1
|
Zhang Q, Guo S, Wang H. The Protective Role of Baicalin in the Regulation of NLRP3 Inflammasome in Different Diseases. Cell Biochem Biophys 2025; 83:1387-1397. [PMID: 39443419 DOI: 10.1007/s12013-024-01597-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome consists of pro-caspase-1, NLRP3 and apoptosis-related speckle-like protein (ASC). It can detect multiple microorganisms, endogenous danger signals and environmental stimulus including adenosine triphosphate (ATP), urate, cholesterol crystals, and so on, thereby forming activated NLRP3 inflammasome. During the course of the activation of NLRP3 inflammasome, pro-caspase-1 is transformed into activated caspase-1 that results in the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. The dysfunction of NLRP3 inflammasome participates in multiple diseases such as liver diseases, renal diseases, nervous system diseases and diabetes. Baicalin is the primary bioactive component of Scutellaria baicalensis, which has been used since ancient times. Baicalin has many types of biological functions, such as anti-bacterial, anti-tumor and antioxidant. More and more evidence suggests that baicalin regulation of NLRP3 inflammasome is involved in different diseases. However, the mechanism is still elusive. Here, we reviewed the progress of baicalin regulation of NLRP3 inflammasome in many kinds of diseases to lay a foundation for future researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Huang C, Cheng EF, Ni J, Lyu Y. Baicalein prevents pregnancy loss by maintaining regulatory T cell activation through inhibition of the TLR4/NF-κB signaling pathway. Placenta 2025; 165:120-126. [PMID: 40245602 DOI: 10.1016/j.placenta.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Unexplained recurrent spontaneous abortion (URSA) involves multifactorial etiologies, with regulatory T cells (Tregs) playing a pivotal role in maintaining immune tolerance during pregnancy. Baicalein, a flavonoid from Scutellaria baicalensis, exhibits anti-inflammatory and immunomodulatory properties. This study evaluates baicalein's therapeutic potential in mitigating URSA via the TLR4/NF-κB signaling pathway. METHODS A URSA mouse model was used, and baicalein was administered intraperitoneally. Pregnancy outcomes, abortion rates, and placental morphology were assessed on gestational day 14 (G14). Treg cells were quantified via flow cytometry, and gene/protein expression levels were analyzed by immunohistochemistry, Western blotting, and real-time PCR. In vitro experiments on ihESCs further investigated the role of the TLR4/NF-κB pathway. RESULTS Baicalein reduced abortion rates from 33.3 % in URSA mice to 21.6 % (low dose) and 14.8 % (high dose), improved embryonic development by altering placental structure and decidual morphology, and reduced inflammation at the maternal-fetal interface. It expanded Treg cells and enhanced the expression of IGFBP-1 and PRL, markers of endometrial decidualization, and decreased TLR4, p-P65, and P65 expression. In vitro, baicalein's effects were abrogated by TLR4 inhibition, confirming pathway specificity. DISCUSSION Baicalein improved pregnancy outcomes by enhancing Treg function and promoting decidualization via TLR4/NF-κB pathway inhibition. These findings highlight baicalein's potential as a therapeutic agent for URSA.
Collapse
Affiliation(s)
- Caiqun Huang
- Departments of Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China.
| | - E Fen Cheng
- Departments of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Jinping Ni
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ying Lyu
- Departments of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| |
Collapse
|
3
|
Li L, Cui X, Lin Z, Chen Y, Zhang X, Zhu Y. Advances in the role of baicalin and baicalein in colon cancer: mechanisms and therapeutic potential. Discov Oncol 2025; 16:860. [PMID: 40404880 PMCID: PMC12098228 DOI: 10.1007/s12672-025-02719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
Colorectal cancer (CRC) remains a malignancy with high incidence and mortality rates worldwide, necessitating the development of more effective therapeutic strategies due to the limitations of current treatments, including drug resistance and adverse effects. Scutellaria baicalensis, a traditional Chinese medicinal herb, contains baicalin and baicalein as its primary bioactive flavonoids, which exhibit notable pharmacological properties such as antibacterial, anti-inflammatory, antioxidant, and antitumor effects. Recent studies have demonstrated that baicalin and baicalein show promising antitumor activity in CRC treatment through mechanisms such as scavenging reactive oxygen species, immune regulation, and inhibition of tumor cell proliferation, induction of apoptosis, and modulation of the gut microenvironment. This study further investigates the molecular mechanisms underlying the therapeutic effects of baicalin and baicalein in CRC, aiming to provide new research perspectives and potential clinical applications for the integration of flavonoid-based compounds from Scutellaria baicalensis in CRC treatment.
Collapse
Affiliation(s)
- Lexin Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250000, Shangdong Province, China
| | - Xuyang Cui
- Medical College, Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250000, Shangdong Province, China
| | - Zhanyu Lin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250000, Shangdong Province, China
| | - Yiming Chen
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250000, Shangdong Province, China
| | - Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250000, Shangdong Province, China.
| | - Yong Zhu
- Department of Emergency Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Lixia District, Jinan, 250000, Shangdong Province, China.
| |
Collapse
|
4
|
Tian C, Wang Y, Wang R, Pan L, Xu T. Pharmacological and therapeutic effects of natural products on liver regeneration-a comprehensive research. Chin Med 2025; 20:57. [PMID: 40329344 PMCID: PMC12057117 DOI: 10.1186/s13020-025-01108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Liver regeneration (LR) refers to the physiological process by which hepatocytes undergo cellular proliferation to restore the structure and function of the liver following significant hepatocyte loss due to injury or partial hepatectomy (PH). While the liver possesses a remarkable regenerative capacity, this process is tightly regulated to ensure appropriate cessation once homeostasis is reestablished. Various strategies, including technological interventions and pharmacological agents, have been explored to enhance LR. Among these, natural products have emerged as promising candidates for promoting LR. For instance, quercetin, a natural compound, has been shown to enhance LR following PH by maintaining redox homeostasis and stimulating hepatocyte proliferation. However, natural products present certain limitations, such as poor solubility and low bioavailability, which may hinder their clinical application. Modifications in the formulation and mode of administration have demonstrated potential in overcoming these challenges and optimizing their pharmacological effects. Recent advancements in research have further highlighted the growing relevance of natural products, including traditional Chinese medicine (TCM), in the context of LR. Despite this progress, a comprehensive and systematic review of their roles, mechanisms, and therapeutic potential remains lacking. This review aims to bridge this gap by summarizing natural products with demonstrated potential to promote LR. Drawing on data from PubMed, Web of Science, and CNKI databases, it elucidates their pharmacological effects and regulatory mechanisms, providing a valuable reference for future research and clinical application in the field of LR.
Collapse
Affiliation(s)
- Chang Tian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmaceutical Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Key Lab of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yuhan Wang
- International Cooperation and Exchange Department, Shanghai General Hospital, 85/86 Wujin Road, Hongkou District, Shanghai, 200434, China
| | - Ran Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmaceutical Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Key Lab of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Linxin Pan
- College of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmaceutical Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Key Lab of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Guo S, Zhang Q, Ge H, Wang H. Baicalin plays a protective role by regulating ferroptosis in multiple diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4837-4849. [PMID: 39661143 DOI: 10.1007/s00210-024-03704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Ferroptosis is a new kind of cell death discovered in recent years, usually accompanied by a large number of lipid peroxidation and iron accumulation in the process of cell death. Ferroptosis has been proven to play an important role in various diseases, including ischemic reperfusion injury, cancer, and neurodegeneration. Therefore, the regulation of ferroptosis will have a vital impact on the occurrence and development of diseases. Baicalin is a flavonoid compound extracted and isolated from the dried roots of Scutellaria baicalensis Georgi, a plant in the family Lamiaceae. It has various biological activities such as antioxidant, anti-proliferative, anti-inflammatory, anti-thrombotic, and regulates apoptosis and ferroptosis. Recently, increasing evidence indicates that baicalin regulation of ferroptosis is involved in multiple diseases. However, the relevant mechanisms are not yet fully understood. Here, we summarized the role of baicalin regulation of ferroptosis in different kinds of diseases, and conducted an in-depth analysis of the relevant mechanisms, hoping to provide the theoretical references for future related researches.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Hangwei Ge
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Ma Y, Pan Y, Zhao Q, Zhang C, He H, Pan L, Jia J, Shi A, Yang Y, Zhang W. Exploring the therapeutic potential and in vitro validation of baicalin for the treatment of triple-negative breast cancer. Front Pharmacol 2025; 16:1530056. [PMID: 40356970 PMCID: PMC12066697 DOI: 10.3389/fphar.2025.1530056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Objective To explore the mechanism of action of baicalin (BA) in the treatment of triple-negative breast cancer (TNBC) based on network pharmacology, molecular docking and molecular dynamics simulations and in vitro validation. Methods The inhibitory effects of different concentrations of baicalin on the proliferation of MDA-MB-231, 4T1, MCF-7, and MCF-10A cell lines were evaluated by CCK8 assay with clone formation assay. Three compound target prediction platforms, Swiss Target Prediction, SEA and Pharmmapper, were used to predict baicalin-related targets, and mapped with the triple-negative breast cancer-related targets retrieved from GeneCards and OMMI databases to obtain the potential targets of baicalin for the treatment of triple-negative breast cancer; the STRING database and the STRING database and Cytoscape software were used to construct the protein interaction network and screen the core targets; GO and KEGG enrichment analyses were performed on the core targets; the binding of baicalin to the key targets of triple-negative breast cancer was verified by molecular docking and molecular dynamics simulation; and the expression of the relevant proteins was verified. Results Baicalin showed more obvious antiproliferative effects on triple-negative breast cancer cell lines at certain concentrations, and had less effect on the proliferation of normal breast cells. A total of nine core targets of baicalin in the treatment of triple-negative breast cancer, including AKT1, ESR1, TNF-α, SRC, EGFR, MMP9, JAK2, PPARG, and GSK3B, were identified through the construction of the PPI protein interactions network and the 'Traditional Chinese Medicine-Component-Target-Disease' network, and a total of 252 targets related to the intersected targets were identified in the GO analysis. GO analysis enriched a total of 2,526 Biological process, 105 Cellular component and 250 Molecular function related to the intersecting targets; KEGG analysis enriched a total of 128 signaling pathways related to the intersecting targets; molecular docking results and molecular dynamics studies found that baicalin was able to interact with MMP9, TNF-α, JAK2, PPARG, GSK3B, and other core targets of baicalin for the treatment of triple-negative breast, MMP9, TNF-α, and JAK2 target proteins, and had significant changes in the expression levels of the target proteins. Conclusion Baicalin inhibits the protein expression of MMP9, TNF-α and JAK2 and their related signaling pathways in the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Yuan Ma
- School of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Ying Pan
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chongheng Zhang
- School of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Haitao He
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lihua Pan
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianling Jia
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Aiping Shi
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Wenfeng Zhang
- School of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
7
|
Chen Z, Liu M. Natural Compounds in Cancer Therapy: Revealing the Role of Flavonoids in Renal Cell Carcinoma Treatment. Biomolecules 2025; 15:620. [PMID: 40427513 PMCID: PMC12108870 DOI: 10.3390/biom15050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Renal cell carcinoma (RCC) is the most lethal malignancy of the urinary system, with limited treatment options due to drug resistance and the adverse effects associated with current therapies. This review aims to systematically examine the therapeutic potential of flavonoids, which are natural polyphenolic compounds possessing anti-inflammatory, antioxidant, and anticancer properties, in the context of RCC treatment. We summarize the anticancer activities of 26 natural flavonoids, classified into six subclasses, and explore their mechanisms of action, including the inhibition of tumor cell proliferation, migration, and invasion, as well as the induction of apoptosis, autophagy, and ferroptosis. Particular attention is paid to their modulation of key signaling pathways such as the JAK/STAT3, PI3K/Akt/mTOR, and miRNA-related axes, including miR-21/YAP1 and miR-324-3p/GPX4, providing a molecular basis for their anti-RCC activity. We also address several pharmacological challenges that limit the clinical application of flavonoids, including poor bioavailability, metabolic instability, and potential toxicity. Emerging solutions such as novel flavonoid derivatives, advanced drug delivery systems, and rational combination therapy strategies are also discussed. Current clinical evidence, including a phase II trial of flavopiridol in advanced RCC, highlights the potential but also the need for further validation. In conclusion, flavonoids offer a promising approach to improving RCC treatment. Future research should focus on optimizing their therapeutic efficacy and ensuring their safe clinical translation, with the goal of achieving personalized and minimally invasive cancer therapies.
Collapse
Affiliation(s)
| | - Min Liu
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China;
| |
Collapse
|
8
|
Li L, Hu S, Shao F, Liu X, Jiang Y. Green lignocellulose-nanofibers-based molecular imprinting membranes for baicalin selective adsorption. Int J Biol Macromol 2025; 302:140439. [PMID: 39884618 DOI: 10.1016/j.ijbiomac.2025.140439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Lignocellulosic nanofibers (LCNF), blending nano-scale cellulose and lignin, were carboxylated and integrated with PVA and baicalin to create a molecularly imprinted membrane (CLCNF-MINM). This innovation, leveraging reactive deep eutectic solvent technology and electrospinning, boosts adsorption capacity by 12.3-21.5 % and resolution by 31.6 %, achieving a max capacity of 142.1 mg·g-1. The high surface area, layered structure and tunable surface chemistry of carboxyl lignocellulose nanofibers (CLCNF), along with chemisorption and multimolecular adsorption mechanisms, significantly improve adsorption efficiency and selectivity. The membrane's mechanical strength is quadrupled and it retains 96.4 % of its absorption capacity after eight cycles of use. CLCNF-MINM significantly enhances the efficient utilization of biomass resources while exhibiting exceptional performance in the separation and purification of natural products. This study provides valuable insights into the development of advanced materials for improved natural product purification.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Chemistry and Chemical Engineering, Key Laboratory of Forest Products Chemistry and Engineering, State Ethnic Affairs Commission, Guangxi Key Laboratory of Forest Products Chemistry and Engineering Guangxi Collaborative Innovation Center of Forest Products Chemistry and Engineering, Guangxi Minzu University, Nanning 530006, China; Suzhou Laboratory, Suzhou 215100, China
| | - Song Hu
- College of Chemistry and Chemical Engineering, Key Laboratory of Forest Products Chemistry and Engineering, State Ethnic Affairs Commission, Guangxi Key Laboratory of Forest Products Chemistry and Engineering Guangxi Collaborative Innovation Center of Forest Products Chemistry and Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; Suzhou Laboratory, Suzhou 215100, China
| | - Xiuyu Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Forest Products Chemistry and Engineering, State Ethnic Affairs Commission, Guangxi Key Laboratory of Forest Products Chemistry and Engineering Guangxi Collaborative Innovation Center of Forest Products Chemistry and Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Yan Jiang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Liu S, Wang Q, Luo W, Huang L, Li L, Wu Y, Cai W, Hong J, Philips A, Fernig D, Sutton R, Windsor J, Szatmary P, Liu T, Huang W, Xia Q. Histones are critical toxic factors in gut lymph of severe acute pancreatitis: Neutralization by baicalin and baicalein for protection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156474. [PMID: 39954616 DOI: 10.1016/j.phymed.2025.156474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Whether circulating histones in gut lymph contribute to organ failure and impact of chaiqin chengqi decoction (CQCQD) on histones in severe acute pancreatitis (SAP) remain elusive. PURPOSE To verify the role of histones in gut lymph of SAP and evaluate the effect of the CQCQD on them. METHODS Sodium taurocholate was retrogradely infused into pancreatobiliary duct to induce SAP in rodents. Various regimens of CQCQD were administered intragastrically or via duodenum followed by dynamic gut lymph collection in rats. The impact of gut lymph and histones on endothelial cell viability and lymphocytes was determined. Components of CQCQD in gut lymph were identified by UHPLC-MS and their binding activities with histones were quantified by biolayer interferometry followed by validation in vitro and in vivo in mice. RESULTS The histone level was significantly increased in gut lymph of SAP at various time points assessed, closely correlating with multiple organ injury (MOI) indices and contemporary cell viability. Inhibition of histones reduced cytotoxicity induced by SAP-conditioned gut lymph. CQCQD reduced apoptotic cell death in mesenteric lymph nodes, histone level, and cytotoxicity of gut lymph, alleviating MOI parameters. Baicalin and baicalein were amongst top 13 identified CQCQD components absorbed into gut lymph to actively bind histones, block membrane disruption and calcium influx of lymphocytes, and inhibit their cytotoxicity. Both baicalin and baicalein mitigated histone- and SAP-induced MOI indices in mice. CONCLUSION Histones are key toxic factors in the gut lymph of SAP and their antagonism by baicalin and baicalein offers a novel therapeutic strategy.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lijia Huang
- West China Biobank, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lan Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yongzi Wu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jiwon Hong
- Department of Surgery, Faculty of Medicine and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Anthony Philips
- Department of Surgery, Faculty of Medicine and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - David Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | - John Windsor
- Department of Surgery, Faculty of Medicine and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China; West China Biobank, West China Hospital, Sichuan University, Chengdu 610041, PR China; Institute for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
10
|
Liang M, Hu Q, Yu J, Zhang H, Liu S, Huang J, Sun Y. Baicalein combined with azoles against fungi in vitro. Front Microbiol 2025; 16:1537229. [PMID: 40182279 PMCID: PMC11966473 DOI: 10.3389/fmicb.2025.1537229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Invasive fungal infections (IFIs) constitute a significant health challenge, particularly among immunocompromised individuals, characterized by a high prevalence and associated mortality rates. The synergistic administration of Baicalein (BE) with azole antifungal agents could potentially herald a novel therapeutic paradigm. Materials and methods 54 Aspergillus strains and 23 strains of dematiaceous fungi were selected. The standard M38-A2 microbroth dilution method was used to test the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) of fungi when BE combined with itraconazole (ITC), voriconazole (VRC), posaconazole (POS) and Isavuconazole (ISV). Results BE shows synergistic effects with POS and ITC, with 89.61% and 25.97% of fungal strains. The BE/POS regimen exerted synergistic effects in 87.04% of Aspergillus and an impressive 95.65% of dematiaceous fungi. In comparison, the BE/ITC combination showed significantly lower synergy, affecting 33.33% of Aspergillus and a mere 8.70% of dematiaceous strains. Antagonistic interactions were sporadically observed with BE in combination with ITC, VRC, POS and ISV. Within the azole class, the BE/POS pairing stood out for its frequent synergistic activity, in contrast to the absence of such effects when BE was paired with VRC or ISV. Highlighting the potential of BE/POS as a notably effective antifungal strategy. Conclusion In vitro, BE/POS combination emerged as the most effective antifungal strategy, exhibiting synergistic effects in the majority of Aspergillus and dematiaceous fungi strains, whereas BE/ITC showed significantly less synergy, and BE with VRC or ISV displayed no synergistic activity.
Collapse
Affiliation(s)
- Mengmin Liang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Qingwen Hu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Junhao Yu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| | - Sijie Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jiangrong Huang
- Endocrinology Department, The Third Clinical College of Yangtze University, Traditional Chinese Medicine of Jingzhou Hospital, Jingzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| |
Collapse
|
11
|
Ke J, Yuan J, Pang Z, Huang R, Miao W, Heng W. Piperine as a molecular bridge mediates a ternary coamorphous system of polyphenols with enhanced pharmaceutical properties. Int J Pharm 2025; 670:125139. [PMID: 39734059 DOI: 10.1016/j.ijpharm.2024.125139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
The coamorphous formulations have attracted increasing interest due to enhanced solubility and bioavailability, together with synergistic pharmacological effects. In this study, a ternary coamorphous system of polyphenols was successfully prepared, wherein baicalein (Bai) and resveratrol (Res) were constructed into a single-phase coamorphous system mediated by piperine (Pip). FTIR and ss 13C NMR spectra together with quantum chemical calculation and molecular dynamics simulation suggested Pip as a molecular bridge connected Bai and Res molecules through π-π stacking and hydrogen bonding interactions. The configuration of coamorphous Bai-Pip-Res could minimize the system energy to facilitate its formation and enhance the stability. The ternary system showed 3.2, 4.3 and 5.3-fold increase in apparent solubilities of Bai, Res and Pip, and maintained the peak concentrations for at least 24 h. Compared to binary coamorphous systems, the ternary system exhibited superior physical stability under temperature and humidity conditions. Furthermore, coamorphous Bai-Pip-Res exhibited enhanced antibacterial activity, significant antioxidant ability and synergistic anti-inflammatory effect. This work offers a promising strategy to construct a ternary coamorphous delivery system with enhanced pharmaceutical properties by incorporating a molecular bridge, especially for components with the lack of intermolecular interactions.
Collapse
Affiliation(s)
- Jinping Ke
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jiawei Yuan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zunting Pang
- Pharmaron (Ningbo) Technology Development Co., Ltd., Ningbo 315000, China
| | - Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Weili Heng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
13
|
Long J, Lai H, Huang Y, You F, Jiang Y, Kuang Q. Unraveling the pathogenesis of bone marrow hematopoietic injury and the therapeutic potential of natural products. Pharmacol Res 2025; 212:107589. [PMID: 39778641 DOI: 10.1016/j.phrs.2025.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing. Furthermore, we explored the potential and application prospects of natural products in the treatment of bone marrow hematopoietic injury. Natural products, particularly those derived from Chinese herbal medicines and other natural sources, have emerged as promising therapeutic options due to their distinctive mechanisms and minimal side effects. A deeper understanding of the underlying mechanisms of bone marrow hematopoietic injury could illuminate how natural products exert their effects, thereby optimizing treatment strategies and offering safer, more effective options for patients. Future research should leverage emerging technologies to further elucidate the composition and interactions within the bone marrow microenvironment, as well as the specific pathways through which natural products modulate hematopoietic dysfunction.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hengzhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qixuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
14
|
Gu Y, Jin L, Wang L, Ma X, Tian M, Sohail A, Wang J, Wang D. Preparation of Baicalin Liposomes Using Microfluidic Technology and Evaluation of Their Antitumor Activity by a Zebrafish Model. ACS OMEGA 2024; 9:41289-41300. [PMID: 39398129 PMCID: PMC11465266 DOI: 10.1021/acsomega.4c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Baicalin (BCL), a well-known flavonoid molecule, has numerous therapeutic applications. However, its low water solubility and bioavailability limit its applicability. Microfluidics is a new method for liposome preparation that provides efficient and rapid control of the process, improving the stability and controllability. This study used microfluidic techniques to create baicalin liposomes (BCL-LPs), first screening for optimal total flow rates (TFR) and flow rate ratios (FRR), and then optimizing the phospholipid concentration, phospholipid-to-cholesterol ratio, and Tween-80 concentration using univariate and response surface methodology approaches. The study found that the ideal phospholipid content was 9.5%, the phospholipid-to-cholesterol ratio was 9:1 (w:w), and the Tween-80 concentration was 15%. BCL-LPs achieved 95.323% ± 0.481% encapsulation efficiency under the optimum circumstances. Characterization indicated that the BCL-LPs were spherical and uniform in size, with a mean diameter of 62.32 nm ± 0.42, a polydispersity index of 0.092 ± 0.009, and a zeta potential of -25.000 mV ± 0.216. In vitro experiments found that BCL-LPs had a better slow-release effect and stability than the BCL monomer. In zebrafish bioassays, BCL-LPs performed better than BCL monomer in terms of biological activity and bioavailability. The established method provided a feasible medicine delivery platform for BCL and could apply for the transport and encapsulation of more natural compounds, expanding the applications of drug delivery systems in healthcare and cancer therapies.
Collapse
Affiliation(s)
- Yuhao Gu
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Liqiang Jin
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Li Wang
- Jinan
Vocational College of Engineering Department: Youth League Committee, Jinan 250200, China
| | - Xianzheng Ma
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Mingfa Tian
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | | | - Jianchun Wang
- Shandong
Giant E-Tech Co., Ltd., Jinan 250102, China
| | - Daijie Wang
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| |
Collapse
|
15
|
Tang X, Li Y, Zhao W, Bo C. Zwitterionic polymers grafting of metal organic framework encapsulated boronic acid carbon dots as antibiofouling fluorescent probe for baicalin monitoring. Talanta 2024; 278:126521. [PMID: 38996559 DOI: 10.1016/j.talanta.2024.126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The sensitivity and accuracy of fluorescence probes for biological samples are affected by not only interfering molecule compounds but also the nonspecific adsorption of proteins and other macromolecules. Herein, fluorescence probe based on zwitterionic sulfobetaine methacrylate polymer (PSBMA) as an antibiofouling layer and amino boric acid carbon dots encapsulated in the metal-organic framework UiO-66-NH2 (UiO-66-NH2/BN-CDs) as a target recognition site was designed for the detection of baicalin (BAI). Owing to the introduction of BN-CDs into UiO-66-NH2 with high specific surface area, the prepared UiO-66-NH2/BN-CDs@PSBMA probe exhibited a high adsorption capacity of 78.9 mg g-1, while presented fluorescence enhancing and superior fluorescence selectivity to BAI at excitation and emission wavelengths of 400 and 425 nm, respectively. Connecting PSBMA with good hydrophilicity to UiO-66-NH2, resulted in an anti-protein capacity of over 96.3 %, effectively inhibiting protein interference with the fluorescence signal. By virtue of its good antibiofouling and recognizing capacities, the fluorescence probe exhibited a satisfactory detection range of 10-80 nmol L-1, with a fairly low detection limit of 0.0064 μmol L-1. Using the method to detect BAI in Goji berry, Sophora and Yinhuang oral solution, demonstrating its potential for the accurate and quantitative detection of BAI in complex biological samples.
Collapse
Affiliation(s)
- Xiaofan Tang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Yinhai Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Weilong Zhao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| |
Collapse
|
16
|
Ji XL, Xiao YN, Sun RM, Tan ZW, Zhu YQ, Li XL, Li LF, Hou SY. Identification and characterization of Lacticaseibacillus rhamnosus HP-B1083-derived β-glucuronidase and its application for baicalin biotransformation. Heliyon 2024; 10:e38028. [PMID: 39323839 PMCID: PMC11422588 DOI: 10.1016/j.heliyon.2024.e38028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Baicalein, showing higher bioavailability and stronger pharmacological activity, can be obtained via a β-glucuronidase (GUS)-catalyzed transformation of baicalein 7-O-β-D-glucuronide (baicalin). Recently, we have found that the fermentation broth of Lacticaseibacillus rhamnosus HP-B1083 can efficiently convert baicalin to baicalein. In this study, the L. rhamnosus HP-B1083-derived enzyme involved in baicalin biotransformation was identified and characterized. First, the LruidA gene, encoding the responsible enzyme, was cloned and sequenced. Sequence analysis revealed that the deduced enzyme (designated as LrUidA) belonged to the glycosyl hydrolase family 2. The recombinant LrUidA was expressed and purified for characterization. LrUidA had a molecular weight of 70 kDa, with an optimal temperature of 50 °C and pH 4.5. Although LrUidA was susceptible to temperature, it possessed a relative pH stability. Its Michaelis-Menten constant, maximum reaction velocity and catalytic constant values were 9.710 mM, 13.08 mM/min/mg, and 14.95 s-1, respectively. Site-directed mutagenesis experiment results demonstrated that the enzyme reaction uses side chains of E509 and E415 to hydrolyze the glycosidic bond of baicalin and involves three negatively charged residues, E450, D451, and D452, respectively. Surprisingly, biotransformation was performed under optimized reaction conditions by incubating the purified enzyme with 0.1 % baicalin for 4 h, resulting in a considerable conversion ratio of 99 %. Altogether, our findings provide insights into the properties of L. rhamnosus HP-B1083-derived enzyme and expand our understanding regarding using GUS for the industrial production of baicalein.
Collapse
Affiliation(s)
- Xiao-Lei Ji
- Xinjiang Agricultural Vocational and Technical College, Changji, 831100, PR China
| | - Yi-Nuo Xiao
- Jining Medical University, Jining, 272000, PR China
| | - Rui-Min Sun
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Zhi-Wen Tan
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Ya-Qi Zhu
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Xue-Ling Li
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Lan-Fang Li
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Shao-Yang Hou
- College of Pharmacy, Heze University, Heze, 274015, PR China
| |
Collapse
|
17
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
18
|
Ma W, Liu T, Ogaji OD, Li J, Du K, Chang Y. Recent advances in Scutellariae radix: A comprehensive review on ethnobotanical uses, processing, phytochemistry, pharmacological effects, quality control and influence factors of biosynthesis. Heliyon 2024; 10:e36146. [PMID: 39262990 PMCID: PMC11388511 DOI: 10.1016/j.heliyon.2024.e36146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Background Scutellariae radix (SR) is the dried root of Scutellaria baicalensis Georgi. It has a long history of ethnic medicinal use, traditionally recognized for its efficacy in clearing heat, drying dampness, eliminating fire, removing toxins , stopping bleeding and tranquilizing fetus to prevent miscarriage. Clinically, it is used to treat cold, fever, migraine, hand-foot-and-mouth diseases, liver cancer and inflammatory diseases. Purpose The review aims to provide a comprehensive reference on the ethnobotanical uses, processing, phytochemistry, pharmacological effect, quality control and influence factors of biosynthesis for a deeper understanding of SR. Results and conclusion A total of 210 isolated components have been reported in the literature, including flavonoids and their glycosides, phenylpropanoids, phenylethanoid glycosides, phenolic acids, volatile components, polysaccharides and others. The extract of SR and its main flavonoids such as baicalin, baicalein, wogonin, wogonoside, and scutellarin showed antioxidant, anti-inflammatory, anti-tumor, antiviral, hepatoprotective, and neuroprotective effects. However, further studies are required to elucidate its mechanisms of action and clinical applications. The pharmacodynamic evaluation based on traditional efficacy should be conducted. Although various analytical methods have been established for the quality control of SR, there are gaps in the research regarding efficacy-related quality markers and the development of quality control standards for its processed products. The regulatory mechanisms of flavonoids biosynthesis remain to be explored while the influence of environmental and transcription factors on the biosynthesis have been studied. In conclusion, SR is a promising herbal medicine with significant potential for future development.
Collapse
Affiliation(s)
- Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
19
|
Su Q, Pan J, Wang C, Zhang M, Cui H, Zhao X. Curcumin and Baicalin Co-Loaded Nanoliposomes for Synergistic Treatment of Non-Small Cell Lung Cancer. Pharmaceutics 2024; 16:973. [PMID: 39204318 PMCID: PMC11359521 DOI: 10.3390/pharmaceutics16080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Currently, the treatment of patients with advanced non-small cell lung cancer (NSCLC) mainly relies on traditional chemotherapeutic drugs; however, most of them have limited therapeutic effects and high toxicity. Some natural products with good therapeutic efficacy and low toxicity and side effects are limited in clinical application due to their low solubility and bioavailability. In this study, a nanoliposome drug-carrying system (Lip-Cur/Ba) was developed for the co-delivery of curcumin (Cur) and baicalin (Ba) using the thin-film hydration method. In vitro experiments demonstrated that Lip-Cur/Ba had a strong killing effect on A549 cells, and the inhibitory effect of Lip-Cur/Ba on A549 cells was enhanced by 67.8% and 51.9% relative to that of the single-carrier system, which could reduce the use of a single-drug dose (Lip-Cur and Lip-Ba), delay the release rate of the drug and improve the bioavailability. In vivo experiments demonstrated the antitumor activity of Lip-Cur/Ba by intravitreal injection in BALB/c mice, and there were no obvious toxic side effects. This study provides a new idea for curcumin and baicalin to be used in the co-treatment of NSCLC by constructing a new vector.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (J.P.); (C.W.); (M.Z.); (H.C.)
| |
Collapse
|
20
|
Bernasinska-Slomczewska J, Hikisz P, Pieniazek A, Koceva-Chyla A. Baicalin and Baicalein Enhance Cytotoxicity, Proapoptotic Activity, and Genotoxicity of Doxorubicin and Docetaxel in MCF-7 Breast Cancer Cells. Molecules 2024; 29:2503. [PMID: 38893380 PMCID: PMC11173533 DOI: 10.3390/molecules29112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is a major health concern and the leading cause of death among women worldwide. Standard treatment often involves surgery, radiotherapy, and chemotherapy, but these come with side effects and limitations. Researchers are exploring natural compounds like baicalin and baicalein, derived from the Scutellaria baicalensis plant, as potential complementary therapies. This study investigated the effects of baicalin and baicalein on the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel, commonly used chemotherapeutic drugs for breast cancer. The analysis included breast cancer cells (MCF-7) and human endothelial cells (HUVEC-ST), to assess potential effects on healthy tissues. We have found that baicalin and baicalein demonstrated cytotoxicity towards both cell lines, with more potent effects observed in baicalein. Both flavonoids, baicalin (167 µmol/L) and baicalein (95 µmol/L), synergistically enhanced the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel in breast cancer cells. In comparison, their effects on endothelial cells were mixed and depended on concentration and time. The results suggest that baicalin and baicalein might be promising complementary agents to improve the efficacy of doxorubicin and docetaxel anticancer activity. However, further research is needed to validate their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Joanna Bernasinska-Slomczewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Aneta Koceva-Chyla
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland;
| |
Collapse
|
21
|
Wang L, Huang S, Liang X, Zhou J, Han Y, He J, Xu D. Immuno-modulatory role of baicalin in atherosclerosis prevention and treatment: current scenario and future directions. Front Immunol 2024; 15:1377470. [PMID: 38698839 PMCID: PMC11063305 DOI: 10.3389/fimmu.2024.1377470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Atherosclerosis (AS) is recognized as a chronic inflammatory condition characterized by the accumulation of lipids and inflammatory cells within the damaged walls of arterial vessels. It is a significant independent risk factor for ischemic cardiovascular disease, ischemic stroke, and peripheral arterial disease. Despite the availability of current treatments such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and lifestyle modifications for prevention, AS remains a leading cause of morbidity and economic burden worldwide. Thus, there is a pressing need for the development of new supplementary and alternative therapies or medications. Huangqin (Scutellaria baicalensis Georgi. [SBG]), a traditional Chinese medicine, exerts a significant immunomodulatory effect in AS prevention and treatment, with baicalin being identified as one of the primary active ingredients of traditional Chinese medicine. Baicalin offers a broad spectrum of pharmacological activities, including the regulation of immune balance, antioxidant and anti-inflammatory effects, and improvement of lipid metabolism dysregulation. Consequently, it exerts beneficial effects in both AS onset and progression. This review provides an overview of the immunomodulatory properties and mechanisms by which baicalin aids in AS prevention and treatment, highlighting its potential as a clinical translational therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangshan He
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Danping Xu
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
22
|
Yan Y, Amur SA, Liu H, Shen R, Sun H, Pei Y, Guo C, Liang H. Endogenous crude Scutellaria baicalensis polysaccharide robustly enhances one-pot extraction and deglycosylation of baicalin. Int J Biol Macromol 2024; 263:130349. [PMID: 38387634 DOI: 10.1016/j.ijbiomac.2024.130349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
With the extensive application of baicalein in the treatment of cardiovascular and cerebrovascular diseases, its clinical and market demand has gradually expanded. But the natural yield of baicalein is very low, and it is mainly prepared by the deglycosylation of baicalin. However, the insolubility of baicalin in water significantly limits the deglycosylation of it under biocatalysis. To make biocatalysis of baicalin more efficient and environmental, a strategy was designed to enhance its water solubility through the solubilization mechanism of endogenous biological macromolecules, and the effect on the activity of glucuronidase was further explored. The results showed that wrapping with Scutellaria baicalensis polysaccharide (SBP) significantly improved the solubility of baicalin in water (the water solubility of baicalin increased by 23 times, BI/SBP = 1/12, w/w). It was not only contributed to the efficient production of baicalein by one-pot method, but also effectively improved the deglycosylation rate of baicalin (increase by 47.04 % in aqueous solution). With the help of the solubilization of endogenous polysaccharide on baicalin in aqueous solution, a green, low-cost and efficient method (one-pot method) was designed to simultaneously extract and enzymatic hydrolyze baicalin to prepare baicalein. Under the same conditions, the yield of one-pot method is 87.17 %, which was much higher than that of the conventional method (29.38 %). In addition, one-pot method with the aid of endogenous polysaccharide could simply and conveniently prepare aglycone of other insoluble natural flavonoids, which has a wide range of industrial application value.
Collapse
Affiliation(s)
- Yucheng Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Safdar Ali Amur
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Liu
- Ji Hua Laboratory, Foshan, P. R. Guangdong Provincial Key R&D Program, China
| | - Ruoyao Shen
- Ji Hua Laboratory, Foshan, P. R. Guangdong Provincial Key R&D Program, China
| | - Huaiqing Sun
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Yunlin Pei
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
23
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
24
|
Wang J, Wu Z, Peng J, You F, Ren Y, Li X, Xiao C. Multiple roles of baicalin and baicalein in the regulation of colorectal cancer. Front Pharmacol 2024; 15:1264418. [PMID: 38375035 PMCID: PMC10875017 DOI: 10.3389/fphar.2024.1264418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of colorectal cancer is increasing worldwide, and despite advances in treatment, colorectal cancer (CRC) remains in the top three for mortality due to several issues, including drug resistance and low efficiency. There is increasing evidence that baicalin and baicalein, novel small molecule inhibitor extracts of the Chinese herb Scutellaria baicalensis, have better anti-colorectal cancer effects and are less likely to induce drug resistance in cancer cells. The present review article explains the anti-proliferative properties of baicalin and baicalein in the context of against CRC. Additionally, it explores the underlying mechanisms by which these compounds modulate diverse signaling pathways associated with apoptosis, cell proliferation, tumor angiogenesis, invasion, metastasis, and tumor microenvironment. Moreover, this review article highlights the inhibitory effect of colorectal inflammatory-cancer transformation and the near-term therapeutic strategy of using them as adjuvant agents in chemotherapy.
Collapse
Affiliation(s)
- Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayuan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifeng Ren
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Chai J, Hu J, Wang T, Bao X, Luan J, Wang Y. A Multifunctional Liposome for Synergistic Chemotherapy with Ferroptosis Activation of Triple-Negative Breast Cancer. Mol Pharm 2024; 21:781-790. [PMID: 38153044 DOI: 10.1021/acs.molpharmaceut.3c00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
There is an urgent need to develop efficient treatments for highly invasive triple-negative breast cancer (TNBC) with a high rate of postoperative. Baicalin (BA) has shown inhibitory effects on several tumor cells and could activate ferroptosis in some tumor cells by producing reactive oxygen species (ROS). For overcoming the shortcomings of BA in clinical applications and enhancing the effect of ferroptosis in TNBC, herein, a multifunctional liposome (BA-Fe(III) coordination-polymer-loaded liposome, BA-Fe(III) Lipo) was developed for synergistic chemotherapy of TNBC with ferroptosis activation. Fe(III) released from BA-Fe(III) Lipo could be efficiently reduced to Fe(II) in the presence of high glutathione in tumor microenvironment, which in turn catalyzed the oxidation of unsaturated fats through lipid peroxidation for more ROS production. In addition, BA-Fe(III) Lipo activated tumor cell ferroptosis by down-regulating the enzymatic activity of ferritin heavy chain 1 protein and glutathione peroxidase. This study provided a novel therapeutic strategy for the treatment of TNBC by ingeniously combining chemotherapy with the activation of ferroptosis, which presented potential clinical applications.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Tao Wang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Xing Bao
- Laboratory of Precision Medicine Center of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| |
Collapse
|
26
|
Bailly C. Efficacy and safety of the traditional herbal medication Chai-Ling-Tang (in China), Siryung-tang (in Republic of Korea) or Sairei-To (in Japan). JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117127. [PMID: 37683930 DOI: 10.1016/j.jep.2023.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal medicine designated Chai-Ling-Tang in China, Siryung-tang in South Korea, and Sairei-To (or Tsumura Saireito extract granules, TJ-114) in Japan is a complex polyherbal formulations with 12 plant components. It is used historically to treat Shaoyang syndrome, recorded in an ancient Chinese medical text "Treatise on Cold Damage Disorder" (Shanghan Lun). Chai-Ling-Tang formula combines two traditional Chinese herbal medicine prescriptions: Xiao-Chai-Hu-Tang and Wu-Ling-San (known as Sho-Saiko-To and Goreisan in Japan, and So Shi Ho Tang and Oreonsang in Korea, respectively). These traditional Chinese/Korean medicines and Kampo medicine have been used for more than 2000 years in East Asia, notably as regulators of body fluid homeostasis. AIM OF THE STUDY This study aims to evaluate clinical uses, pharmacological effects and unwanted effects of Sairei-To through a narrative literature survey. The main active phytoconstituents and their mechanism of actions are also collated based on the literature. METHODS Several databases including SciFinder and PubMed were searched in sourcing information using keywords corresponding to the medicinal treatment names and the corresponding plants and phytochemicals. Relevant textbooks, reviews, and digital documents (mostly in English) were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS Sairei-To derives from ten plants and two fungi. The three major components are Bupleuri radix (Saiko), Pinelliae rhizoma (Hange), and Alismatis rhizoma (Takusha). The rest includes the species Scutellariae radix, Zizyphi fructus, Ginseng radix, Glycyrrhizae radix, Zingiberis rhizoma, Cinnamomi cortex, Atractylodis lanceae rhizoma, Poria sclerotium, and Polyporus sclerotium. The therapeutic uses of Sairei-To are very diversified, ranging from the treatment of autoimmune diseases, intestinal inflammatory disorders, edema, intestinal and kidney diseases, cancers, inflammatory skin pathologies, and other conditions such as reproductive failure. Sairei-To is considered as a safe and efficient medication, with potential rare unwanted side effects, notably lung injuries (pneumonitis essentially). Marked anti-inflammatory and immune-modulatory effects of Sairei-To have been reported, generally associated to the action of saponins (saikosaponins, glycyrrhizin), terpenoids (alisols) and flavonoids (baicalin, oroxylin A). CONCLUSION Sairei-To is commonly used to treat inflammatory diseases and appears efficient to decrease the side effects of corticosteroids. Its immune-regulatory action is well recognized and exploited to treat certain skin lesions and chemotherapy-related toxic effects. The activity of the Sairei-To product relies on the synergistic action of its individual ingredients. Further studies are warranted to quantify the synergy of action inherent to this interesting botanical medication.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille, Wasquehal, 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000, Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France.
| |
Collapse
|
27
|
Wang C, Gao MQ. Research Progress on the Antidepressant Effects of Baicalin and Its Aglycone Baicalein: A Systematic Review of the Biological Mechanisms. Neurochem Res 2024; 49:14-28. [PMID: 37715823 DOI: 10.1007/s11064-023-04026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Depression is the most prevalent mental disorder, affecting more than 300 million adults worldwide each year, which can lead to serious economic and social problems. Antidepressants are usually the first-line treatment for depression, however, traditional antidepressants on the market have the disadvantage of low remission rates and may cause side effects to patients, therefore, the current focus in the field of depression is to develop novel therapeutic agents with high remission rates and few side effects. In this context, the antidepressant effects of natural compounds have received attention. Baicalin (baicalein-7-O-glucuronide) and its aglycone baicalein (5,6,7-trihydroxyflavone) are flavonoid compounds extracted from the root of Scutellaria baicalensis. Although lacking the support of clinical data, they have been shown to have significantly promising antidepressant activity in many preclinical studies through various rodent models of depression. This paper reviews the antidepressant effects of baicalin and baicalein in experimental animal models, with emphasis on summarizing the molecular mechanisms of their antidepressant effects including regulation of the HPA axis, inhibition of inflammation and oxidative stress, reduction of neuronal apoptosis and promotion of neurogenesis, as well as amelioration of mitochondrial dysfunction. Controlled clinical trials should be conducted in the future to examine the effects of baicalin and baicalein on depression in humans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ming-Qi Gao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
28
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
29
|
Szkudelski T, Szkudelska K. The Anti-Diabetic Potential of Baicalin: Evidence from Rodent Studies. Int J Mol Sci 2023; 25:431. [PMID: 38203600 PMCID: PMC10779254 DOI: 10.3390/ijms25010431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Baicalin is a biologically active flavonoid compound that benefits the organism in various pathological conditions. Rodent studies have shown that this compound effectively alleviates diabetes-related disturbances in models of type 1 and type 2 diabetes. Baicalin supplementation limited hyperglycemia and improved insulin sensitivity. The anti-diabetic effects of baicalin covered the main insulin-sensitive tissues, i.e., the skeletal muscle, the adipose tissue, and the liver. In the muscle tissue, baicalin limited lipid accumulation and improved glucose transport. Baicalin therapy was associated with diminished adipose tissue content and increased mitochondrial biogenesis. Hepatic lipid accumulation and glucose output were also decreased as a result of baicalin supplementation. The molecular mechanism of the anti-diabetic action of this compound is pleiotropic and is associated with changes in the expression/action of pivotal enzymes and signaling molecules. Baicalin positively affected, among others, the tissue insulin receptor, glucose transporter, AMP-activated protein kinase, protein kinase B, carnitine palmitoyltransferase, acetyl-CoA carboxylase, and fatty acid synthase. Moreover, this compound ameliorated diabetes-related oxidative and inflammatory stress and reduced epigenetic modifications. Importantly, baicalin supplementation at the effective doses did not induce any side effects. Results of rodent studies imply that baicalin may be tested as an anti-diabetic agent in humans.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | | |
Collapse
|
30
|
Chang J, Huang C, Li S, Jiang X, Chang H, Li M. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules 2023; 29:127. [PMID: 38202710 PMCID: PMC10779665 DOI: 10.3390/molecules29010127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.
Collapse
Affiliation(s)
- Jiayin Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Congying Huang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Siqi Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Xiaolei Jiang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou 014040, China
| |
Collapse
|
31
|
Huang W, Zhong Y, Gao B, Zheng B, Liu Y. Nrf2-mediated therapeutic effects of dietary flavones in different diseases. Front Pharmacol 2023; 14:1240433. [PMID: 37767395 PMCID: PMC10520786 DOI: 10.3389/fphar.2023.1240433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a pathological status that occurs when the body's balance between oxidants and antioxidant defense systems is broken, which can promote the development of many diseases. Nrf2, a redox-sensitive transcription encoded by NFE2L2, is the master regulator of phase II antioxidant enzymes and cytoprotective genes. In this context, Nrf2/ARE signaling can be a compelling target against OS-induced diseases. Recently, natural Nrf2/ARE regulators like dietary flavones have shown therapeutic potential in various acute and chronic diseases such as diabetes, neurodegenerative diseases, ischemia-reperfusion injury, and cancer. In this review, we aim to summarize nrf2-mediated protective effects of flavones in different conditions. Firstly, we retrospected the mechanisms of how flavones regulate the Nrf2/ARE pathway and introduced the mediator role Nrf2 plays in inflammation and apoptosis. Then we review the evidence that flavones modulated Nrf2/ARE pathway to prevent diseases in experimental models. Based on these literature, we found that flavones could regulate Nrf2 expression by mechanisms below: 1) dissociating the binding between Nrf2 and Keap1 via PKC-mediated Nrf2 phosphorylation and P62-mediated Keap1 autophagic degradation; 2) regulating Nrf2 nuclear translocation by various kinases like AMPK, MAPKs, Fyn; 3) decreasing Nrf2 ubiquitination and degradation via activating sirt1 and PI3K/AKT-mediated GSK3 inhibition; and 4) epigenetic alternation of Nrf2 such as demethylation at the promoter region and histone acetylation. In conclusion, flavones targeting Nrf2 can be promising therapeutic agents for various OS-related disorders. However, there is a lack of investigations on human subjects, and new drug delivery systems to improve flavones' treatment efficiency still need to be developed.
Collapse
Affiliation(s)
- Wenkai Huang
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yuan Zhong
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Botao Gao
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Bowen Zheng
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yi Liu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
33
|
Cai J, Hu Q, He Z, Chen X, Wang J, Yin X, Ma X, Zeng J. Scutellaria baicalensis Georgi and Their Natural Flavonoid Compounds in the Treatment of Ovarian Cancer: A Review. Molecules 2023; 28:5082. [PMID: 37446743 DOI: 10.3390/molecules28135082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer in women with a high mortality rate, and the treatment of OC is prone to high recurrence rates and side effects. Scutellaria baicalensis (SB) is a herbal medicine with good anti-cancer activity, and several studies have shown that SB and its flavonoids have some anti-OC properties. This paper elucidated the common pathogenesis of OC, including cell proliferation and cell cycle regulation, cell invasion and metastasis, apoptosis and autophagy, drug resistance and angiogenesis. The mechanisms of SB and its flavonoids, wogonin, baicalein, baicalin, Oroxylin A, and scutellarein, in the treatment of OC, are revealed, such as wogonin inhibits proliferation, induces apoptosis, inhibits invasion and metastasis, and increases the cytotoxicity of the drug. Baicalein also inhibits vascular endothelial growth factor (VEGF) expression etc. Analyzing their advantages and disadvantages in treating OC provides a new perspective on the role of SB and its flavonoids in OC treatment. It serves as a resource for future OC research and development.
Collapse
Affiliation(s)
- Jiaying Cai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhelin He
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
34
|
Bajek-Bil A, Chmiel M, Włoch A, Stompor-Gorący M. Baicalin-Current Trends in Detection Methods and Health-Promoting Properties. Pharmaceuticals (Basel) 2023; 16:ph16040570. [PMID: 37111327 PMCID: PMC10146343 DOI: 10.3390/ph16040570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Baicalin (7-D-glucuronic acid-5,6-dihydroxyflavone) belongs to natural flavonoids extracted from the roots of Scutellaria baicalensis, the plant used in traditional Chinese medicine. It has been proven that baicalin has various pharmacological activities, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and anti-apoptotic ones. However, it is essential not only to determine the medical usefulness of baicalin, but also to find and develop the most effective methods for its extraction and detection. Therefore, the aim of this review was to summarize the current methods of detection and identification of baicalin and to present the medical applications of baicalin and the underlying mechanisms of its action. Based on the review of the latest literature, it can be concluded that liquid chromatography alone or together with mass spectrometry is the most commonly used method for the determination of baicalin. Recently, also new electrochemical methods have been established, e.g., biosensors with fluorescence, which have better detection limits, sensitivity, and selectivity.
Collapse
Affiliation(s)
- Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland
| | - Marcelina Chmiel
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | | |
Collapse
|
35
|
Singla P, Parokie G, Garg S, Kaur S, Kaur I, Crapnell RD, Banks CE, Rinner U, Wills C, Peeters M. Enhancing encapsulation of hydrophobic phyto-drugs naringenin and baicalein in polymeric nano-micelles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
36
|
Cheng Y, Zhong C, Yan S, Chen C, Gao X. Structure modification: a successful tool for prodrug design. Future Med Chem 2023; 15:379-393. [PMID: 36946236 DOI: 10.4155/fmc-2022-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Prodrug strategy is critical for innovative drug development. Structural modification is the most straightforward and effective method to develop prodrugs. Improving drug defects and optimizing the physical and chemical properties of a drug, such as lipophilicity and water solubility, changing the way of administration can be achieved through specific structural modification. Designing prodrugs by linking microenvironment-responsive groups to the prototype drugs is of great help in enhancing drug targeting. In the meantime, making connections between prodrugs and suitable drug delivery systems could realize drug loading increases, greater stability, bioavailability and drug release control. In this paper, lipidic, water-soluble, pH-responsive, redox-sensitive and enzyme-activatable prodrugs are reviewed on the basis of structural modification.
Collapse
Affiliation(s)
- Yuexuan Cheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunhong Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shujing Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunli Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| |
Collapse
|
37
|
Srivastava S, Mathew J, Pandey AC. Baicalein—A review on its molecular mechanism against breast cancer and delivery strategies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
39
|
Kwiecień I, Łukaszyk A, Miceli N, Taviano MF, Davì F, Kędzia E, Ekiert H. In Vitro Cultures of Scutellaria brevibracteata subsp. subvelutina as a Source of Bioactive Phenolic Metabolites. Molecules 2023; 28:1785. [PMID: 36838774 PMCID: PMC9964101 DOI: 10.3390/molecules28041785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Some of the more than 350 Scutellaria species, such as S. baicalensis and S. lateriflora, have been used in traditional medicine and today play an important role in official phytotherapy. Other species have been less investigated, and their therapeutic potential is unknown. This is one of the few studies on Scutellaria brevibracteata subsp. subvelutina, and the first research of this species' in vitro cultures. The aim of this study was to establish an in vitro culture and analyse its phytochemical profile and biological activity. In the methanolic extracts from biomass cultured on six solid Murashige and Skoog (MS) medium variants supplemented with different combinations of 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) in the range 0.5-3 mg/L analysed by HPLC, the presence of specific flavonoids (baicalein, baicalin, wogonin, wogonoside, scutellarin, chrysin), phenylpropanoid glycosides (verbascoside, isoverbascoside), and phenolic acids (p-hydroxybenzoic, caffeic, ferulic, m-coumaric acids) was confirmed. The dominant metabolites were wogonoside and verbascoside with the highest content of 346 and 457 mg/100 g DW, respectively. Thus, the extract with the highest content of bioactive metabolites was selected for further research and subjected to evaluation of antioxidant and antimicrobial potential. The extract exhibited good free radical scavenging activity (IC50 = 0.92 ± 0.01 mg/mL) and moderate reducing power and chelating activity. The brine shrimp lethality bioassay proved its lack of biotoxicity. Antimicrobial activity was tested against sixteen strains of Gram-positive and Gram-negative bacteria and fungi. The strongest growth inhibitory activity was observed against Trichophyton tonsurans.
Collapse
Affiliation(s)
- Inga Kwiecień
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Aleksandra Łukaszyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Elżbieta Kędzia
- Department of Bioproducts Engineering, Institute of Natural Fibres and Medicinal Plants, National Research Institute, 71B Wojska Polskiego St., 60-630 Poznań, Poland
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| |
Collapse
|
40
|
Nan Y, Su H, Zhou B, Liu S. The function of natural compounds in important anticancer mechanisms. Front Oncol 2023; 12:1049888. [PMID: 36686745 PMCID: PMC9846506 DOI: 10.3389/fonc.2022.1049888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The existence of malignant tumors has been a threat to human life, health, and safety. Although the rapid development of radiotherapy, drug therapy, surgery, and local therapy has improved the quality of life of tumor patients, there are still some risks. Natural compounds are widely used in cancer because they are easy to obtain, have a good curative effects and have no obvious side effects, and play a vital role in the prevention and treatment of various cancers. Phenolic, flavonoids, terpenoids, alkaloids, and other natural components of traditional Chinese medicine have certain anti-tumor activities, which can promote apoptosis, anti-proliferation, anti-metastasis, inhibit angiogenesis, change the morphology of cancer cells and regulate immune function, etc., and have positive effects on breast cancer, liver cancer, lung cancer, gastric cancer, rectal cancer and so on. To better understand the effects of natural compounds on cancer, this paper screened out four important pathways closely related to cancer, including cell death and immunogenic cell death, immune cells in the tumor microenvironment, inflammation and related pathways and tumor metastasis, and systematically elaborated the effects of natural compounds on cancer.
Collapse
Affiliation(s)
- Yang Nan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Hongchan Su
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Bo Zhou
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Shumin Liu
- Chinese Medicine Research Institute, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China,*Correspondence: Shumin Liu,
| |
Collapse
|