1
|
Zhakupova A, Zeinolla A, Kokabi K, Sergazy S, Aljofan M. Drug Resistance: The Role of Sphingolipid Metabolism. Int J Mol Sci 2025; 26:3716. [PMID: 40332322 PMCID: PMC12027666 DOI: 10.3390/ijms26083716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
A significant challenge in cancer treatment is the rising problem of drug resistance that reduces the effectiveness of therapeutic strategies. Current knowledge shows that multiple mechanisms play a role in cancer drug resistance. Another mechanism that has gained attention is the alteration in sphingolipid trafficking and the dysregulation of its metabolism, which was reported to cause cancer-associated drug resistance. Sphingolipids are lipids containing sphingosine and have multiple roles, ranging from lipid raft formation, apoptosis, and cell signaling to immune cell trafficking. Recent studies show that in developing cancer cells, altered or dysregulated sphingolipids are associated with drug efflux and promote the survival of cancer cells by bypassing apoptosis. Upregulated levels of the glucosylceramide synthase (GCS), an enzyme that functions in sphingolipid metabolism, lead to the upregulated ABCB1 gene that induces drug efflux from the cancer cells. These bypass mechanisms make drugs that induce apoptosis in tumor cells ineffective. By highlighting the current findings, this review aims to provide a mechanism of drug resistance caused by the dysregulation of glucosylceramide synthase, sphingosine kinase, and acid ceramidase enzymes as possible therapeutic targets to enhance the effectiveness of the currently used chemotherapeutic agents.
Collapse
Affiliation(s)
- Assem Zhakupova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan; (A.Z.); (A.Z.); (K.K.)
| | - Adelina Zeinolla
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan; (A.Z.); (A.Z.); (K.K.)
| | - Kamilya Kokabi
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan; (A.Z.); (A.Z.); (K.K.)
| | - Shynggys Sergazy
- Drug Discovery and Development Laboratory, National Laboratory Astana, Astana 010000, Kazakhstan
- LLP “VICTUS PHARM”, Astana 010000, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan; (A.Z.); (A.Z.); (K.K.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Dai D, Wang X, Wu K, Lan F, Jin J, Zhang W, Wen C, Li J, Yang N, Sun C. Proteomic and N-glycosylation analysis of fertile egg white during storage and incubation in chickens. Poult Sci 2025; 104:104526. [PMID: 39608286 PMCID: PMC11635699 DOI: 10.1016/j.psj.2024.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Proteins in egg whites play vital roles in embryonic development. Simultaneously, protein modification is affected by the surrounding environment, which ultimately affects the structure and function of proteins. Here, we measured the phenotypes of eggs at different time points during storage and incubation and used 4D label-free quantitative proteomics technology and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-technique to identify the differential proteins and N-glycosylation sites in egg whites during storage and incubation. We found that the differential N-glycoproteins in the early stage of storage were mainly related to protein structure changes, antibacterial activity, and cell proliferation, and that there were more protease inhibitors in egg whites, which decreased in the later stage of storage. Finally, eleven possible protein markers and N-glycosylation sites were identified to significantly change during storage and may exert an effect on hatchability, including the proteins involved in antibacterial activity (OVOA-N855, CLU-N154, ogchi-N82, PIGR-N290, WFDC2-N120), protein structure (LOC776816), and cell proliferation (ASAH1-N173). This study provides substantial insights into the physical and molecular compositional changes in egg whites under different storage times and revealed their potential effect on chick embryo development.
Collapse
Affiliation(s)
- Daqing Dai
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Kexin Wu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Prasher P, Mall T, Sharma M. Synthesis and biological profile of benzoxazolone derivatives. Arch Pharm (Weinheim) 2023; 356:e2300245. [PMID: 37379239 DOI: 10.1002/ardp.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The benzoxazolone nucleus is an ideal scaffold for drug design, owing to its discrete physicochemical profile, bioisosteric preference over pharmacokinetically weaker moieties, weakly acidic behavior, presence of both lipophilic and hydrophilic fragments on a single framework, and a wider choice of chemical modification on the benzene and oxazolone rings. These properties apparently influence the interactions of benzoxazolone-based derivatives with their respective biological targets. Hence, the benzoxazolone ring is implicated in the synthesis and development of pharmaceuticals with a diverse biological profile ranging from anticancer, analgesics, insecticides, anti-inflammatory, and neuroprotective agents. This has further led to the commercialization of several benzoxazolone-based molecules and a few others under clinical trials. Nevertheless, the SAR exploration of benzoxazolone derivatives for the identification of potential "hits" followed by the screening of "leads" provides a plethora of opportunities for further exploration of the pharmacological profile of the benzoxazolone nucleus. In this review, we aim to present the biological profile of different derivatives based on the benzoxazolone framework.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Tanisqa Mall
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Fisher-Wellman KH, Kassai M, Hagen JT, Neufer PD, Kester M, Loughran TP, Chalfant CE, Feith DJ, Tan SF, Fox TE, Ung J, Fabrias G, Abad JL, Sharma A, Golla U, Claxton DF, Shaw JJP, Bhowmick D, Cabot MC. Simultaneous Inhibition of Ceramide Hydrolysis and Glycosylation Synergizes to Corrupt Mitochondrial Respiration and Signal Caspase Driven Cell Death in Drug-Resistant Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:1883. [PMID: 36980769 PMCID: PMC10046858 DOI: 10.3390/cancers15061883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3β, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.
Collapse
Affiliation(s)
- Kelsey H. Fisher-Wellman
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James T. Hagen
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - P. Darrell Neufer
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Mark Kester
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Charles E. Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - David J. Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Todd E. Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Johnson Ung
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gemma Fabrias
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jose’ Luis Abad
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Upendarrao Golla
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - David F. Claxton
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Jeremy J. P. Shaw
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Debajit Bhowmick
- Flow Cytometry Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Myles C. Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
5
|
Chen Y, Peng M, Li W, Zhao M, Cao X, Li C, Zhang H, Yang M, Liang L, Yue Y, Xia T, Zhong R, Wang Y, Shu Z. Inhibition of inflammasome activation via sphingolipid pathway in acute lung injury by Huanglian Jiedu decoction: An integrative pharmacology approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154469. [PMID: 36202056 DOI: 10.1016/j.phymed.2022.154469] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/21/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1β in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.
Collapse
Affiliation(s)
- Ying Chen
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Han Zhang
- School of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Mengru Yang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianyi Xia
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renxing Zhong
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zunpeng Shu
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
S1P-Induced TNF-α and IL-6 Release from PBMCs Exacerbates Lung Cancer-Associated Inflammation. Cells 2022; 11:cells11162524. [PMID: 36010601 PMCID: PMC9406848 DOI: 10.3390/cells11162524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 08/13/2022] [Indexed: 12/03/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is involved in inflammatory signaling/s associated with the development of respiratory disorders, including cancer. However, the underlying mechanism/s are still elusive. The aim of this study was to investigate the role of S1P on circulating blood cells obtained from healthy volunteers and non-small cell lung cancer (NSCLC) patients. To pursue our goal, peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with S1P. We found that the administration of S1P did not induce healthy PBMCs to release pro-inflammatory cytokines. In sharp contrast, S1P significantly increased the levels of TNF-α and IL-6 from lung cancer-derived PBMCs. This effect was S1P receptor 3 (S1PR3)-dependent. The pharmacological blockade of ceramidase and sphingosine kinases (SPHKs), key enzymes for S1P synthesis, completely reduced the release of both TNF-α and IL-6 after S1P addition on lung cancer-derived PBMCs. Interestingly, S1P-induced IL-6, but not TNF-α, release from lung cancer-derived PBMCs was mTOR- and K-Ras-dependent, while NF-κB was not involved. These data identify S1P as a bioactive lipid mediator in a chronic inflammation-driven diseases such as NSCLC. In particular, the higher presence of S1P could orchestrate the cytokine milieu in NSCLC, highlighting S1P as a pro-tumor driver.
Collapse
|
7
|
Taniai T, Shirai Y, Shimada Y, Hamura R, Yanagaki M, Takada N, Horiuchi T, Haruki K, Furukawa K, Uwagawa T, Tsuboi K, Okamoto Y, Shimada S, Tanaka S, Ohashi T, Ikegami T. Inhibition of acid ceramidase elicits mitochondrial dysfunction and oxidative stress in pancreatic cancer cells. Cancer Sci 2021; 112:4570-4579. [PMID: 34459070 PMCID: PMC8586682 DOI: 10.1111/cas.15123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using siRNA and shRNA for AC inhibition with its mechanisms for pancreatic cancer were investigated. The inhibition of AC by siRNA and shRNA using an adeno-associated virus 8 (AAV8) vector had antiproliferative effects by inducing apoptosis in pancreatic cancer cells and xenograft mouse model. Acid ceramidase inhibition elicits mitochondrial dysfunction, reactive oxygen species accumulation, and manganese superoxide dismutase suppression, resulting in apoptosis of pancreatic cancer cells accompanied by ceramide accumulation. These results elucidated the mechanisms underlying the antitumor effect of AC inhibition in pancreatic cancer cells and suggest the potential of the AAV8 vector to inhibit AC as a therapeutic strategy.
Collapse
Affiliation(s)
- Tomohiko Taniai
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Yoshihiro Shirai
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Yohta Shimada
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Ryoga Hamura
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Mitsuru Yanagaki
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Naoki Takada
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Takashi Horiuchi
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Koichiro Haruki
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Kenei Furukawa
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Tadashi Uwagawa
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Kazuhito Tsuboi
- Department of PharmacologyKawasaki Medical SchoolKurashikiJapan
| | - Yasuo Okamoto
- Department of PharmacologyKawasaki Medical SchoolKurashikiJapan
| | - Shu Shimada
- Department of Molecular Oncology Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Shinji Tanaka
- Department of Molecular Oncology Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Toya Ohashi
- Division of Gene TherapyResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Toru Ikegami
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
8
|
Tsuboi K, Tai T, Yamashita R, Ali H, Watanabe T, Uyama T, Okamoto Y, Kitakaze K, Takenouchi Y, Go S, Rahman IAS, Houchi H, Tanaka T, Okamoto Y, Tokumura A, Matsuda J, Ueda N. Involvement of acid ceramidase in the degradation of bioactive N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158972. [PMID: 34033896 DOI: 10.1016/j.bbalip.2021.158972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/01/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022]
Abstract
Bioactive N-acylethanolamines (NAEs) include palmitoylethanolamide, oleoylethanolamide, and anandamide, which exert anti-inflammatory, anorexic, and cannabimimetic actions, respectively. The degradation of NAEs has been attributed to two hydrolases, fatty acid amide hydrolase and NAE acid amidase (NAAA). Acid ceramidase (AC) is a lysosomal enzyme that hydrolyzes ceramide (N-acylsphingosine), which resembles NAAA in structure and function. In the present study, we examined the role of AC in the degradation of NAEs. First, we demonstrated that purified recombinant human AC can hydrolyze various NAEs with lauroylethanolamide (C12:0-NAE) as the most reactive NAE substrate. We then used HEK293 cells metabolically labeled with [14C]ethanolamine, and revealed that overexpressed AC lowered the levels of 14C-labeled NAE. As analyzed with liquid chromatography-tandem mass spectrometry, AC overexpression decreased the amounts of different NAE species. Furthermore, suppression of endogenous AC in LNCaP prostate cells by siRNA increased the levels of various NAEs. Lastly, tissue homogenates from mice genetically lacking saposin D, a presumable activator protein of AC, showed much lower hydrolyzing activity for NAE as well as ceramide than the homogenates from wild-type mice. These results demonstrate the ability of AC to hydrolyze NAEs and suggest its physiological role as a third NAE hydrolase.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Tatsuya Tai
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; Department of Pharmacy, Kagawa University Hospital, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Ryouhei Yamashita
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Yoko Okamoto
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keisuke Kitakaze
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Iffat Ara Sonia Rahman
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Hitoshi Houchi
- Department of Pharmacy, Kagawa University Hospital, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Tamotsu Tanaka
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan; Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Akira Tokumura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan; Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
9
|
İzgördü H, Sezer CV, Bayçelebi K, Baloğlu M, Kutlu HM. Cytotoxic Impacts of N-Oleoylethanolamine in Bone Cancer Cells. Anticancer Agents Med Chem 2021; 22:1119-1123. [PMID: 34139986 DOI: 10.2174/1871520621666210617091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a complex disease that is derived from the uncontrolled proliferation of cells. Bone cancer is a type of prevalent cancer that occurs both in youngsters and adults. Bone cancer is mostly common in the long bones of the pelvis, arms, and legs. Statistically, more than 200 cases of osteosarcoma have been reported annually in our country. Classical treatment with chemotherapeutics remains ineffective for the cure of this cancer. Recent studies have shown that ceramide induces apoptosis due to its increased levels in the cells. Thus, many studies have been conducted for the accumulation of ceramide molecules in the cell by different ways to induce apoptosis. NOE (N-oleoylethanolamine) is a specific inhibitor of ceramidase enzymes that hydrolyse intracellular ceramides and prevent apoptosis. OBJECTIVE This study investigates the cytotoxic and apoptosis-inducing activities of NOE on human osteosarcoma Saos-2 cells. METHODS Cytotoxic effects were investigated by MTT colorimetric assay. For the detection of morphological and ultrastructural indicators of apoptosis, confocal and TEM techniques were used, respectively. RESULTS Our finding indicated that NOE is effective in the inhibition of the growth of Saos-2 cells. Confocal and TEM findings showed morphological and ultrastructural changes as chromatin condensation, fragmentations of nuclei and mitochondria, as well as damaged cytoskeleton and cell shrinkage. CONCLUSION The results revealed that NOE exhibits its cytotoxicity on Saos-2 cells by changing the ultrastructure and morphology of cells with clear apoptotic sparks.
Collapse
Affiliation(s)
- Hüseyin İzgördü
- Eskisehir Technical University, Faculty of Science, Department of Biology, Eskişehir, Turkey
| | - Canan Vejselova Sezer
- Eskisehir Technical University, Faculty of Science, Department of Biology, Eskişehir, Turkey
| | - Kadir Bayçelebi
- Eskisehir Technical University, Faculty of Science, Department of Biology, Eskişehir, Turkey
| | - Murat Baloğlu
- Eskişehir City Hospital, Brain Surgery Clinic, Eskişehir, Turkey
| | - Hatice Mehtap Kutlu
- Eskisehir Technical University, Faculty of Science, Department of Biology, Eskişehir, Turkey
| |
Collapse
|
10
|
Munk R, Anerillas C, Rossi M, Tsitsipatis D, Martindale JL, Herman AB, Yang JH, Roberts JA, Varma VR, Pandey PR, Thambisetty M, Gorospe M, Abdelmohsen K. Acid ceramidase promotes senescent cell survival. Aging (Albany NY) 2021; 13:15750-15769. [PMID: 34102611 PMCID: PMC8266329 DOI: 10.18632/aging.203170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023]
Abstract
Cellular senescence is linked to chronic age-related diseases including atherosclerosis, diabetes, and neurodegeneration. Compared to proliferating cells, senescent cells express distinct subsets of proteins. In this study, we used cultured human diploid fibroblasts rendered senescent through replicative exhaustion or ionizing radiation to identify proteins differentially expressed during senescence. We identified acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, as being highly elevated in senescent cells. This increase in ASAH1 levels in senescent cells was associated with a rise in the levels of ASAH1 mRNA and a robust increase in ASAH1 protein stability. Furthermore, silencing ASAH1 in pre-senescent fibroblasts decreased the levels of senescence proteins p16, p21, and p53, and reduced the activity of the senescence-associated β-galactosidase. Interestingly, depletion of ASAH1 in pre-senescent cells sensitized these cells to the senolytics Dasatinib and Quercetin (D+Q). Together, our study indicates that ASAH1 promotes senescence, protects senescent cells, and confers resistance against senolytic drugs. Given that inhibiting ASAH1 sensitizes cells towards senolysis, this enzyme represents an attractive therapeutic target in interventions aimed at eliminating senescent cells.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jackson A Roberts
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vijay R Varma
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
11
|
Metabolic Classification and Intervention Opportunities for Tumor Energy Dysfunction. Metabolites 2021; 11:metabo11050264. [PMID: 33922558 PMCID: PMC8146396 DOI: 10.3390/metabo11050264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids, amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention possibilities from a metabolic perspective of cancer.
Collapse
|
12
|
Izquierdo E, Casasampere M, Fabriàs G, Abad JL, Casas J, Delgado A. Synthesis and characterization of bichromophoric 1-deoxyceramides as FRET probes. Org Biomol Chem 2021; 19:2456-2467. [PMID: 33650618 DOI: 10.1039/d1ob00113b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The suitability as FRET probes of two bichromophoric 1-deoxydihydroceramides containing a labelled spisulosine derivative as a sphingoid base and two differently ω-labelled fluorescent palmitic acids has been evaluated. The ceramide synthase (CerS) catalyzed metabolic incorporation of ω-azido palmitic acid into the above labeled spisulosine to render the corresponding ω-azido 1-deoxyceramide has been studied in several cell lines. In addition, the strain-promoted click reaction between this ω-azido 1-deoxyceramide and suitable fluorophores has been optimized to render the target bichromophoric 1-deoxydihydroceramides. These results pave the way for the development of FRET-based assays as a new tool to study sphingolipid metabolism.
Collapse
Affiliation(s)
- Eduardo Izquierdo
- Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC). Faculty of Pharmacy and Food Sciences. University of Barcelona (UB), Joan XXIII 27-31, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Vethakanraj HS, Chandrasekaran N, Sekar AK. Acid ceramidase, a double-edged sword in cancer aggression: A minireview. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-112652. [PMID: 33357194 DOI: 10.2174/1568009620666201223154621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a "double-edged sword" by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.
Collapse
|
14
|
Sphingomyelin Synthase 2 Participate in the Regulation of Sperm Motility and Apoptosis. Molecules 2020; 25:molecules25184231. [PMID: 32942681 PMCID: PMC7570487 DOI: 10.3390/molecules25184231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Sphingomylin participates in sperm function in animals, and also regulates the Akt and ERK signaling pathways, both of which are associated with the asthenospermia. Sphingomyelin synthase 2 (SMS2) is involved in the biosynthesis of sphingomylin. To determine the relationship between SMS2 and human sperm function, we analyzed the distribution of SMS2 in human sperm and testes, and SMS2 expression in patients with asthenospermia and normozoospermia; human sperm were treated with anti-SMS2, and the sperm motility, penetration ability into methylcellulose, capacitation and acrosome reaction, and sperm [Ca2+]i imaging were evaluated, while the Akt and ERK pathway and cleaved caspase 3 were also analyzed. Results showed that SMS2 was localized in the testis and human sperm, and the protein levels of normozoospermia were higher than asthenospermia. Inhibition of SMS2 activity significantly decreased sperm motility and penetration ability into methylcellulose, but had no influence on capacitation and acrosome reaction, or on intracellular [Ca2+]i compared to IgG-treated control groups. Moreover, the phosphorylation level of Akt was decreased, whereas the phosphorylation of ERK and cleaved-caspase 3 levels were significantly increased. Taken together, SMS2 can affect sperm motility and penetration ability into methylcellulose, and participate in apoptosis associated with the Akt and ERK signaling pathways.
Collapse
|
15
|
Liu K, Zhao F, Yan J, Xia Z, Jiang D, Ma P. Hispidulin: A promising flavonoid with diverse anti-cancer properties. Life Sci 2020; 259:118395. [PMID: 32905830 DOI: 10.1016/j.lfs.2020.118395] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
In recent years, natural products have increasingly attracted more attention because of their potential anticancer activity and low intrinsic toxicity. Hispidulin is a natural flavonoid with a wide range of biological activities, including anti-inflammatory, antifungal, antiplatelet, anticonvulsant, anti-osteoporotic, and notably anticancer activities. Numerous in vivo and in vitro studies have shown that hispidulin, as a potential anticancer drug, affects cell proliferation, apoptosis, cell cycle, angiogenesis, and metastasis. Moreover, hispidulin exhibits synergistic anti-tumor effects when combined with some common clinical anticancer drugs (e.g., gemcitabine, 5-fluoroucil, sunitinib, temozolomide, and TRAIL). The combination of hispidulin and chemotherapeutic drugs reduces the efflux of chemotherapeutic drugs, enhances the chemosensitivity of cancer cells, and reverses drug resistance. Herein, we outlined the anticancer effects of hispidulin in various cancers and its intracellular molecular targets and related mechanisms of its anticancer activity. Based on the available literature, it can be established that hispidulin has significant potential to become an important complementary medicine for cancer prevention and treatment. However, more in-depth in vitro and in vivo studies should be conducted to support its translation from bench to bedside.
Collapse
Affiliation(s)
- Kaili Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fei Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jingjing Yan
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhengchao Xia
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China.
| |
Collapse
|
16
|
Huang W, Qian T, Cheng Z, Zeng T, Si C, Liu C, Deng C, Ye X, Liu Y, Cui L, Fu L. Prognostic significance of Spinster homolog gene family in acute myeloid leukemia. J Cancer 2020; 11:4581-4588. [PMID: 32489475 PMCID: PMC7255376 DOI: 10.7150/jca.44766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal and heterogeneous disease characterized by proliferation of immature myeloid cells, with impaired differentiation and maturation. Spinster homolog (SPNS) is a widely distributed transmembrane transporter, which assists sphingolipids in playing their roles through the cell membrane. However, the expression and clinical implication of the SPNS family has not been investigated in AML. From the Cancer Genome Atlas database, a total of 155 AML patients with complete clinical characteristics and SPNS1-3 expression data were contained in our study. In patients who received chemotherapy only, high expressions of SPNS2 and SPNS3 had adverse effects on event-free survival (EFS) and overall survival (OS) (all P<0.05). However, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) group, we only found a significant difference in OS between the high and low SPNS3 expression groups (P=0.001), while other SPNS members showed no effect on survival. Multivariate analysis indicated that high SPNS2 expression was an independent risk factor for both EFS and OS in chemotherapy patients. The results confirmed that high expression of SPNS2 and SPNS3 were poor prognostic factors, and the effect of SPNS2 can be neutralized by allo-HSCT.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chaozeng Si
- Information Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chaojun Liu
- Yinfeng Gene Technology Co., Ltd.; No.1109, Gangxing 3 Rd,New and High-tech Zone, Jinan City, Shandong Province, 250102, China
| | - Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| |
Collapse
|
17
|
Di Martino S, Tardia P, Cilibrasi V, Caputo S, Mazzonna M, Russo D, Penna I, Realini N, Margaroli N, Migliore M, Pizzirani D, Ottonello G, Bertozzi SM, Armirotti A, Nguyen D, Sun Y, Bongarzone ER, Lansbury P, Liu M, Skerlj R, Scarpelli R. Lead Optimization of Benzoxazolone Carboxamides as Orally Bioavailable and CNS Penetrant Acid Ceramidase Inhibitors. J Med Chem 2020; 63:3634-3664. [PMID: 32176488 PMCID: PMC7997574 DOI: 10.1021/acs.jmedchem.9b02004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Sphingolipids
(SphLs) are a diverse class of molecules that are
regulated by a complex network of enzymatic pathways. A disturbance
in these pathways leads to lipid accumulation and initiation of several
SphL-related disorders. Acid ceramidase is one of the key enzymes
that regulate the metabolism of ceramides and glycosphingolipids,
which are important members of the SphL family. Herein, we describe
the lead optimization studies of benzoxazolone carboxamides resulting
in piperidine 22m, where we demonstrated target engagement
in two animal models of neuropathic lysosomal storage diseases (LSDs),
Gaucher’s and Krabbe’s diseases. After daily intraperitoneal
administration at 90 mg kg–1, 22m significantly
reduced the brain levels of the toxic lipids glucosylsphingosine (GluSph)
in 4L;C* mice and galactosylsphingosine (GalSph) in Twitcher mice.
We believe that 22m is a lead molecule that can be further
developed for the correction of severe neurological LSDs where GluSph
or GalSph play a significant role in disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Duc Nguyen
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60612, United States
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Ernesto R Bongarzone
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60612, United States
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Min Liu
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Renato Skerlj
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
18
|
Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson's Disease. J Clin Med 2020; 9:jcm9020594. [PMID: 32098196 PMCID: PMC7073989 DOI: 10.3390/jcm9020594] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease.
Collapse
|
19
|
Dadsena S, Bockelmann S, Mina JGM, Hassan DG, Korneev S, Razzera G, Jahn H, Niekamp P, Müller D, Schneider M, Tafesse FG, Marrink SJ, Melo MN, Holthuis JCM. Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat Commun 2019; 10:1832. [PMID: 31015432 PMCID: PMC6478893 DOI: 10.1038/s41467-019-09654-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/22/2019] [Indexed: 01/01/2023] Open
Abstract
Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity.
Collapse
Affiliation(s)
- Shashank Dadsena
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Svenja Bockelmann
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - John G M Mina
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany.
- School of Science, Engineering and Design, Teesside University, Middlesbrough, TS1 3BX, UK.
| | - Dina G Hassan
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Institute of Environmental Studies and Research, Ain Shams University, Cairo, Egypt
| | - Sergei Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Guilherme Razzera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Helene Jahn
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Patrick Niekamp
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Dagmar Müller
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Markus Schneider
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Plant Physiology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany
| | - Fikadu G Tafesse
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany.
- Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|