1
|
Liu YT, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Ke D, Zhou H, Che Y, Tang QZ. Macrod1 suppresses diabetic cardiomyopathy via regulating PARP1-NAD +-SIRT3 pathway. Acta Pharmacol Sin 2024; 45:1175-1188. [PMID: 38459256 PMCID: PMC11130259 DOI: 10.1038/s41401-024-01247-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 μM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 μM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM. Schematic illustration of macrod1 ameliorating diabetic cardiomyopathy oxidative stress via PARP1-NAD+-SIRT3 axis.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Da Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
2
|
Rao T, Tong H, Li J, Huang J, Yin Y, Zhang J. Exploring the role and mechanism of hyperoside against cardiomyocyte injury in mice with myocardial infarction based on JAK2/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155319. [PMID: 38518637 DOI: 10.1016/j.phymed.2023.155319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the most deadly diseases in the world. Hyperoside (Hyp) has been shown to have a protective effect on cardiovascular function through various signaling pathways, but whether it can protect myocardial infarction by regulating JAK2/STAT3 signaling pathway is unknown. AIM OF THE STUDY To investigate whether Hyp could protect the heart against myocardial infarction injury in mice by modulating JAK2/STAT3 signaling pathway and its potential mechanism. METHODS In vivo experiments, the myocardial infarction model was established by ligating the left anterior descending coronary artery (LAD) of male C57BL/6 mice permanently. The mice were divided into seven groups: sham group, MI group, MI+Hyp (9 mg/kg), MI+Hyp (18 mg/kg) group, MI+Hyp (36 mg/kg) group, MI+Captopril group (15 mg/kg) group and MI+Hyp (36 mg/kg)+AG490 (7.5 mg/kg) group. Each group of animals were given different concentrations of hyperoside, positive control drug or inhibitor of JAK2/STAT3 singaling. After 14 days of administration, the electrocardiogram (ECG), echocardiography and serum myocardial injury markers were examined; Slices of mouse myocardial tissue were assessed for histopathological changes by HE, Masson and Sirius Red staining. TTC and TUNEL staining were used to evaluate the myocardial infarction area and cardiomyocytes apoptosis respectively. The expression of JAK2/STAT3 signaling pathway, apoptosis and autophagy-related proteins were detected by western blot. In vitro experiments, rat H9c2 cardiomyocytes were deprived of oxygen and glucose (OGD) to stimulate myocardial ischemia. The experiment was divided into seven groups: Control group, OGD group, OGD+Hyp (20 μM) group, OGD+Hyp (40 μM) group, OGD+Hyp (80 μM), OGD+Captopril (10 μM) group and OGD+Hyp (80 μM)+AG490 (100 μM) group. Myocardial cell damage and redox index were measured 12 h after OGD treatment. ROS content in cardiomyocytes was detected by immunofluorescence. Cardiomyocytes apoptosis was detected by flow cytometry. The expressions of JAK2/STAT3 signaling pathway-related proteins, apoptosis and autophagy related proteins were detected by western blot. RESULTS In vivo, hyperoside could ameolirate ECG abnormality, increase cardiac function, reduce myocardial infarction size and significantly reduce myocardial fibrosis level and oxidation level. The experimental results in vitro showed that Hyp could reduce the ROS content in cardiomyocytes, decrease the level of oxidative stress and counteract the apoptosis induced by OGD injury . Both in vivo and in vitro experiments showed that hyperoside could increase phosphorylated JAK2 and STAT3, indicating that hyperoside could play a cardioprotective role by activating JAK2/STAT3 signaling pathway. It was also shown that hyperoside could increase the autophagy level of cardiomyocytes in vivo and in vitro. However the cardiomyocyte-protective effect of Hyp was abolished in combination with JAK2/ STAT3 signaling pathway inhibitor AG490. These results indicated that the protective effect of Hyp on cardiomyocyte injury was at least partially achieved through the activation of the JAK2/STAT3 signaling pathway. CONCLUSION Hyp can significantly improve cardiac function, ameliorate myocardial hypertrophy and myocardial remodeling in MI mice. The mechanism may be related to improving mitochondrial autophagy of cardiomyocytes to maintain the advantage of autophagy, and blocking apoptosis pathway through phagocytosis, thus suppressing apoptosis level of cardiomyocytes. These effects of Hyp are achieved, at least in part, by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Tingcai Rao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China; Department of School of Pharmacy, Chongqing Health Vocational College, NO.99 Xirong Road, Dazu, 404100, PR China
| | - Hua Tong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China; Department of Fuyang fifth People's Hospital, NO.227 Taihe Road, Yingquan District, Anhui Fuyang, 236000, PR China
| | - Jiahao Huang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Junyan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China.
| |
Collapse
|
3
|
Chen X, Xie Q, Zhu Y, Xu J, Lin G, Liu S, Su Z, Lai X, Li Q, Xie J, Yang X. Cardio-protective effect of tetrahydrocurcumin, the primary hydrogenated metabolite of curcumin in vivo and in vitro: Induction of apoptosis and autophagy via PI3K/AKT/mTOR pathways. Eur J Pharmacol 2021; 911:174495. [PMID: 34555398 DOI: 10.1016/j.ejphar.2021.174495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Tetrahydrocurcumin (THC) is an essential metabolite of curcumin, a major active component of the Curcuma species, which have been used traditionally for the treatment of cardiovascular diseases. The PI3K/AKT/mTOR signaling pathways serve a vital role during myocardial ischemia-reperfusion (MI/R) injury. The aim of the present study was to investigate the cardioprotective potential and mechanism of THC. In the in vivo study, an animal model of MI/R was induced by coronary occlusion. Results indicated that THC (50 mg/kg/day) protected the rat hearts from MI/R-induced heart failure by increasing ejection fraction (EF) and fractional shortening (FS) and decreasing left ventricular end systolic diameter (LVESD) and left ventricular end systolic volume (LVESV). THC also reduced myocardial infarct size and apoptosis. Furthermore, H9c2 cells were incubated with THC (20 μM) to explore its potential effect following exposure to hypoxia and reoxygenation (H/R). THC post-treatment significantly augmented cell viability and prevented lactate dehydrogenase (LDH) release after H/R exposure. THC effectively improved antioxidant activity by increasing SOD and CAT activities and decreasing MDA level. THC also enhanced mitochondrial membrane potential, inhibited apoptotic cell death, diminished the Bax/Bcl-2 ratio and cleaved caspase-3 level relative to the H/R model. In addition, THC effectively decreased Beclin1 expression and LC3 II/LC3 I ratio, but increased p62 expression, compared with the H/R model group, and decreased the formation of H/R-induced autophagosomes and autolysosomes. Furthermore, THC promoted the phosphorylation of PI3K/AKT/mTOR and induced the expression of hypoxia-inducible factor 1α (HIF-1α) after H/R. However, these effects on H9c2 cells were notably abolished by the PI3K inhibitor LY294002 and mTOR inhibitor rapamycin. In conclusion, THC effectively inhibited H/R-induced autophagy and apoptosis via, at least partially, activating the PI3K/AKT/mTOR pathways. THC might have the potential to be further developed into a potential candidate for the treatment of MI/R injury.
Collapse
Affiliation(s)
- Xiaoying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qingfeng Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ying Zhu
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China
| | - Jiamin Xu
- The Second School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Shujun Liu
- The Second School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, PR China
| | - Xiaoping Lai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, PR China.
| | - Qian Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China.
| |
Collapse
|
4
|
Zhao Z, Tang Z, Zhang W, Liu J, Li B, Ding S. Inactivated pseudomonas aeruginosa protects against myocardial ischemia reperfusion injury via Nrf2 and HO-1. Exp Ther Med 2020; 19:3362-3368. [PMID: 32266034 DOI: 10.3892/etm.2020.8605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
The current study investigated the protective effects of inactivated pseudomonas aeruginosa (IPA) on myocardial ischemia reperfusion injury (MIR/I) and the mechanisms governing this interaction. Left anterior descending coronary artery ligation was performed on rats for 30 min and reperfusion was performed for a subsequent 2 h. Rat hearts were obtained and the myocardial infarction area was determined using nitroblue tetrazolium. Myocardial cell apoptosis was determined using flow cytometry. Malondialdehyde (MDA) content, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity and catalase (CAT) activities were assayed using the corresponding kits. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) were assayed using western blot and immunofluorescence analysis. When compared with the model group, the results of IPA treatment revealed improved heart function, reduced myocardial infarction area and reduced endothelial cell apoptosis, which led to decreased LDH and MDA levels, and increased SOD and CAT levels in serum, and decreased LDH and MDA levels and increased SOD and CAT in myocardial tissues. Moreover, increased Nrf2 and HO-1 expression levels in the myocardial tissues were also observed at all concentrations of IPA. It was concluded that IPA pretreatment ameliorated MIR/I and reduced endothelial apoptosis and oxidative stress via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zhigang Zhao
- Emergency Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Zhongzhi Tang
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Wenkai Zhang
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Jie Liu
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Bo Li
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Shifang Ding
- Cardiovascular Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
5
|
Luo J, Dai X, Hu H, Chen J, Zhao L, Yang C, Sun J, Zhang L, Wang Q, Xu S, Xu Y, Liu N, Ying G, Wang P. Fluzoparib increases radiation sensitivity of non-small cell lung cancer (NSCLC) cells without BRCA1/2 mutation, a novel PARP1 inhibitor undergoing clinical trials. J Cancer Res Clin Oncol 2020; 146:721-737. [PMID: 31786739 DOI: 10.1007/s00432-019-03097-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
PROPOSE Poly (ADP-ribose) polymerase 1 inhibitors were originally investigated as anti-cancer therapeutics with BRCA1/2 genes mutation. Here, we investigate the effectiveness of a novel PARP1 inhibitor fluzoparib, for enhancing the radiation sensitivity of NSCLC cells lacking BRCA1/2 mutation. METHODS We used MTS assays, western blotting, colony formation assays, immunofluorescence staining, and flow cytometry to evaluate the radiosensitization of NSCLC cells to fluzoparib and explore the underlying mechanisms in vitro. Through BRCA1 and RAD50 genes knockdown, we established dysfunctional homologous recombination (HR) DNA repair pathway models in NSCLC cells. We next investigated the radiosensitization effect of fluzoparib in vivo using human NSCLC xenograft models in mice. The expression of PARP1 and BRCA1 in human NSCLC tumor samples was measured by immunohistochemistry. Furthermore, we sequenced HR-related gene mutations and analyzed their frequencies in advanced NSCLC. RESULTS In vitro experiments in NSCLC cell lines along with in vivo experiments using an NSCLC xenograft mouse model demonstrated the radiosensitization effect of fluzoparib. The underlying mechanisms involved increased apoptosis, cell-cycle arrest, enhanced irradiation-induced DNA damage, and delayed DNA-damage repair. Immunohistochemical staining showed no correlation between the expression of PARP1 and BRCA1. Moreover, our sequencing results revealed high mutation frequencies for the BRCA1/2, CHEK2, ATR, and RAD50 genes. CONCLUSION The potential therapeutic value of fluzoparib for increasing the radiation sensitivity of NSCLC is well confirmed. Moreover, our findings of high mutation frequencies among HR genes suggest that PARP1 inhibition may be an effective treatment strategy for advanced non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Jing Luo
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xinchi Dai
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hua Hu
- Pulmonary and Critical Care Medicine (PCCM), Shandong Chest Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, China
| | - Jie Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Changyong Yang
- Jiangsu Hengrui Medicine Co Ltd, Lianyungang, 222002, China
| | - Jifeng Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qian Wang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shilei Xu
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Xu
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
6
|
Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers (Basel) 2020; 12:cancers12030532. [PMID: 32106627 PMCID: PMC7139751 DOI: 10.3390/cancers12030532] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have recently been introduced in the therapy of several types of cancers not responding to conventional treatments. However, de novo and acquired PARP inhibitor resistance is a significant limiting factor in the clinical therapy, and the underlying mechanisms are not fully understood. Activity of the cytoprotective phosphatidylinositol-3 kinase (PI3K)-Akt pathway is often increased in human cancer that could result from mutation, expressional change, or amplification of upstream growth-related factor signaling elements or elements of the Akt pathway itself. However, PARP-inhibitor-induced activation of the cytoprotective PI3K-Akt pathway is overlooked, although it likely contributes to the development of PARP inhibitor resistance. Here, we briefly summarize the biological role of the PI3K-Akt pathway. Next, we overview the significance of the PARP-Akt interplay in shock, inflammation, cardiac and cerebral reperfusion, and cancer. We also discuss a recently discovered molecular mechanism that explains how PARP inhibition induces Akt activation and may account for apoptosis resistance and mitochondrial protection in oxidative stress and in cancer.
Collapse
|
7
|
Cloux AJ, Aubry D, Heulot M, Widmann C, ElMokh O, Piacente F, Cea M, Nencioni A, Bellotti A, Bouzourène K, Pellegrin M, Mazzolai L, Duchosal MA, Nahimana A. Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent. Oncotarget 2019; 10:6723-6738. [PMID: 31803365 PMCID: PMC6877101 DOI: 10.18632/oncotarget.27336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
APO866 is a small molecule drug that specifically inhibits nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Although, the antitumor activity of APO866 on various types of cancer models has been reported, information regarding mechanisms by which APO866 exerts its cytotoxic effects is not well defined. Here we show that APO866 induces a strong, time-dependent increase in highly reactive ROS, nitric oxide, cytosolic/mitochondrial superoxide anions and hydrogen peroxide. We provide evidence that APO866-mediated ROS production is modulated by PARP1 and triggers cell death through mitochondria depolarization and ATP loss. Genetic or pharmacologic inhibition of PARP1 prevented hydrogen peroxide accumulation, caspase activation, mitochondria depolarization, ATP loss and abrogates APO866-induced cell death, suggesting that the integrity of PARP1 status is required for cell death. Conversely, PARP1 activating drugs enhanced the anti-leukemia activity of APO866 Collectively, our studies show that APO866 induces ROS/RNS productions, which mediate its anti-leukemia effect. These results support testing new combinatorial strategies to enhance the antitumor activities of APO866.
Collapse
Affiliation(s)
- Anne-Julie Cloux
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dominique Aubry
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mathieu Heulot
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Oussama ElMokh
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Karima Bouzourène
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Maxime Pellegrin
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Cao S, Sun Y, Wang W, Wang B, Zhang Q, Pan C, Yuan Q, Xu F, Wei S, Chen Y. Poly (ADP-ribose) polymerase inhibition protects against myocardial ischaemia/reperfusion injury via suppressing mitophagy. J Cell Mol Med 2019; 23:6897-6906. [PMID: 31379115 PMCID: PMC6787458 DOI: 10.1111/jcmm.14573] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischaemia/reperfusion (I/R) injury attenuates the beneficial effects of reperfusion therapy. Poly(ADP-ribose) polymerase (PARP) is overactivated during myocardial I/R injury. Mitophagy plays a critical role in the development of myocardial I/R injury. However, the effect of PARP activation on mitophagy in cardiomyocytes is unknown. In this study, we found that I/R induced PARP activation and mitophagy in mouse hearts. Poly(ADP-ribose) polymerase inhibition reduced the infarct size and suppressed mitophagy after myocardial I/R injury. In vitro, hypoxia/reoxygenation (H/R) activated PARP, promoted mitophagy and induced cell apoptosis in cardiomyocytes. Poly(ADP-ribose) polymerase inhibition suppressed H/R-induced mitophagy and cell apoptosis. Parkin knockdown with lentivirus vectors inhibited mitophagy and prevented cell apoptosis in H/R-treated cells. Poly(ADP-ribose) polymerase inhibition prevented the loss of the mitochondrial membrane potential (ΔΨm). Cyclosporin A maintained ΔΨm and suppressed mitophagy but FCCP reduced the effect of PARP inhibition on ΔΨm and promoted mitophagy, indicating the critical role of ΔΨm in H/R-induced mitophagy. Furthermore, reactive oxygen species (ROS) and poly(ADP-ribosylation) of CypD and TSPO might contribute to the regulation of ΔΨm by PARP. Our findings thus suggest that PARP inhibition protects against I/R-induced cell apoptosis by suppressing excessive mitophagy via the ΔΨm/Parkin pathway.
Collapse
Affiliation(s)
- Shengchuan Cao
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Yiying Sun
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Wenjun Wang
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Bailu Wang
- Clinical Trial CenterQilu Hospital of Shandong UniversityJinanChina
| | - Qun Zhang
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Chang Pan
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Feng Xu
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Shujian Wei
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Yuguo Chen
- Department of Emergency and Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong UniversityQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong ProvinceQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
9
|
Zhao Q, Li H, Chang L, Wei C, Yin Y, Bei H, Wang Z, Liang J, Wu Y. Qiliqiangxin Attenuates Oxidative Stress-Induced Mitochondrion-Dependent Apoptosis in Cardiomyocytes via PI3K/AKT/GSK3β Signaling Pathway. Biol Pharm Bull 2019; 42:1310-1321. [DOI: 10.1248/bpb.b19-00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qifei Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Hebei Medical University
| | - Hongrong Li
- Department of Integrated Traditional Chinese and Western Medicine, Hebei Medical University
| | - Liping Chang
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease)
| | - Yujie Yin
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
| | - Hongying Bei
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
| | - Zhixin Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease)
| | - Junqing Liang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
- Key Laboratory of Hebei Province for Collateral Diseases
| | - Yiling Wu
- Department of Integrated Traditional Chinese and Western Medicine, Hebei Medical University
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
| |
Collapse
|
10
|
Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochem J 2019; 476:1713-1724. [PMID: 31138772 DOI: 10.1042/bcj20190302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
GCN5L1 regulates protein acetylation and mitochondrial energy metabolism in diverse cell types. In the heart, loss of GCN5L1 sensitizes the myocardium to injury from exposure to nutritional excess and ischemia/reperfusion injury. This phenotype is associated with the reduced acetylation of metabolic enzymes and elevated mitochondrial reactive oxygen species (ROS) generation, although the direct molecular targets of GCN5L1 remain largely unknown. In this study, we sought to determine the mechanism by which GCN5L1 impacts energy substrate utilization and mitochondrial health. We find that hypoxia and reoxygenation (H/R) leads to a reduction in cell viability and Akt phosphorylation in GCN5L1 knockdown AC16 cardiomyocytes, in parallel with elevated glucose utilization and impaired fatty acid use. We demonstrate that glycolysis is uncoupled from glucose oxidation under normoxic conditions in GCN5L1-depleted cells. We show that GCN5L1 directly binds to the Akt-activating mTORC2 component Rictor, and that loss of Rictor acetylation is evident in GCN5L1 knockdown cells. Finally, we show that restoring Rictor acetylation in GCN5L1-depleted cells reduces mitochondrial ROS generation and increases cell survival in response to H/R. These studies suggest that GCN5L1 may play a central role in energy substrate metabolism and cell survival via the regulation of Akt/mTORC2 signaling.
Collapse
|
11
|
Cardioprotective Effect of Resveratrol in a Postinfarction Heart Failure Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6819281. [PMID: 29109832 PMCID: PMC5646324 DOI: 10.1155/2017/6819281] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023]
Abstract
Despite great advances in therapies observed during the last decades, heart failure (HF) remained a major health problem in western countries. In order to further improve symptoms and survival in patients with heart failure, novel therapeutic strategies are needed. In some animal models of HF resveratrol (RES), it was able to prevent cardiac hypertrophy, contractile dysfunction, and remodeling. Several molecular mechanisms are thought to be involved in its protective effects, such as inhibition of prohypertrophic signaling molecules, improvement of myocardial Ca2+ handling, regulation of autophagy, and the reduction of oxidative stress and inflammation. In our present study, we wished to further examine the effects of RES on prosurvival (Akt-1, GSK-3β) and stress signaling (p38-MAPK, ERK 1/2, and MKP-1) pathways, on oxidative stress (iNOS, COX-2 activity, and ROS formation), and ultimately on left ventricular function, hypertrophy and fibrosis in a murine, and isoproterenol- (ISO-) induced postinfarction heart failure model. RES treatment improved left ventricle function, decreased interstitial fibrosis, cardiac hypertrophy, and the level of plasma BNP induced by ISO treatment. ISO also increased the activation of P38-MAPK, ERK1/2Thr183-Tyr185, COX-2, iNOS, and ROS formation and decreased the phosphorylation of Akt-1, GSK-3β, and MKP-1, which were favorably influenced by RES. According to our results, regulation of these pathways may also contribute to the beneficial effects of RES in HF.
Collapse
|
12
|
He S, Wang X, Zhong Y, Tang L, Zhang Y, Ling Y, Tan Z, Yang P, Chen A. Hesperetin post-treatment prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating PI3K/Akt signaling pathway. Biomed Pharmacother 2017; 91:1106-1112. [PMID: 28531921 DOI: 10.1016/j.biopha.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 05/01/2017] [Indexed: 01/04/2023] Open
Abstract
Hesperidin (HES), a citrus fruit extract, has beneficial effects on various ischemia/reperfusion (I/R) models. Here, we investigated the possible positive effect of hesperetin (HPT), an active metabolite of HES, and identified the potential molecular mechanisms involved in cardiomyocytes H/R-induced injury. To construct the cardiomyocyte model of hypoxia/reoxygenation (H/R) injury, cultured neonatal rat cardiomyocytes were subjected to 3h of hypoxia followed by 3h of reoxygenation. Cell viability and apoptosis were detected. The levels of Apoptosis-related proteins and PI3K/Akt proteins were detected by western blot. Our results showed that HPT post-treatment significantly inhibited apoptosis by elevating the expression of Bcl-2, decreasing the expression of Bax and cleaved caspase-3, and diminished the apoptotic cardiomyocytes ratio. Mechanism studies demonstrated that HPT post-treatment up-regulated the expression levels of p-PI3K, and p-Akt. Co-treatment of the cardiomyocytes with the PI3K/Akt-specific inhibitor LY294002 blocked the HPT-induced cardioprotective effects. Taken together, these data suggested that HPT post-treatment prevented cardiomyocytes from H/R injury in vitro most likely through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shangfei He
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Yongkang Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Lu Tang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Ya Zhang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Yuanna Ling
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Zhipeng Tan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China.
| |
Collapse
|