammatory cytokine release through inhibiting the NF-κB and MAPK signaling pathways, thereby inhibiting inflammatory responses in atherosclerosis.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- School of Basic Medical Sciences, Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Liu
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xiao-Yi Yan
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- *Correspondence: De-Jing Shang,
| |
Collapse
|
12
|
Temporins: Multifunctional Peptides from Frog Skin. Int J Mol Sci 2023; 24:ijms24065426. [PMID: 36982501 PMCID: PMC10049141 DOI: 10.3390/ijms24065426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Temporins are short peptides secreted by frogs from all over the world. They exert antimicrobial activity, mainly against Gram-positive bacteria, including resistant pathogens; recent studies highlight other possible applications of these peptides as anticancer or antiviral agents. This review is meant to describe the main features of temporins produced by different ranid genera. Due to the abundance of published papers, we focus on the most widely investigated peptides. We report studies on their mechanism of action and three-dimensional structure in model systems mimicking bacterial membranes or in the presence of cells. The design and the antimicrobial activity of peptide analogues is also described, with the aim of highlighting elements that are crucial to improve the bioactivity of peptides while reducing their toxicity. Finally, a short section is dedicated to the studies aimed at applying these peptides as drugs, to produce new antimicrobial materials or in other technological uses.
Collapse
|
13
|
Development of sulfonium tethered peptides conjugated with HDAC inhibitor to improve selective toxicity for cancer cells. Bioorg Med Chem 2023; 83:117213. [PMID: 36934526 DOI: 10.1016/j.bmc.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The anti-cancer peptides emerged as new weapons for cancer therapy due to their potent toxicity toward various cancer cells. However, their therapeutic promise is often limited by non-specific toxicity to normal cells. How to improve peptides' selectivity to cancer cells is always a matter to solve. In this manuscript, we designed a sulfonium tethered lytic peptide conjugated with a HDAC inhibitor to improve the selectivity of cancer cells. The sulfonium tethered lytic peptide with improved hydrophilicity and positive charge showed reduced toxicity to both cancer cells and normal cells. When conjugated with the HDAC inhibitor, this peptide showed increased toxicity to cancer cells. Besides, the stabilized peptide HDAC conjugate showed better serum stability than the linear peptide conjugate. For cellular function, the stabilized peptide conjugate could induce cancer cell apoptosis, cell cycle arrest, and influence multiple signal pathways through transcriptome analysis. This design may provide an alternative approach for the development of safe and effective anti-cancer drugs.
Collapse
|
14
|
Tripathi AK, Vishwanatha JK. Role of Anti-Cancer Peptides as Immunomodulatory Agents: Potential and Design Strategy. Pharmaceutics 2022; 14:pharmaceutics14122686. [PMID: 36559179 PMCID: PMC9781574 DOI: 10.3390/pharmaceutics14122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The usage of peptide-based drugs to combat cancer is gaining significance in the pharmaceutical industry. The collateral damage caused to normal cells due to the use of chemotherapy, radiotherapy, etc. has given an impetus to the search for alternative methods of cancer treatment. For a long time, antimicrobial peptides (AMPs) have been shown to display anticancer activity. However, the immunomodulatory activity of anti-cancer peptides has not been researched very extensively. The interconnection of cancer and immune responses is well-known. Hence, a search and design of molecules that can show anti-cancer and immunomodulatory activity can be lead molecules in this field. A large number of anti-cancer peptides show good immunomodulatory activity by inhibiting the pro-inflammatory responses that assist cancer progression. Here, we thoroughly review both the naturally occurring and synthetic anti-cancer peptides that are reported to possess both anti-cancer and immunomodulatory activity. We also assess the structural and biophysical parameters that can be utilized to improve the activity. Both activities are mostly reported by different groups, however, we discuss them together to highlight their interconnection, which can be used in the future to design peptide drugs in the field of cancer therapeutics.
Collapse
|
15
|
Pan F, Li Y, Ding Y, Lv S, You R, Hadianamrei R, Tomeh MA, Zhao X. Anticancer effect of rationally designed α-helical amphiphilic peptides. Colloids Surf B Biointerfaces 2022; 220:112841. [PMID: 36174494 DOI: 10.1016/j.colsurfb.2022.112841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Anticancer peptides (ACPs) have attracted increasing attention in cancer therapy due to their unique mechanism of action on cancer cells. The main challenge is to establish the correlation between their physicochemical properties and their selectivity and anticancer effect, leading to a clear design strategy. In this study, a series of new α-helical short peptides (coded At1-At12) with different anticancer activities were systematically designed with different amphiphilicity based on a natural α-helical antimicrobial peptide (AMP) derived from ant. Three of the designed peptides, At7, At10 and At11, showed considerable anticancer activity with low toxicity to normal skin fibroblasts. The high selectivity of the peptides is attributed to their balanced amphiphilicity and cationic nature which favours binding to the outer membrane of negatively charged cancer cells over the neutral membrane of normal mammalian cells. In addition to rapid membrane penetration, the designed peptides also damaged the mitochondria and induced mitochondrial membrane depolarization. Moreover, these peptides were found to induce apoptosis in cancer cells by up-regulating the expression of apoptotic proteins Bax and Caspase-3, down-regulating the apoptotic protein Bcl-2, and activating the Caspase enzyme-linked reaction. The results of this study reveal the potential of these peptides for clinical applications, and provide a guidance for further development of highly selective anticancer medications.
Collapse
Affiliation(s)
- Fang Pan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yueping Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yujie Ding
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
16
|
The Role of a Natural Amphibian Skin-Based Peptide, Ranatensin, in Pancreatic Cancers Expressing Dopamine D2 Receptors. Cancers (Basel) 2022; 14:cancers14225535. [PMID: 36428628 PMCID: PMC9688159 DOI: 10.3390/cancers14225535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Despite the progress in early diagnostic and available treatments, pancreatic cancer remains one of the deadliest cancers. Therefore, there is an urgent need for novel anticancer agents with a good safety profile, particularly in terms of possible side-effects. Recently dopaminergic receptors have been widely studied as they were proven to play an important role in cancer progression. Although various synthetic compounds are known for their interactions with the dopaminergic system, peptides have recently made a great comeback. This is because peptides are relatively safe, easy to correct in terms of the improvement of their physicochemical and biological properties, and easy to predict. This paper aims to evaluate the anticancer activity of a naturally existing peptide-ranatensin, toward three different pancreatic cancer cell lines. Additionally, since there is no sufficient information confirming the exact character of the interaction between ranatensin and dopaminergic receptors, we provide, for the first time, binding properties of the compound to such receptors.
Collapse
|
17
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
18
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
19
|
Kara Ş, Kürekci C, Akcan M. Design and modification of frog skin peptide brevinin-1GHa with enhanced antimicrobial activity on Gram-positive bacterial strains. Amino Acids 2022; 54:1327-1336. [DOI: 10.1007/s00726-022-03189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
|
20
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
21
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Guo F, Zhang Y, Dong W, Guan Y, Shang D. Effect of hydrophobicity on distinct anticancer mechanism of antimicrobial peptide chensinin-1b and its lipoanalog PA-C1b in breast cancer cells. Int J Biochem Cell Biol 2022; 143:106156. [PMID: 34999227 DOI: 10.1016/j.biocel.2022.106156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
Chensinin-1b and its lipoanalogs demonstrate different anticancer activities against selected cancer cells, and the anticancer activity of PA-C1b is improved up to 3-fold compared with that of the parent peptide chensinin-1b. However, detailing the mechanism of action of these peptides is required to better understand the structure-function relationship. In this study, chensinin-1b and PA-C1b were selected as the representative peptides to investigate the mode of action in cancer cells. The results indicated that the boundary of the cell membrane was broken when the cells were treated with chensinin-1b, while that of cells treated with PA-C1b remained intact based on morphological changes. Apoptosis assays indicated that PA-C1b induced MCF-7 cancer cell apoptosis, while chensinin-1b mainly damaged the cell membrane. MCF-7 cancer cells treated with the peptides induced the loss of mitochondrial membrane potential, and cytochrome c was released from mitochondria, but PA-C1b enhanced ROS generation. Additionally, PA-C1b uptake occurred via an energy-dependent pathway and was inhibited by selected endocytosis inhibitors. Furthermore, treatment of MCF-7 cells with PA-C1b suppressed Bcl-2 mRNA levels and increased Bax mRNA levels, upregulated the expression of the proapoptotic protein Bax and downregulated the expression of the antiapoptotic protein Bcl-2. These results indicate that the anticancer mechanism of AMPs may be considerably affected by only a slight difference in the hydrophobicity of the two peptides; and such a study may facilitate the design of novel peptide-based anticancer agents.
Collapse
Affiliation(s)
- Feilu Guo
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yao Zhang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Yue Guan
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
23
|
Manrique-Moreno M, Santa-González G, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021; 41:BSR20211218C. [PMID: 34874400 PMCID: PMC8655503 DOI: 10.1042/bsr20211218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer continues to affect millions of women worldwide, and the number of new cases dramatically increases every year. The physiological causes behind the disease are still not fully understood. One in every 100 cases can occur in men, and although the frequency is lower than among women, men tend to have a worse prognosis of the disease. Various therapeutic alternatives to combat the disease are available. These depend on the type and progress of the disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, there are several well-reported side effects of these treatments that have a significant impact on life quality, and patients either relapse or are refractory to treatment. This makes it necessary to develop new therapeutic strategies. One promising initiative are bioactive peptides, which have emerged in recent years as a family of compounds with an enormous number of clinical applications due to their broad spectrum of activity. They are widely distributed in several organisms as part of their immune system. The antitumoral activity of these peptides lies in a nonspecific mechanism of action associated with their interaction with cancer cell membranes, inducing, through several routes, bilayer destabilization and cell death. This review provides an overview of the literature on the evaluation of cationic peptides as potential agents against breast cancer under different study phases. First, physicochemical characteristics such as the primary structure and charge are presented. Secondly, information about dosage, the experimental model used, and the mechanism of action proposed for the peptides are discussed.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| | - Gloria A. Santa-González
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnólogico Metropolitano, A.A. 54959, Medellin, Colombia
| | - Vanessa Gallego
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| |
Collapse
|
24
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacol Res 2021; 171:105777. [PMID: 34298112 DOI: 10.1016/j.phrs.2021.105777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
Breast cancer is the most common and deadliest cancer in women worldwide. Although notable advances have been achieved in the treatment of breast cancer, the overall survival rate of metastatic breast cancer patients is still considerably low due to the development of resistance to breast cancer chemotherapeutic agents and the non-optimal specificity of the current generation of cancer medications. Hence, there is a growing interest in the search for alternative therapeutics with novel anticancer mechanisms. Recently, antimicrobial peptides (AMPs) have gained much attention due to their cost-effectiveness, high specificity of action, and robust efficacy. However, there are no clinical data available about their efficacy. This warrants the increasing need for clinical trials to be conducted to assess the efficacy of this new class of drugs. Here, we will focus on the recent progress in the use of AMPs for breast cancer therapy and will highlight their modes of action. Finally, we will discuss the combination of AMP-based therapeutics with other breast cancer therapy strategies, including nanotherapy and chemotherapy, which may provide a potential avenue for overcoming drug resistance.
Collapse
|
26
|
Kardani K, Bolhassani A. Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents. Immunotherapy 2021; 13:669-684. [PMID: 33878901 DOI: 10.2217/imt-2020-0312] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been known as host-defense peptides. These cationic and amphipathic peptides are relatively short (∼5-50 L-amino acids) with molecular weight less than 10 kDa. AMPs have various roles including immunomodulatory, angiogenic and antitumor activities. Anticancer peptides (ACPs) are a main subset of AMPs as a novel therapeutic approach against tumor cells. The physicochemical properties of the ACPs influence their cell penetration, stability and efficiency of targeting. Up to now, several databases and web servers for in silico prediction of AMPs/ACPs have been established prior to the lab analysis. The present review focuses on the recent advancement about AMPs/ACPs activities including their in silico prediction by computational tools and their potential applications as therapeutic agents especially in cancer.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
27
|
Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci Rep 2021; 11:3017. [PMID: 33542286 PMCID: PMC7862624 DOI: 10.1038/s41598-021-82513-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Centre of Theoretical and Computational Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
28
|
Antimicrobial peptide temporin-1CEa isolated from frog skin secretions inhibits the proinflammatory response in lipopolysaccharide-stimulated RAW264.7 murine macrophages through the MyD88-dependent signaling pathway. Mol Immunol 2021; 132:227-235. [PMID: 33494936 DOI: 10.1016/j.molimm.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Temporin-1CEa, which is isolated from the skin secretions of the Chinese brown frog Rana chensinensis, exhibits broad-spectrum antimicrobial activity against gram-positive and gram-negative bacteria and antitumor activity. LK2(6) and LK2(6)A(L) are the analogs of temporin-1CEa obtained by replacing amino acids and displayed an improved anticancer activity. In the present study, the anti-inflammatory activity and mechanism of action of temporin-1CEa and its analogs LK2(6) and LK2(6)A(L) in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages were investigated. The results showed that temporin-1CEa and its analogs decreased the production of the cytokines tumor necrosis factor-α and interleukin-6 by inhibiting the protein expression of nuclear factor-κB and mitogen-activated protein kinase and the MyD88-dependent signaling pathway. Isothermal titration calorimetry studies revealed that temporin-1CEa, LK2(6) and LK2(6)A(L) exhibited binding affinities to LPS, an important inflammatory inducer, with Kd values of 0.1, 0.03 and 0.06 μM, respectively. Circular dichroism and zeta potential experiments showed that temporin-1CEa and its analogs interacted with LPS by electrostatic binding between the positively charged peptides and negatively charged LPS, resulting in the neutralization of LPS toxicity.
Collapse
|
29
|
Robles-Fort A, García-Robles I, Fernando W, Hoskin DW, Rausell C, Real MD. Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin. Microorganisms 2021; 9:222. [PMID: 33499187 PMCID: PMC7912591 DOI: 10.3390/microorganisms9020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) found in the innate immune system of a wide range of organisms might prove useful to fight infections, due to the reported slower development of resistance to AMPs. Increasing the cationicity and keeping moderate hydrophobicity of the AMPs have been described to improve antimicrobial activity. We previously found a peptide derived from the Tribolium castaneum insect defensin 3, exhibiting antrimicrobial activity against several human pathogens. Here, we analyzed the effect against Staphyloccocus aureus of an extended peptide (TcPaSK) containing two additional amino acids, lysine and asparagine, flanking the former peptide fragment in the original insect defensin 3 protein. TcPaSK peptide displayed higher antimicrobial activity against S. aureus, and additionally showed antiproliferative activity against the MDA-MB-231 triple negative breast cancer cell line. A SWATH proteomic analysis revealed the downregulation of proteins involved in cell growth and tumor progression upon TcPaSK cell treatment. The dual role of TcPaSK peptide as antimicrobial and antiproliferative agent makes it a versatile molecule that warrants exploration for its use in novel therapeutic developments as an alternative approach to overcome bacterial antibiotic resistance and to increase the efficacy of conventional cancer treatments.
Collapse
Affiliation(s)
- Aida Robles-Fort
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - María Dolores Real
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| |
Collapse
|
30
|
Li H, Yao Q, Pu Z, Chung J, Ge H, Shi C, Xu N, Xu F, Sun W, Du J, Fan J, Wang J, Yoon J, Peng X. Hypoxia-activatable nano-prodrug for fluorescently tracking drug release in mice. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9880-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Houshdar Tehrani MH, Gholibeikian M, Bamoniri A, Mirjalili BBF. Cancer Treatment by Caryophyllaceae-Type Cyclopeptides. Front Endocrinol (Lausanne) 2021; 11:600856. [PMID: 33519710 PMCID: PMC7841296 DOI: 10.3389/fendo.2020.600856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the leading diseases, which, in the most cases, ends with death and, thus, continues to be a major concern in human beings worldwide. The conventional anticancer agents used in the clinic often face resistance among many cancer diseases. Moreover, heavy financial costs preclude patients from continuing treatment. Bioactive peptides, active in several diverse areas against man's health problems, such as infection, pain, hypertension, and so on, show the potential to be effective in cancer treatment and may offer promise as better candidates for combating cancer. Cyclopeptides, of natural or synthetic origin, have several advantages over other drug molecules with low toxicity and low immunogenicity, and they are easily amenable to several changes in their sequences. Given their many demanded homologues, they have created new hope of discovering better compounds with desired properties in the field of challenging cancer diseases. Caryophyllaceae-type cyclopeptides show several biological activities, including cancer cytotoxicity. These cyclopeptides have been discovered in several plant families but mainly are from the Caryophyllaceae family. In this review, a summary of biological activities found for these cyclopeptides is given; the focus is on the anticancer findings of these peptides. Among these cyclopeptides, information about Dianthins (including Longicalycinin A), isolated from different species of Caryophyllaceae, as well as their synthetic analogues is detailed. Finally, by comparing their structures and cytotoxic activities, finding the common figures of these kinds of cyclopeptides as well as their possible future place in the clinic for cancer treatment is put forward.
Collapse
Affiliation(s)
| | | | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | |
Collapse
|
32
|
Ng CX, Lee SH. The Potential Use of Anticancer Peptides (ACPs) in the Treatment of Hepatocellular Carcinoma. Curr Cancer Drug Targets 2020; 20:187-196. [PMID: 31713495 DOI: 10.2174/1568009619666191111141032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
Peptides have acquired increasing interest as promising therapeutics, particularly as anticancer alternatives during recent years. They have been reported to demonstrate incredible anticancer potentials due to their low manufacturing cost, ease of synthesis and great specificity and selectivity. Hepatocellular carcinoma (HCC) is among the leading cause of cancer death globally, and the effectiveness of current liver treatment has turned out to be a critical issue in treating the disease efficiently. Hence, new interventions are being explored for the treatment of hepatocellular carcinoma. Anticancer peptides (ACPs) were first identified as part of the innate immune system of living organisms, demonstrating promising activity against infectious diseases. Differentiated beyond the traditional effort on endogenous human peptides, the discovery of peptide drugs has evolved to rely more on isolation from other natural sources or through the medicinal chemistry approach. Up to the present time, the pharmaceutical industry intends to conduct more clinical trials for the development of peptides as alternative therapy since peptides possess numerous advantages such as high selectivity and efficacy against cancers over normal tissues, as well as a broad spectrum of anticancer activity. In this review, we present an overview of the literature concerning peptide's physicochemical properties and describe the contemporary status of several anticancer peptides currently engaged in clinical trials for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
33
|
Liscano Y, Oñate-Garzón J, Delgado JP. Peptides with Dual Antimicrobial-Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules 2020; 25:E4245. [PMID: 32947811 PMCID: PMC7570524 DOI: 10.3390/molecules25184245] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Peptides are naturally produced by all organisms and exhibit a wide range of physiological, immunomodulatory, and wound healing functions. Furthermore, they can provide with protection against microorganisms and tumor cells. Their multifaceted performance, high selectivity, and reduced toxicity have positioned them as effective therapeutic agents, representing a positive economic impact for pharmaceutical companies. Currently, efforts have been made to invest in the development of new peptides with antimicrobial and anticancer properties, but the poor stability of these molecules in physiological environments has triggered a bottleneck. Therefore, some tools, such as nanotechnology and in silico approaches can be applied as alternatives to try to overcome these obstacles. In silico studies provide a priori knowledge that can lead to the development of new anticancer peptides with enhanced biological activity and improved stability. This review focuses on the current status of research in peptides with dual antimicrobial-anticancer activity, including advances in computational biology using in silico analyses as a powerful tool for the study and rational design of these types of peptides.
Collapse
Affiliation(s)
- Yamil Liscano
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, 760035 Cali, Colombia;
- Research Group of Genetics, Regeneration and Cancer, Institute of Biology, Universidad de Antioquia, 050010 Medellin, Colombia;
| | - Jose Oñate-Garzón
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, 760035 Cali, Colombia;
| | - Jean Paul Delgado
- Research Group of Genetics, Regeneration and Cancer, Institute of Biology, Universidad de Antioquia, 050010 Medellin, Colombia;
| |
Collapse
|
34
|
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020; 57:678-696. [PMID: 32705178 PMCID: PMC7384845 DOI: 10.3892/ijo.2020.5099] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is currently ineffectively treated using therapeutic drugs, and is also able to resist drug action, resulting in increased side effects following drug treatment. A novel therapeutic strategy against cancer cells is the use of anticancer peptides (ACPs). The physicochemical properties, amino acid composition and the addition of chemical groups on the ACP sequence influences their conformation, net charge and orientation of the secondary structure, leading to an effect on targeting specificity and ACP-cell interaction, as well as peptide penetrating capability, stability and efficacy. ACPs have been developed from both naturally occurring and modified peptides by substituting neutral or anionic amino acid residues with cationic amino acid residues, or by adding a chemical group. The modified peptides lead to an increase in the effectiveness of cancer therapy. Due to this effectiveness, ACPs have recently been improved to form drugs and vaccines, which have sequentially been evaluated in various phases of clinical trials. The development of the ACPs remains focused on generating newly modified ACPs for clinical application in order to decrease the incidence of new cancer cases and decrease the mortality rate. The present review could further facilitate the design of ACPs and increase efficacious ACP therapy in the near future.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
35
|
Dhiman N, Shagaghi N, Bhave M, Sumer H, Kingshott P, Rath SN. Selective Cytotoxicity of a Novel Trp-Rich Peptide against Lung Tumor Spheroids Encapsulated inside a 3D Microfluidic Device. ACTA ACUST UNITED AC 2020; 4:e1900285. [PMID: 32293162 DOI: 10.1002/adbi.201900285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Indexed: 01/10/2023]
Abstract
There is a globally rising healthcare need to develop new anticancer therapies as well as to test them on biologically relevant in vitro cancer models instead of overly simplistic 2D models. To address both these needs, a 3D lung cancer spheroid model is developed using human A549 cells trapped inside a collagen gel in a compartmentalized microfluidic device and homogenously sized (35-45 µm) multicellular tumor spheroids are obtained in 5 days. The novel tryptophan-rich peptide P1, identified earlier as a potential anticancer peptide (ACP), shows enhanced cytotoxic efficacy against A549 tumor spheroids (>75%) in clinically relevant low concentrations, while it does not affect human amniotic membrane mesenchymal stem cells at the same concentrations (<15%). The peptide also inhibits the formation of tumor spheroids by reducing cell viability as well as lowering the proliferative capacity, which is confirmed by the expression of cell proliferation marker Ki-67. The ACP offers a novel therapeutic strategy against lung cancer cells without affecting healthy cells. The microfluidic device used is likely to be useful in helping develop models for several other cancer types to test new anticancer agents.
Collapse
Affiliation(s)
- Nandini Dhiman
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia.,Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak, 502 285, Telangana, India
| | - Nadin Shagaghi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia.,ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology Hawthorn, Victoria, 3122, Australia
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak, 502 285, Telangana, India
| |
Collapse
|
36
|
Gholibeikian M, Bamoniri A, HoushdarTehrani MH, Fatemeh Mirjalili BB, Bijanzadeh HR. Structure-activity relationship studies of Longicalcynin A analogues, as anticancer cyclopeptides. Chem Biol Interact 2019; 315:108902. [PMID: 31747558 DOI: 10.1016/j.cbi.2019.108902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023]
Abstract
Cancer has emerged as the main cause of the highest rate of mortality in the world. Drugs used in cancer, although, show some beneficial effects on cancerous organs, demonstrate side effects on other normal tissues. On the other hand, anticancer peptides, being effective on target tissues, should be safe and less harmful on healthy organs, since peptides have several advantages, i.e., high activity, specificity, affinity, being less immunogenic and not accumulate in the body. In the present work, analogues of Longicalcynin A, a naturally occurring anticancer cyclopeptide, were synthesized and evaluated their cytotoxicity in order to gain information from structure-activity relationships of the such cyclopeptides which may lead to find novel and safer anticancer peptide compound(s) to be used in clinic. Peptides were prepared by the solid-phase peptide synthesis method using trityl-resin. Peptide cyclization was performed in liquid phase. To study anticancer activity of the peptide analogues of Longicalycinin A, several methods including MTT, flow cytometry analysis and Lysosomal membrane integrity assay were employed using two cell lines HepG2 and HT-29. Fibroblast cells were used to control the safety of the synthesized cyclopeptides on normal cells. Two cyclopeptides 11 and 17 with the sequences of cyclo-(Thr-Val-Pro-Phe-Ala) and cyclo-(Phe-Ser-Pro-Phe-Ala), respectively were cytotoxic against the colon as well as hepatic cancer cells with safety profile against fibroblast cells, probably with the mechanism of apoptosis as lysosomal membrane integrity damaged. These cyclopeptides showed to be more favorable compounds better than Longicalycinin A and good candidates to develop cyclopeptides as anticancer agents.
Collapse
Affiliation(s)
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R., Iran.
| | - Mohammad Hassan HoushdarTehrani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R., Iran.
| | | | | |
Collapse
|
37
|
Gabernet G, Gautschi D, Müller AT, Neuhaus CS, Armbrecht L, Dittrich PS, Hiss JA, Schneider G. In silico design and optimization of selective membranolytic anticancer peptides. Sci Rep 2019; 9:11282. [PMID: 31375699 PMCID: PMC6677754 DOI: 10.1038/s41598-019-47568-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Membranolytic anticancer peptides represent a potential strategy in the fight against cancer. However, our understanding of the underlying structure-activity relationships and the mechanisms driving their cell selectivity is still limited. We developed a computational approach as a step towards the rational design of potent and selective anticancer peptides. This machine learning model distinguishes between peptides with and without anticancer activity. This classifier was experimentally validated by synthesizing and testing a selection of 12 computationally generated peptides. In total, 83% of these predictions were correct. We then utilized an evolutionary molecular design algorithm to improve the peptide selectivity for cancer cells. This simulated molecular evolution process led to a five-fold selectivity increase with regard to human dermal microvascular endothelial cells and more than ten-fold improvement towards human erythrocytes. The results of the present study advocate for the applicability of machine learning models and evolutionary algorithms to design and optimize novel synthetic anticancer peptides with reduced hemolytic liability and increased cell-type selectivity.
Collapse
Affiliation(s)
- Gisela Gabernet
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Damian Gautschi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Alex T Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Claudia S Neuhaus
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jan A Hiss
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Neuhaus CS, Gabernet G, Steuer C, Root K, Hiss JA, Zenobi R, Schneider G. Simulated Molecular Evolution for Anticancer Peptide Design. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claudia S. Neuhaus
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisela Gabernet
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Katharina Root
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jan A. Hiss
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
39
|
Hu C, Huang Y, Chen Y. Targeted Modification of the Cationic Anticancer Peptide HPRP-A1 with iRGD To Improve Specificity, Penetration, and Tumor-Tissue Accumulation. Mol Pharm 2019; 16:561-572. [PMID: 30592418 DOI: 10.1021/acs.molpharmaceut.8b00854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chimeric peptide HPRP-A1-iRGD, composed of a chemically conjugated tumor-homing/penetration domain (iRGD) and a cationic anticancer peptide domain (HPRP-A1), was used to study the effect of targeted modification to enhance the peptide's specificity, penetration, and tumor accumulation ability. The iRGD domain exhibits tumor-targeting and tumor-penetrating activities by specifically binding to the neuropilin-1 receptor. Acting as a homing/penetration domain, iRGD contributed to enhancing the tumor selectivity, permeability, and targeting of HPRP-A1 by targeted receptor dependence. As the anticancer active domain, HPRP-A1 kills cancer cells by disrupting the cell membrane and inducing apoptosis. The in vitro membrane selectivity toward cancer cells, such as A549 and MDA-MB-23, and human umbilical vein endothelial cells (HUVECs), normal cells, the penetrability assessment in the A549 3D multiple cell sphere model, and the in vivo tumor-tissue accumulation test in the A549 xenograft model indicated that HPRP-A1-iRGD exhibited significant increases in the selectivity toward membranes that highly express NRP-1, the penetration distance in 3D multiple cell spheres, and the accumulation in tumor tissues after intravenous injection, compared with HPRP-A1 alone. The mechanism of the enhanced targeting ability of HPRP-A1-iRGD was demonstrated by the pull-down assay and biolayer interferometry test, which indicated that the chimeric peptide could specifically bind to the neuropilin-1 protein with high affinity. We believe that chemical conjugation with iRGD to increase the specificity, penetration, and tumor-tissue accumulation of HPRP-A1 is an effective and promising approach for the targeted modification of peptides as anticancer therapeutics.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| |
Collapse
|
40
|
Neuhaus CS, Gabernet G, Steuer C, Root K, Hiss JA, Zenobi R, Schneider G. Simulated Molecular Evolution for Anticancer Peptide Design. Angew Chem Int Ed Engl 2019; 58:1674-1678. [DOI: 10.1002/anie.201811215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Claudia S. Neuhaus
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisela Gabernet
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Katharina Root
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Jan A. Hiss
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH) Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
41
|
Gao X, Chen Y, Chen Z, Xue Z, Jia Y, guo Q, Ma Q, Zhang M, Chen H. Identification and antimicrobial activity evaluation of three peptides from laba garlic and the related mechanism. Food Funct 2019; 10:4486-4496. [DOI: 10.1039/c9fo00236g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Laba garlic is a traditional Chinese processed garlic (Allium sativum L.) with multiple health benefits.
Collapse
Affiliation(s)
- Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Qingwen guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Min Zhang
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
- P.R. China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
42
|
Madanchi H, Akbari S, Shabani AA, Sardari S, Farmahini Farahani Y, Ghavami G, Ebrahimi Kiasari R. Alignment-based design and synthesis of new antimicrobial Aurein-derived peptides with improved activity against Gram-negative bacteria and evaluation of their toxicity on human cells. Drug Dev Res 2018; 80:162-170. [DOI: 10.1002/ddr.21503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/05/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Hamid Madanchi
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Shabnam Akbari
- Department of Biology, Damghan Branch; Islamic Azad University; Damghan Iran
| | - Ali Akbar Shabani
- Department and Center for Biotechnology Research; Semnan University of Medical Sciences; Semnan Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Yekta Farmahini Farahani
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | | |
Collapse
|
43
|
Shaheen F, Nadeem-Ul-Haque M, Ahmed A, Simjee SU, Ganesan A, Jabeen A, Shah ZA, Choudhary MI. Synthesis of breast cancer targeting conjugate of temporin-SHa analog and its effect on pro- and anti-apoptotic protein expression in MCF-7 cells. Peptides 2018; 106:68-82. [PMID: 30026168 DOI: 10.1016/j.peptides.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
Abstract
The frog natural product temporin-SHa (FLSGIVGMLGKLFamide) is a potent antimicrobial peptide, as is the analog [S3K]SHa. By solid-phase synthesis, we prepared temporin-SHa and several temporin-SHa analogs with one or more D-alanine residues incorporated. The natural product and the analog [G10a]SHa were found to be cytotoxic in mammalian cell lines and induce cell death. To achieve selectivity, we conjugated the analog [G10a]SHa with a breast cancer targeting peptide (BCTP). The resulting peptide temporin [G10a]SHa-BCTP conjugate was selectively active against the MCF-7 breast cancer cell line with no cytotoxicity in NIH-3T3 fibroblasts. Unlike the natural product or [G10a]SHa, the conjugated peptide induced apoptosis, downregulating the expression of Bcl-2 and survivin and upregulating Bax and caspase-3.
Collapse
Affiliation(s)
- Farzana Shaheen
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Muhammad Nadeem-Ul-Haque
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aqeel Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shabana U Simjee
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zafar Ali Shah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
44
|
Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int J Mol Sci 2018; 19:ijms19030919. [PMID: 29558431 PMCID: PMC5877780 DOI: 10.3390/ijms19030919] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023] Open
Abstract
Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy.
Collapse
|
45
|
Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 2018; 183:160-176. [DOI: 10.1016/j.pharmthera.2017.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Musale V, Casciaro B, Mangoni ML, Abdel-Wahab YH, Flatt PR, Conlon JM. Assessment of the potential of temporin peptides from the frog Rana temporaria
(Ranidae) as anti-diabetic agents. J Pept Sci 2018; 24. [DOI: 10.1002/psc.3065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vishal Musale
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences; University of Ulster; Coleraine BT52 1SA UK
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences; Sapienza University of Rome; via degli Apuli 9 00185 Rome Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences; Sapienza University of Rome; via degli Apuli 9 00185 Rome Italy
| | - Yasser H.A. Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences; University of Ulster; Coleraine BT52 1SA UK
| | - Peter R. Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences; University of Ulster; Coleraine BT52 1SA UK
| | - J. Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences; University of Ulster; Coleraine BT52 1SA UK
| |
Collapse
|
47
|
Sang M, Wu Q, Xi X, Ma C, Wang L, Zhou M, Burrows JF, Chen T. Identification and target-modifications of temporin-PE: A novel antimicrobial peptide in the defensive skin secretions of the edible frog, Pelophylax kl. esculentus. Biochem Biophys Res Commun 2017; 495:2539-2546. [PMID: 29191658 DOI: 10.1016/j.bbrc.2017.11.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
A potent natural antimicrobial peptide named temporin-PE was identified and encoded from the skin secretions of Pelophylax kl. esculentus via "shotgun" cloning and LC-MS/MS fragmentation analysis. Target-modifications were carried out to further enhance the antimicrobial and anti-proliferative bioactivities, whilst decreasing the hemolytic effect. A range of bioassays demonstrated that replacing a proline with a tyrosine residue resulted in a loss of the bioactivity against Gram-negative bacteria, but dramatically improved the hemolytic and anti-proliferative activity, indicating the FLP- motif influences the hemolytic activity of temporins. Moreover, the coupling of TAT to the peptide dramatically improved its antimicrobial activity, indicating coupling TAT to these peptides could be considered as a potential tool to improve their antimicrobial activity. Overall, we have shown that targeted modifications of this natural antimicrobial peptide can adjust its bioactivities to help its development as an antibiotic or anti-proliferative agent.
Collapse
Affiliation(s)
- Mengru Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, 210023, China; National and Local Collaborative Engineering, Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu, 210023, China.
| | - Xinping Xi
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | - Chengbang Ma
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - James F Burrows
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
48
|
Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 2017; 7:46541. [PMID: 28422156 PMCID: PMC5396196 DOI: 10.1038/srep46541] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Laterosporulin10 (LS10) is a defensin like peptide from Brevibacillus sp. strain SKDU10 that inhibited microbial pathogens. However, in this study, anticancer activity of LS10 was examined against different cancer cell lines and compared with normal cells. LS10 displayed cytotoxicity against cancer cells like MCF-7, HEK293T, HT1080, HeLa and H1299 at below 10 μM concentration, but not against prostate epithelium cells RWPE-1. Additionally, no hemolysis was observed at significantly higher concentration compared to IC50 values observed for different cancer cell lines. Release of lactate dehydrogenase from cancer cell lines at 15 μM concentration upon 120 min treatment indicated the lytic ability of LS10. Accordingly, electron microscopy experiments also confirmed the necrotic effect of LS10 at 15 μM concentration against cancer cells. Furthermore, flow cytometry analysis of treated cancer cell lines revealed that LS10 induce apoptosis even at 2.5 μM concentration. Nevertheless, RWPE-1 cells remained viable even at 20 μM concentration. These results provide evidence that LS10 is an anticancer bacteriocin, which causes apoptotic and necrotic death of cancer cells at lower and higher concentrations, respectively. Taken all results together, the present study signifies that LS10 is an anticancer peptide that could be further developed for therapeutic applications.
Collapse
|
49
|
Sang M, Zhang J, Zhuge Q. Selective cytotoxicity of the antibacterial peptide ABP-dHC-Cecropin A and its analog towards leukemia cells. Eur J Pharmacol 2017; 803:138-147. [PMID: 28347740 DOI: 10.1016/j.ejphar.2017.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022]
Abstract
Some cationic antibacterial peptides, with typical amphiphilic α-helical conformations in a membrane-mimicking environment, exhibit anticancer properties as a result of a similar mechanism of action towards both bacteria and cancer cells. We previously reported the cDNA sequence of the antimicrobial peptide ABP-dHC-Cecropin A precursor cloned from drury (Hyphantria cunea) (dHC). In the present study, we synthesized and structurally characterized ABP-dHC-Cecropin A and its analog, ABP-dHC-Cecropin A-K(24). Circular dichroism spectroscopy showed that ABP-dHC-Cecropin A and its analog adopt a well-defined α-helical structure in a 50% trifluorethanol solution. The cytotoxicity and cell selectivity of these peptides were further examined in three leukemia cell lines and two non-cancerous cell lines. The MTT assay indicated both of these peptides have a concentration-dependent cytotoxic effect in leukemia cells, although the observed cytotoxicity was greater with ABP-dHC-Cecropin A-K(24) treatment, whereas they were not cytotoxic towards the non-cancerous cell lines. Moreover, ABP-dHC-Cecropin A and its analog had a lower hemolytic effect in human red blood cells. Together, these results suggest the peptides are selectively cytotoxic towards leukemia cells. Confocal laser scanning microscopy determined that the peptides were concentrated at the surface of the leukemia cells, and changes in the cell membrane were determined with a permeability assay, which suggested that the anticancer activity of ABP-dHC-Cecropin A and its analog is a result of its presence at the leukemia cell membrane. ABP-dHC-Cecropin A and its analog may represent a novel anticancer agent for leukemia therapy, considering its cancer cell selectivity and relatively low cytotoxicity in normal cells.
Collapse
Affiliation(s)
- Ming Sang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxin Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
50
|
Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup. Amino Acids 2017; 49:1053-1067. [PMID: 28314993 DOI: 10.1007/s00726-017-2402-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/25/2017] [Indexed: 12/20/2022]
Abstract
Cationic peptides proved fundamental importance as pharmaceutical agents and/or drug carrier moieties functioning in cellular processes. The comparison of the in vitro activity of these peptides is an experimental challenge and a combination of different methods, such as cytotoxicity, internalisation rate, haemolytic and antibacterial effect, is necessary. At the same time, several issues need to be addressed as the assay conditions have a great influence on the measured biological effects and the experimental setup needs to be optimised. Therefore, critical comparison of results from different assays using representative examples of cell penetrating and antimicrobial peptides was performed and optimal test conditions were suggested. Our main goal was to identify carrier peptides for drug delivery systems of antimicrobial drug candidates. Based on the results of internalisation, haemolytic, cytotoxic and antibacterial activity assays, a classification of cationic peptides is advocated. We found eight promising carrier peptides with good penetration ability of which Penetratin, Tat, Buforin and Dhvar4 peptides showed low adverse haemolytic effect. Penetratin, Transportan, Dhvar4 and the hybrid CM15 peptide had the most potent antibacterial activity on Streptococcus pneumoniae (MIC lower than 1.2 μM) and Transportan was effective against Mycobacterium tuberculosis as well. The most selective peptide was the Penetratin, where the effective antimicrobial concentration on pneumococcus was more than 250 times lower than the HC50 value. Therefore, these peptides and their analogues will be further investigated as drug delivery systems for antimicrobial agents.
Collapse
|