1
|
Parra A, Jarak I, Santos A, Veiga F, Figueiras A. Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery. MATERIALS 2021; 14:ma14237278. [PMID: 34885432 PMCID: PMC8658125 DOI: 10.3390/ma14237278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023]
Abstract
Nanotechnology is an area in great development and with application in the most varied fields of science, including cosmetic and pharmaceutical industries. Because conventional formulations for topical application are not always able to effectively penetrate the physical barrier that human skin exerts against factors and compounds of the external environment, polymeric micelles appear as alternative carriers for drugs and active ingredients delivery, also allowing ingredients with lower solubility and higher lipophilicity to be delivered. In fact, the augmented bioavailability of drugs, greater efficacy even at a lower dose, and selective drug delivery in specific organelles are very interesting advantages of the polymeric micelles usage in cutaneous application. As a consequence, they show a reduction in many of the local and systemic adverse effects, which might lead to an increase in patient compliance to the therapeutics, constituting a promising alternative to conventional topical formulations.
Collapse
Affiliation(s)
- Ana Parra
- Univ. of Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III-Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (A.P.); (I.J.); (A.S.); (F.V.)
| | - Ivana Jarak
- Univ. of Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III-Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (A.P.); (I.J.); (A.S.); (F.V.)
| | - Ana Santos
- Univ. of Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III-Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (A.P.); (I.J.); (A.S.); (F.V.)
| | - Francisco Veiga
- Univ. of Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III-Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (A.P.); (I.J.); (A.S.); (F.V.)
- Univ. of Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III-Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. of Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III-Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (A.P.); (I.J.); (A.S.); (F.V.)
- Univ. of Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III-Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-488-431
| |
Collapse
|
2
|
Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 2021; 608:121090. [PMID: 34530102 DOI: 10.1016/j.ijpharm.2021.121090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of drugs that target ocular tissues is challenging due to the physiological barriers of the eye like tear dilution, nasolacrimal drainage, blinking, tear turnover rate and low residence time Drug-laden contact lenses can be a possible solution to overcome some of these challenges. Nanoparticles are being extensively studied as novel systems for loading drugs into therapeutic contact lenses. The versatile features of the organic and inorganic nanoparticles and their diverse physicochemical properties make it possible to load and sustain drug release from the contact lenses. Nevertheless, several issues remains to be solved before its clinical application and commercialization such as changes in contact lens swelling (water content), transmittance, protein adherence, surface roughness, tensile strength, ion and oxygen permeability and drug leaching during contact lens manufacture. However, clinical studies demonstrated the potential of therapeutic contact lenses to manage the scientific, commercial and regulatory challenges to make its place in the market. This review highlights the different methodologies used to fabricate nanoparticle-laden contact lenses and highlights the major advances and challenges to commercialization.
Collapse
|
3
|
Oliver S, Pham TTP, Li Y, Xu FJ, Boyer C. More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomater Sci 2021; 9:391-405. [PMID: 32856653 DOI: 10.1039/d0bm01197e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin. Nitric oxide (NO), a cellular signalling molecule, has attracted significant interest in treating a broad spectrum of diseases, including various skin disorders. However, there are a number of challenges in effectively delivering NO. It must be delivered in a controlled manner at sufficient concentrations to be efficacious and the delivery system must be stable during storage. The use of polymer-based systems to deliver NO topically can be an effective strategy to overcome these challenges. There are three main approaches for incorporating NO with polymers in topical delivery systems: (i) physical incorporation of NO donors into polymer bases; (ii) covalent attachment of NO donors to polymers; and (iii) encapsulation of NO donors in polymer-based particles. The latter two approaches provide the greatest control over NO release and have been used by numerous researchers in treating CDDs, including chronic wounds and skin cancer.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Thi Thu Phuong Pham
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| |
Collapse
|
4
|
Zhilyakova E, Naplekov D, Malyutina A, Bondarev A, Novikov O. New drug delivery system in ophthalmology: results studying the surface structure of soft contact lenses from various polymer. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214003002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of an ophthalmic therapeutic system includes research on the spatial structure of soft contact lens polymers and the study of the processes of saturation and release of medicinal substances from them. This allows you to determine the methods of saturation of contact lenses with medicinal agents and will open up new opportunities in the treatment of ophthalmological diseases. The purpose of this preliminary fragment of large-scale research was to study the surface structure of soft contact lenses made of various polymers. The following polymers were used in the work: Nelfilcon A, Hilafilcon B, Nezofilcon A, Etafilcon A, Lotrafilcon B. The following pharmaceutical substances were used: Brimonidine Tartrate, Betaxolol Hydrochloride, Pyridoxine Hydrochloride. The surface structure of soft contact lenses was studied using atomic force microscopy. Each material under study has a different surface character, which together with the differences in pore properties determines its individuality. Based on this, it should be assumed that the surface of soft contact lenses affects the possibility of their potential use as a means of delivering drug agent molecules to the eye tissues. In all cases of soft contact saturation, the highest absorption capacity was demonstrated by Hilafilcon B and Etafilcon A with a similar surface.
Collapse
|
5
|
Chen Y, Feng X, Meng S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv 2019; 16:847-867. [DOI: 10.1080/17425247.2019.1645119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Choi SW, Kim J. Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1125. [PMID: 29966397 PMCID: PMC6073408 DOI: 10.3390/ma11071125] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
The eye has many barriers with specific anatomies that make it difficult to deliver drugs to targeted ocular tissues, and topical administration using eye drops or ointments usually needs multiple instillations to maintain the drugs’ therapeutic concentration because of their low bioavailability. A drug-eluting contact lens is one of the more promising platforms for controllable ocular drug delivery, and, among various manufacturing methods for drug-eluting contact lenses, incorporation of novel polymeric vehicles with versatile features makes it possible to deliver the drugs in a sustained and extended manner. Using the diverse physicochemical properties of polymers for nanoparticles or implants that are selected according to the characteristics of drugs, enhancement of encapsulation efficiency and prolonged drug release are possible. Even though therapeutic contact lenses with polymeric vehicles allow us to achieve sustained ocular drug delivery, drug leaching during storage and distribution and the possibility of problems related to surface roughness due to the incorporated vehicles still need to be discussed before application in a real clinic. This review highlights the overall trends in methodology to develop therapeutic contact lenses with polymeric vehicles and discusses the limitations including comparison to cosmetically tinted soft contact lenses.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| |
Collapse
|
7
|
Biernesser AB, Delle Chiaie KR, Curley JB, Byers JA. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron‐Based Catalyst. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511793] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ashley B. Biernesser
- Department of Chemistry Boston College Eugene F. Merkert Chemistry Center 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Kayla R. Delle Chiaie
- Department of Chemistry Boston College Eugene F. Merkert Chemistry Center 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Julia B. Curley
- Department of Chemistry Boston College Eugene F. Merkert Chemistry Center 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Jeffery A. Byers
- Department of Chemistry Boston College Eugene F. Merkert Chemistry Center 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
8
|
Biernesser AB, Delle Chiaie KR, Curley JB, Byers JA. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst. Angew Chem Int Ed Engl 2016; 55:5251-4. [PMID: 26991820 DOI: 10.1002/anie.201511793] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/01/2016] [Indexed: 11/07/2022]
Abstract
A cationic iron(III) complex was active for the polymerization of various epoxides, whereas the analogous neutral iron(II) complex was inactive. Cyclohexene oxide polymerization could be "switched off" upon in situ reduction of the iron(III) catalyst and "switched on" upon in situ oxidation, which is orthogonal to what was observed previously for lactide polymerization. Conducting copolymerization reactions in the presence of both monomers resulted in block copolymers whose identity can be controlled by the oxidation state of the catalyst: selective lactide polymerization was observed in the iron(II) oxidation state and selective epoxide polymerization was observed in the iron(III) oxidation state. Evidence for the formation of block copolymers was obtained from solubility differences, GPC, and DOSY-NMR studies.
Collapse
Affiliation(s)
- Ashley B Biernesser
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Kayla R Delle Chiaie
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Julia B Curley
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
9
|
Parra A, Clares B, Rosselló A, Garduño-Ramírez ML, Abrego G, García ML, Calpena AC. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent. Int J Pharm 2016; 501:10-7. [PMID: 26826569 DOI: 10.1016/j.ijpharm.2016.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/05/2023]
Abstract
The purpose of this study was the development of poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) for the dermal delivery of carprofen (CP). The developed nanovehicle was then lyophilized using hydroxypropyl-β-cyclodextrin (HPβCD) as cryoprotectant. The ex vivo permeation profiles were evaluated using Franz diffusion cells using three different types of skin membranes: human, porcine and bovine. Furthermore, biomechanical properties of skin (trans-epidermal water loss and skin hydration) were tested. Finally, the in vivo skin irritation and the anti-inflammatory efficacy were also assayed. Results demonstrated the achievement of NPs 187.32 nm sized with homogeneous distribution, negatively charged surface (-23.39 mV) and high CP entrapment efficiency (75.38%). Permeation studies showed similar diffusion values between human and porcine skins and higher for bovine. No signs of skin irritation were observed in rabbits. Topically applied NPs significantly decreased in vivo inflammation compared to the reference drug in a TPA-induced mouse ear edema model. Thus, it was concluded that NPs containing CP may be a useful tool for the dermal treatment of local inflammation.
Collapse
Affiliation(s)
- Alexander Parra
- Department of Pharmacy and Pharmaceutical Technology, Biopharmaceutics and Pharmacokinetics Unit, Faculty of Pharmacy, University of Barcelona, Joan XXIII Avenue, 08028 Barcelona, Spain; Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Joan XXIII Avenue, 08028 Barcelona, Spain
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Campus de la Cartuja Street, 18071 Granada, Spain.
| | - Ana Rosselló
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Joan XXIII Avenue, 08028 Barcelona, Spain
| | - María L Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca, Morelos, Mexico, Mexico
| | - Guadalupe Abrego
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca, Morelos, Mexico, Mexico
| | - María L García
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Joan XXIII Avenue, 08028 Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy and Pharmaceutical Technology, Biopharmaceutics and Pharmacokinetics Unit, Faculty of Pharmacy, University of Barcelona, Joan XXIII Avenue, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res (Phila) 2014; 7:973-92. [PMID: 25060262 DOI: 10.1158/1940-6207.capr-14-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherri L Patterson
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|