1
|
Liu J, Qian Y, Hu GH, Qiu X, Li Z. Augmented antibacterial performance of MoS 2-integrated lignin-polyaniline composites through near-infrared stimulated photothermal and peroxidase-like activities. Int J Biol Macromol 2025; 306:141384. [PMID: 39988170 DOI: 10.1016/j.ijbiomac.2025.141384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Photothermal synergistic antibacterial therapy has emerged as a compelling approach for addressing antibiotic-resistant infections. In this study, lignosulfonate (LS) served dual roles as both a scaffolding template and a functional modifier in the fabrication of the lignin-polyaniline composite (LS-PANI). Subsequently, molybdenum disulfide (MoS2) was integrated into LS-PANI through physical adsorption, resulting in the formation of MoS2@LS-PANI. The bactericidal assays demonstrated that MoS2@LS-PANI, at a concentration of 400 μg/mL, achieved a sterilization rate of 99.9 % against Escherichia coli and Staphylococcus aureus when exposed to near-infrared (NIR) radiation (808 nm, 1.8 W/cm2) for only 5 min in the presence of H2O2. Moreover, MoS2@LS-PANI disrupts bacterial membranes through physical contact while converting NIR energy into local heat and enhancing peroxidase-like activity, synergistically amplifying oxidative stress for effective pathogen elimination. The low-cost, facile synthesis and eco-friendly nature of MoS2@LS-PANI underscore its potential as an innovative approach in the development of lignin-derived inorganic nanocomposites for the highly efficient eradication of pathogenic bacteria.
Collapse
Affiliation(s)
- Jiankang Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Guo-Hua Hu
- Université de Lorraine, CNRS, LRGP, F-54001 Nancy, France
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
| |
Collapse
|
2
|
Chi L, Du M. Enhanced visible-light-driven photocatalytic antibacterial activity by in-situ synthesized NH 2-MIL-101(Al)/AgI heterojunction and mechanism insight. ENVIRONMENTAL RESEARCH 2025; 267:120733. [PMID: 39736436 DOI: 10.1016/j.envres.2024.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
Photocatalytic antibacterial technology has the potential to prevent the formation of biofilms and microbial corrosion of metals by rapidly eliminating microorganisms in a short period. In this study, novel NH2-MIL-101(Al)/AgI is in-situ synthesized at ambient temperature, revealing enhanced photocatalytic antibacterial activity and cyclic stability in seawater. A low dosage of 0.1 mg mL-1 NH2-MIL-101(Al)/AgI sterilizes almost all Staphylococcus aureus within 60 min, and all Pseudomonas aeruginosa within 20 min upon visible light irradiation. Microscopic characterizations, photoelectrochemical experiments, and finite element method simulation indicate that the uniform dispersion of AgI nanoparticles and the formation of NH2-MIL-101(Al)/AgI Z-type heterojunction enhance the visible light absorption of NH2-MIL-101(Al), suppress the recombination of the photogenerated carriers, and improve the transfer efficiency. The photocatalytic antibacterial mechanism is also proposed based on the generation of h+, e⁻, and reactive oxygen species (especially 1O2) which induced the rupture of cell structures. Hence, the NH2-MIL-101(Al)-related material is introduced for photocatalytic antibacterial applications and offers insights for protecting metals from microbial corrosion in marine environments.
Collapse
Affiliation(s)
- Lifeng Chi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Min Du
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
3
|
Jiang W, Seidi F, Liu Y, Li C, Huang Y, Xiao H. Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites. Adv Colloid Interface Sci 2024; 335:103332. [PMID: 39536515 DOI: 10.1016/j.cis.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.
Collapse
Affiliation(s)
- Wensi Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
4
|
Jin Y, Shang Y, Wu C, Chen Z, Shi H, Wang H, Li L, Yin S. Conformal immunomodulatory hydrogels for the treatment of otitis media. J Nanobiotechnology 2024; 22:619. [PMID: 39395981 PMCID: PMC11475211 DOI: 10.1186/s12951-024-02908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024] Open
Abstract
Otitis media (OM), a condition stemming from the proliferation of various bacteria within the tympanic cavity (TC), is commonly addressed through the administration of ofloxacin (OFL), a fluoroquinolone antibiotic. Nevertheless, the escalating issue of antibiotic resistance and the challenge of drug leakage underscore the exploration of an alternative, more effective treatment modality in clinical practice. Here, we introduce a simple and easily implementable fluid-regulated strategy aimed at delivering immunomodulatory hydrogels into the TC, ensuring conformal contact with the irregular anatomical surfaces of the middle ear cavity to more effectively eliminate bacteria and treat OM. This innovative strategy exhibits expedited therapeutic process of antibiotic-resistant, acute and chronic OM rats, and significant reductions in the severity of tympanic membrane (TM) inflammation, residual bacteria within the TC (0.12 *105 CFU), and the thickness of TM/TC mucosa (17.63/32.43 μm), as compared to conventional OFL treatment (3.6, 0.76 *105 CFU, 48.70/151.26 μm). The broad-spectrum antibacterial and antibiofilm properties of this strategy against a spectrum of OM pathogens are demonstrated. The strategy is validated to bolster the host's innate immune response through the stimulation of antibacterial protein synthesis, macrophage proliferation and activation, thereby accelerating bacterial eradication and inflammation resolution within the TC. This facile, cost-effective and in vivo degradable technology exhibits promising prospects for future clinical implementation.
Collapse
Affiliation(s)
- Yuefan Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Yueyi Shang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Cuiping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Zhengnong Chen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China.
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China.
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200223, P. R. China.
| |
Collapse
|
5
|
Nasra S, Pramanik S, Oza V, Kansara K, Kumar A. Advancements in wound management: integrating nanotechnology and smart materials for enhanced therapeutic interventions. DISCOVER NANO 2024; 19:159. [PMID: 39354172 PMCID: PMC11445205 DOI: 10.1186/s11671-024-04116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Wound management spans various techniques and materials tailored to address acute and chronic non-healing wounds, with the primary objective of achieving successful wound closure. Chronic wounds pose additional challenges, often necessitating dressings to prepare the wound bed for subsequent surgical procedures like skin grafting. Ideal dressing materials should not only expedite wound healing but also mitigate protein, electrolyte, and fluid loss while minimizing pain and infection risk. Nanotechnology has emerged as a transformative tool in wound care, revolutionizing the landscape of biomedical dressings. Its application offers remarkable efficacy in accelerating wound healing and combating bacterial infections, representing a significant advancement in wound care practices. Integration of nanotechnology into dressings has resulted in enhanced properties, including improved mechanical strength and controlled drug release, facilitating tailored therapeutic interventions. This review article comprehensively explores recent breakthroughs in wound healing therapies, with a focus on innovative medical dressings such as nano-enzymes. Additionally, the utilization of smart materials, like hydrogels and electroactive polymers, in wound dressings offers dynamic functionalities to promote tissue regeneration. Emerging concepts such as bio-fabrication, microfluidic systems, bio-responsive scaffolds, and personalized therapeutics show promise in expediting wound healing and minimizing scarring. Through an in-depth exploration of these advancements, this review aims to catalyze a paradigm shift in wound care strategies, promoting a patient-centric approach to therapeutic interventions.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjali Pramanik
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vidhi Oza
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Krupa Kansara
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
6
|
Chen B, Wang Y, Shen S, Zhong W, Lu H, Pan Y. Lattice Defects and Electronic Modulation of Flower-Like Zn 3In 2S 6 Promote Photocatalytic Degradation of Multiple Antibiotics. SMALL METHODS 2024; 8:e2301598. [PMID: 38168900 DOI: 10.1002/smtd.202301598] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Photocatalysis is an effective technique to remove antibiotic residues from aquatic environments. Typical metal sulfides like Zn3In2S6 have been applied to a wide range of photocatalytic applications. However, there are currently no readily accessible methods to increase its antibiotic-degrading activity. Here, a facile hydrothermal approach is developed for the preparation of flower-like Zn3In2S6 with tunable sulfur lattice defects. Photogenerated carriers can be separated and transferred more easily when there is an adequate amount of lattice defects. Moreover, lattice defect-induced electronic modulation enhances light utilization and adsorption properties. The modified Zn3In2S6 demonstrates outstanding photocatalytic degradation activity for levofloxacin, ofloxacin, and tetracycline. This work sheds light on exploring metal sulfides with sulfur lattice defects for enhancing photocatalytic activity.
Collapse
Affiliation(s)
- Baofu Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yichao Wang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Shijie Shen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Wenwu Zhong
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Hongsheng Lu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yin Pan
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| |
Collapse
|
7
|
Shah BA, Sardar A, Liu K, Din STU, Li S, Yuan B. Ultrathin TiS 2@N,S-Doped Carbon Hybrid Nanosheets as Highly Efficient Photoresponsive Antibacterial Agents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27011-27027. [PMID: 38743026 DOI: 10.1021/acsami.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Nanobactericides are employed as a promising class of nanomaterials for eradicating microbial infections, considering the rapid resistance risks of conventional antibiotics. Herein, we present a pioneering approach, reporting the synthesis of two-dimensional titanium disulfide nanosheets coated by nitrogen/sulfur-codoped carbon nanosheets (2D-TiS2@NSCLAA hybrid NSs) using a rapid l-ascorbic acid-assisted sulfurization of Ti3C2Tx-MXene to achieve efficient alternative bactericides. The as-developed materials were systematically characterized using a suite of different spectroscopy and microscopy techniques, in which the X-ray diffraction/Raman spectroscopy/X-ray photoelectron spectroscopy data confirm the existence of TiS2 and C, while the morphological investigation reveals single- to few-layered TiS2 NSs confined by N,S-doped C, suggesting the successful synthesis of the ultrathin hybrid NSs. From in vitro evaluation, the resultant product demonstrates impressive bactericidal potential against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, achieving a substantial decrease in the bacterial viability under a 1.2 J dose of visible-light irradiation at the lowest concentration of 5 μg·mL-1 compared to Ti3C2Tx (15 μg·mL-1), TiS2-C (10 μg·mL-1), and standard antibiotic ciprofloxacin (15 μg·mL-1), respectively. The enhanced degradation efficiency is attributed to the ultrathin TiS2 NSs encapsulated within heteroatom N,S-doped C, facilitating effective photogenerated charge-carrier separation that generates multiple reactive oxygen species (ROS) and induced physical stress as well as piercing action due to its ultrathin structure, resulting in multimechanistic cytotoxicity and damage to bacterial cells. Furthermore, the obtained results from molecular docking studies conducted via computational simulation (in silico) of the as-synthesized materials against selected proteins (β-lactamasE. coli/DNA-GyrasE. coli) are well-consistent with the in vitro antibacterial results, providing strong and consistent validation. Thus, this sophisticated study presents a simple and effective synthesis technique for the structural engineering of metal sulfide-based hybrids as functionalized synthetic bactericides.
Collapse
Affiliation(s)
- Basit Ali Shah
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, People's Republic of China
| | - Asma Sardar
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber-Pakhtunkhwa, Pakistan
| | - Kai Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
| | - Syed Taj Ud Din
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| | - Shaobo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Jiang J, Lv X, Cheng H, Yang D, Xu W, Hu Y, Song Y, Zeng G. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater 2024; 177:1-19. [PMID: 38336269 DOI: 10.1016/j.actbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The emergence of drug-resistant bacteria has significantly diminished the efficacy of existing antibiotics in the treatment of bacterial infections. Consequently, the need for finding a strategy capable of effectively combating bacterial infections has become increasingly urgent. Photodynamic therapy (PDT) is considered one of the most promising emerging antibacterial strategies due to its non-invasiveness, low adverse effect, and the fact that it does not lead to the development of drug resistance. However, bacteria at the infection sites often exist in the form of biofilm instead of the planktonic form, resulting in a hypoxic microenvironment. This phenomenon compromises the treatment outcome of oxygen-dependent type-II PDT. Compared to type-II PDT, type-I PDT is not constrained by the oxygen concentration in the infected tissues. Therefore, in the treatment of bacterial infections, type-I PDT exhibits significant advantages over type-II PDT. In this review, we first introduce the fundamental principles of type-I PDT in details, including its physicochemical properties and how it generates reactive oxygen species (ROS). Next, we explore several specific antimicrobial mechanisms utilized by type-I PDT and summarize the recent applications of type-I PDT in antimicrobial treatment. Finally, the limitations and future development directions of type-I photosensitizers are discussed. STATEMENT OF SIGNIFICANCE: The misuse and overuse of antibiotics have accelerated the development of bacterial resistance. To achieve the effective eradication of resistant bacteria, pathfinders have devised various treatment strategies. Among these strategies, type I photodynamic therapy has garnered considerable attention owing to its non-oxygen dependence. The utilization of non-oxygen-dependent photodynamic therapy not only enables the effective elimination of drug-resistant bacteria but also facilitates the successful eradication of hypoxic biofilms, which exhibits promising prospects for treating biofilm-associated infections. Based on the current research status, we anticipate that the novel type I photodynamic therapy agent can surmount the biofilm barrier, enabling efficient treatment of hypoxic biofilm infections.
Collapse
Affiliation(s)
- Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Huijuan Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wenjia Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648.
| |
Collapse
|
9
|
Wang H, Cheng K, Sun S, Wang P, Zhou Y, Sun H, Wang X, Shen H, Li S, Lin H. Controllable Assembly of Cu 2+ and Chlorin E6 for H 2 S-Activatable Recognition of Bacterial Infection and Enhanced Antibacterial Therapy. Adv Healthc Mater 2024; 13:e2302481. [PMID: 38242099 DOI: 10.1002/adhm.202302481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Antibacterial photodynamic therapy (APDT) has emerged as one of the intriguing strategies to combat bacterial resistance. However, the antibacterial efficacy of APDT is found to be severely impacted by the hydrogen sulfide (H2 S)-overproduced bacterial infection microenvironment. Herein, a multifunctional APDT platform is developed by assembling Cu2+ and chlorin e6 (Ce6), which exhibits unique H2 S-activatable fluorescence (FL) and antibacterial features. Noteworthily, the assembly conditions are crucial for achievement of Cu-Ce6 nanoassemblies (NAs) with the on-demand responsive properties. The quenched FL and photosensitization of Cu-Ce6 NAs can be selectively activated by the overexpressed H2 S in infected area, enabling specific recognition of bacterial infection and localized antibacterial therapy with minimized side effects. Significantly, amplified oxidative stress is achieved owning to the effective consumption of H2 S by Cu2+ in the NAs, leading to an enhanced APDT. The antibacterial mechanisms including broad-spectrum APDT activity of released Ce6, inherent sterilization effects of produced copper polysulfides and the accompanying disturbance of bacterial sulphide metabolism are further identified. This study may pave a new avenue for the rational design of intelligent APDT platform using minimalist biological building units and thus facilitating the clinical translation of nano-antibacterial agents.
Collapse
Affiliation(s)
- Henggang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ke Cheng
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peng Wang
- Department of radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214122, China
| | - Haoyi Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinxin Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hongzhe Shen
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
10
|
Bahri M, Yu D, Zhang CY, Chen Z, Yang C, Douadji L, Qin P. Unleashing the potential of tungsten disulfide: Current trends in biosensing and nanomedicine applications. Heliyon 2024; 10:e24427. [PMID: 38293340 PMCID: PMC10826743 DOI: 10.1016/j.heliyon.2024.e24427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The discovery of graphene ignites a great deal of interest in the research and advancement of two-dimensional (2D) layered materials. Within it, semiconducting transition metal dichalcogenides (TMDCs) are highly regarded due to their exceptional electrical and optoelectronic properties. Tungsten disulfide (WS2) is a TMDC with intriguing properties, such as biocompatibility, tunable bandgap, and outstanding photoelectric characteristics. These features make it a potential candidate for chemical sensing, biosensing, and tumor therapy. Despite the numerous reviews on the synthesis and application of TMDCs in the biomedical field, no comprehensive study still summarizes and unifies the research trends of WS2 from synthesis to biomedical applications. Therefore, this review aims to present a complete and thorough analysis of the current research trends in WS2 across several biomedical domains, including biosensing and nanomedicine, covering antibacterial applications, tissue engineering, drug delivery, and anticancer treatments. Finally, this review also discusses the potential opportunities and obstacles associated with WS2 to deliver a new outlook for advancing its progress in biomedical research.
Collapse
Affiliation(s)
- Mohamed Bahri
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Can Yang Zhang
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengming Yang
- University of Science and Technology Hospital, Shenzhen, Guangdong Province, China
| | - Lyes Douadji
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing City, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
11
|
Ran B, Ran L, Wang Z, Liao J, Li D, Chen K, Cai W, Hou J, Peng X. Photocatalytic Antimicrobials: Principles, Design Strategies, and Applications. Chem Rev 2023; 123:12371-12430. [PMID: 37615679 DOI: 10.1021/acs.chemrev.3c00326] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nowadays, the increasing emergence of antibiotic-resistant pathogenic microorganisms requires the search for alternative methods that do not cause drug resistance. Phototherapy strategies (PTs) based on the photoresponsive materials have become a new trend in the inactivation of pathogenic microorganisms due to their spatiotemporal controllability and negligible side effects. Among those phototherapy strategies, photocatalytic antimicrobial therapy (PCAT) has emerged as an effective and promising antimicrobial strategy in recent years. In the process of photocatalytic treatment, photocatalytic materials are excited by different wavelengths of lights to produce reactive oxygen species (ROS) or other toxic species for the killing of various pathogenic microbes, such as bacteria, viruses, fungi, parasites, and algae. Therefore, this review timely summarizes the latest progress in the PCAT field, with emphasis on the development of various photocatalytic antimicrobials (PCAMs), the underlying antimicrobial mechanisms, the design strategies, and the multiple practical antimicrobial applications in local infections therapy, personal protective equipment, water purification, antimicrobial coatings, wound dressings, food safety, antibacterial textiles, and air purification. Meanwhile, we also present the challenges and perspectives of widespread practical implementation of PCAT as antimicrobial therapeutics. We hope that as a result of this review, PCAT will flourish and become an effective weapon against pathogenic microorganisms and antibiotic resistance.
Collapse
Affiliation(s)
- Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Liao
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Dandan Li
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Keda Chen
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
12
|
Rouzifar M, Sobhani S, Farrokhi A, Sansano JM. Cobalt isatin-Schiff-base derivative of MOF as a heterogeneous multifunctional bio-photocatalyst for sunlight-induced tandem air oxidation condensation process. Sci Rep 2023; 13:5115. [PMID: 36991101 DOI: 10.1038/s41598-023-32241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
A sunlight-induced tandem air oxidation-condensation of alcohols with ortho-substituted anilines or malononitrile for the efficient synthesis of benz-imidazoles/-oxazoles/-thiazoles, or benzylidene malononitrile catalyzed by Co-isatin-Schiff-base-MIL-101(Fe) as a heterogeneous multifunctional bio-photocatalyst is reported. In these reactions, Co-isatin-Schiff-base-MIL-101(Fe) acts both as a photocatalyst, and a Lewis acid to catalyze the reaction of the in-situ formed aldehydes with o-substituted anilines or malononitrile. A significant decrease in the band gap energy and an increase in the characteristic emission of MIL-101(Fe) after functionalization with cobalt Schiff-base according to the DRS analysis and fluorescence spectrophotometry, respectively, indicate that the photocatalytic effectiveness of the catalyst is associated primarily to the synergetic influence of Fe-O cluster and Co-Schiff-base. EPR results obviously pointed out that Co-isatin-Schiff-base-MIL-101(Fe) is capable of creating 1O2 and O2⋅- as active oxygen species under visible light irradiation. Using an inexpensive catalyst, sunlight irradiation, air as a cost-effective and abundant oxidant, and a low amount of the catalyst with recoverability and durability in ethanol as a green solvent, make this methodology as an environmentally friendly process with energy-saving organic synthetic strategies. Furthermore, Co-isatin-Schiff-base-MIL-101(Fe) displays excellent photocatalytic antibacterial activity under sunlight irradiation against E. coli, S. aureus and S. pyogenes. Based on our knowledge, this is the first report of using a bio-photocatalyst for the synthesis of the target molecules.
Collapse
Affiliation(s)
- Majid Rouzifar
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.
| | - Alireza Farrokhi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
13
|
Fathi-Hafshejani P, Tinker HB, Freel K, Mahjouri-Samani M, Hasim S. Effects of TiS 2 on Inhibiting Candida albicans Biofilm Formation and Its Compatibility with Human Gingival Fibroblasts in Titanium Implants. ACS APPLIED BIO MATERIALS 2023; 6:436-444. [PMID: 36723506 DOI: 10.1021/acsabm.2c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Titanium is widely used in medical devices, such as dental and orthopedic implants, due to its excellent mechanical properties, low toxicity, and biocompatibility. However, the titanium surface has the risk of microbial biofilm formation, which results in infections from species such as Candida albicans (C. albicans). This kind of biofilm prevents antifungal therapy and complicates the treatment of infectious diseases associated with implanted devices. It is critical to developing a feasible surface to decrease microbial growth while not interfering with the growth of the host cells. This study reports the influence of titanium surface modification to titanium disulfide (TiS2) on inhibiting C. albicans biofilm formation while allowing the attachment of human gingival fibroblasts (HGFs) on their surface. The surface of titanium parts is directly converted to structured titanium and TiS2 using direct laser processing and crystal growth methods. C. albicans adhesion and colonization are then investigated on these surfaces by the colony counting assay and reactive oxygen species (ROS) assay, using 2',7'-dichlorofluorescin diacetate (DCFH-DA) and microscopy images. Also, the viability and adhesion of HGFs on these surfaces are investigated to show their adhesion and biocompatibility. Titanium samples with the TiS2 surface show both C. albicans biofilm inhibition and HGF attachment. This study provides insight into designing and manufacturing titanium biomedical implants.
Collapse
Affiliation(s)
- Parvin Fathi-Hafshejani
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Hunter B Tinker
- Department of Biology, Mercer University, Macon, Georgia31207, United States
| | - Katherine Freel
- Department of Biology, Mercer University, Macon, Georgia31207, United States
| | - Masoud Mahjouri-Samani
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Sahar Hasim
- Department of Biology, Mercer University, Macon, Georgia31207, United States
| |
Collapse
|
14
|
Baláž M, Augustyniak A, Tatykayev B, Shalabayev Z, Burashev G, Dutková E, Daneu N, Briančin J, Balážová Ľ, Tkáčiková Ľ, Stahorský M, Achimovičová M, Baláž P. Mechanochemical synthesis of non-stoichiometric copper sulfide Cu 1.8S applicable as a photocatalyst and antibacterial agent and synthesis scalability verification. Faraday Discuss 2023; 241:367-386. [PMID: 36193820 DOI: 10.1039/d2fd00082b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An effort to prepare different non-stoichiometric CuxSy compounds starting from elemental precursors using mechanochemistry was made in this study. However, out of the 7 stoichiometries tested, it was only possible to obtain three phases: covellite CuS, chalcocite Cu2S and digenite Cu1.8S and their mixtures. To obtain the digenite phase with the highest purity, the Cu : S stoichiometric ratio needed to be fixed at 1.6 : 1. The reaction between copper and sulfur was completed within a second range, however, milling was performed for up to 15 minutes until the equilibrium in phase composition between digenite and covellite was reached. The possibility of preparing the product in a 300 g batch by eccentric vibratory milling in 30 minutes was successfully verified at the end. The estimated crystallite sizes for the digenite Cu1.8S obtained via lab-scale and scalable experiments were around 12 and 17 nm, respectively. The obtained products were found to be efficient photocatalysts under visible light irradiation in the presence of hydrogen peroxide, being capable of the complete degradation of the Methyl Orange dye in a concentration of 10 mg L-1 in 2 hours. Finally, the antibacterial potential of both lab-scale and large-scale industrial products was proven and, regardless of the manufacturing scale, the nanoparticles retained their properties against bacterial cells.
Collapse
Affiliation(s)
- Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Adrian Augustyniak
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.,Faculty of Chemical Technology and Engineering, The West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
| | - Batukhan Tatykayev
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040 Almaty, Kazakhstan
| | - Zhandos Shalabayev
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040 Almaty, Kazakhstan
| | - Gairat Burashev
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040 Almaty, Kazakhstan
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Nina Daneu
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Jaroslav Briančin
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Ľudmila Balážová
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Ľudmila Tkáčiková
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Martin Stahorský
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Marcela Achimovičová
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Peter Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| |
Collapse
|
15
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Wu S, Qiao J, Tang Y, Zhang X, Meng X, Hao S, Tian H, Li B, Zuo X, Liu J, Wu L, Wang Z, Wang F. Heterogeneous Cu9S5/C nanocomposite fibers with adjustable electromagnetic parameters for efficient electromagnetic absorption. J Colloid Interface Sci 2023; 630:47-56. [DOI: 10.1016/j.jcis.2022.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
17
|
Mutalik C, Lin IH, Krisnawati DI, Khaerunnisa S, Khafid M, Widodo, Hsiao YC, Kuo TR. Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview. Int J Nanomedicine 2022; 17:6821-6842. [PMID: 36605560 PMCID: PMC9809169 DOI: 10.2147/ijn.s392081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Across the planet, outbreaks of bacterial illnesses pose major health risks and raise concerns. Photodynamic, photothermal, and metal ion release effects of transition metal-based nanocomposites (TMNs) were recently shown to be highly effective in reducing bacterial resistance and upsurges in outbreaks. Surface plasmonic resonance, photonics, crystal structures, and optical properties of TMNs have been used to regulate metal ion release, produce oxidative stress, and generate heat for bactericidal applications. The superior properties of TMNs provide a chance to investigate and improve their antimicrobial actions, perhaps leading to therapeutic interventions. In this review, we discuss three alternative antibacterial strategies based on TMNs of photodynamic therapy, photothermal therapy, and metal ion release and their mechanistic actions. The scientific community has made significant efforts to address the safety, effectiveness, toxicity, and biocompatibility of these metallic nanostructures; significant achievements and trends have been highlighted in this review. The combination of therapies together has borne significant results to counter antimicrobial resistance (4-log reduction). These three antimicrobial pathways are separated into subcategories based on recent successes, highlighting potential needs and challenges in medical, environmental, and allied industries.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | | | - Siti Khaerunnisa
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhamad Khafid
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, East Java, Indonesia
| | - Widodo
- College of Information System, Universitas Nusantara PGRI, Kediri, Indonesia
| | - Yu-Cheng Hsiao
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,Stanford Byers Center for Biodesign, Stanford University, Stanford, CA, USA,Correspondence: Yu-Cheng Hsiao; Tsung-Rong Kuo, Tel +886-2-66382736 ext. 1359; +886-2-27361661 ext. 7706, Email ;
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Hao S, Han H, Yang Z, Chen M, Jiang Y, Lu G, Dong L, Wen H, Li H, Liu J, Wu L, Wang Z, Wang F. Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. NANO-MICRO LETTERS 2022; 14:178. [PMID: 36001173 PMCID: PMC9402885 DOI: 10.1007/s40820-022-00901-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/26/2022] [Indexed: 05/04/2023]
Abstract
HIGHLIGHTS Fabrication, characterizations and photothermal properties of MXenes are systematically described. Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed. Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated. ABSTRACT The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes. [Image: see text]
Collapse
Affiliation(s)
- Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Mengting Chen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| | - Guixia Lu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
19
|
Chiou YR, Lin CJ, Harroun SG, Chen YR, Chang L, Wu AT, Chang FC, Lin YW, Lin HJ, Anand A, Unnikrishnan B, Nain A, Huang CC. Aminoglycoside-mimicking carbonized polymer dots for bacteremia treatment. NANOSCALE 2022; 14:11719-11730. [PMID: 35913451 DOI: 10.1039/d2nr01959k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteremia and associated bacterial sepsis are potentially fatal and occur when the host response to microbial invasion is impaired or compromised. This motivated us to develop carbonized polymer dots (CPDsMan/AA) from a mixture of mannose (Man) and positively charged amino acids [AAs; lysine, arginine (Arg), or histidine] through a one-step mild pyrolysis procedure, which effectively inhibited drug-resistant bacterial strains isolated from septic patients. The as-prepared CPDsMan/AA showed broad-spectrum antibacterial activity, including multidrug-resistant bacteria, even in human plasma. The minimal inhibitory concentration of CPDsMan/Arg is ca. 1.0 μg mL-1, which is comparable to or lower than those of other tested antibiotics (e.g., ampicillin, gentamicin, and vancomycin). In addition to directly disrupting bacterial membranes, the CPDsMan/Arg feature a structure similar to aminoglycoside antibiotics that could bind to 16S rRNA, thereby blocking bacterial protein synthesis. In vitro cytotoxic and hemolytic assays demonstrated the high biocompatibility of the CPDsMan/AA. In addition, in vivo studies on methicillin-resistant Staphylococcus aureus-infected mice treated with the CPDsMan/Arg showed a significant decrease in mortality-even better than that of antibiotics. Overall, the synthesis of the CPDsMan/AA is cost-efficient, straightforward, and effective for treating bacteremia. The polymeric features of the CPDsMan/Arg, including cationic charges and specific groups, can be recognized as a safe and broad-spectrum biocide to lessen our reliance on antibiotics to treat systemic bacterial infections in the future.
Collapse
Affiliation(s)
- Yi-Ru Chiou
- Graduate Institute of Photonics, National Changhua University of Education, Changhua 50058, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Yi-Ru Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Lung Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan
| | - An-Tai Wu
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Fu-Chieh Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan
- Nursing and Management, Mackay Junior College of Medicine, Taipei 11260, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Amit Nain
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
20
|
Baláž M, Tkáčiková L, Stahorský M, Casas-Luna M, Dutková E, Čelko L, Kováčová M, Achimovičová M, Baláž P. Ternary and Quaternary Nanocrystalline Cu-Based Sulfides as Perspective Antibacterial Materials Mechanochemically Synthesized in a Scalable Fashion. ACS OMEGA 2022; 7:27164-27171. [PMID: 35967044 PMCID: PMC9366776 DOI: 10.1021/acsomega.2c01657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Twelve Cu-based ternary (Cu-Me1-S, Me1 = Fe, Sn, or Sb) and quaternary (Cu-Me2-Sn-S, Me2 = Fe, Zn, or V) nanocrystalline sulfides are shown as perspective antibacterial materials here. They were prepared from elemental precursors by a one-step solvent-free mechanochemical synthesis in a 100 g batch using scalable eccentric vibratory ball milling. Most of the products have shown strong antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. For instance, stannite Cu2FeSnS4 and mohite Cu2SnS3 were the most active against E. coli, whereas kesterite Cu2ZnSnS4 and rhodostannite Cu2FeSn3S8 exhibited the highest antibacterial activity against S. aureus. In general, stannite has shown the best antibacterial properties out of all the studied samples. Five out of twelve products have been prepared using mechanochemical synthesis for the first time in a scalable fashion here. The presented synthetic approach is a promising alternative to traditional syntheses of nanomaterials suitable for biological applications and shows ternary and quaternary sulfides as potential candidates for the next-generation antibacterial agents.
Collapse
Affiliation(s)
- Matej Baláž
- Institute
of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - L’udmila Tkáčiková
- Department
of Microbiology and Immunology, University
of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Martin Stahorský
- Institute
of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Mariano Casas-Luna
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Erika Dutková
- Institute
of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Ladislav Čelko
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Mária Kováčová
- Institute
of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Marcela Achimovičová
- Institute
of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Peter Baláž
- Institute
of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| |
Collapse
|
21
|
Stavitskaya A, Khusnetdenova E, Vinokurov V, Lvov Y, Fakhrullin R. Prokaryotic and eukaryotic toxicity of halloysite decorated with photoactive nanoparticles. Chem Commun (Camb) 2022; 58:7719-7729. [PMID: 35781299 DOI: 10.1039/d2cc02439j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of new approaches to treat the growing antibiotic resistance of pathogenic bacterial species is an important task to ensure the future safety of society. Utilization of irradiation of different wavelengths together with nanostructured materials based on metal containing nanoparticles may result in synergetic antibacterial effects. In this paper we aim to show the main conceptions of light-assisted bacteria deactivation techniques and prospects of application of natural clay nanotubes as a carrier for scalable photoactive antibacterial nanomaterials. Halloysite aluminosilicate nanotubes (ca 50 nm diameter, ca. 1.0 μm length) are safe and biocompatible natural materials produced in tons. Their application as a template or a carrier for metal nanoparticles, QDs and organic compounds has already found application in biomedical research, cosmetics, polymers, coatings, catalysis and related applications. Here, we show the toxicity of halloysite decorated with photoactive nanoparticles on prokaryotic and eukaryotic cells. The formation of light active nanostructured materials with this clay as the base is a promising tool for solving the problem of the antibiotic resistance of microorganisms.
Collapse
Affiliation(s)
- Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin State University, Moscow, Russian Federation
| | - Elnara Khusnetdenova
- Department of Physical and Colloid Chemistry, Gubkin State University, Moscow, Russian Federation
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin State University, Moscow, Russian Federation
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Technical University, Ruston, USA
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Gubkin State University, Moscow, Russian Federation.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
22
|
Photoinduced Antibacterial Activity and Cytotoxicity of CdS Stabilized on Mesoporous Aluminosilicates and Silicates. Pharmaceutics 2022; 14:pharmaceutics14071309. [PMID: 35890205 PMCID: PMC9317289 DOI: 10.3390/pharmaceutics14071309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Inactivation of bacteria under the influence of visible light in presence of nanostructured materials is an alternative approach to overcome the serious problem of the growing resistance of pathogenic bacteria to antibiotics. Cadmium sulfide quantum dots are superefficient photocatalytic material suitable for visible light transformation. In this work, CdS nanoparticles with size of less than 10 nm (QDs) were synthesized on the surface of natural and synthetic mesoporous aluminosilicates and silicates (halloysite nanotubes, MCM-41, MCM-41/Halloysite, SBA-15). Materials containing 5–7 wt.% of CdS were characterized and tested as agents for photocatalytic bacteria degradation of Gram-positive S. aureus and Gram-negative E. coli with multiple antibiotic resistance. Eukaryotic cell viability tests were also conducted on the model cancer cells A 459. We found that the carrier affects prokaryotic and eukaryotic toxicity of CdS quantum dots. CdS/MCM-41/HNTs were assumed to be less toxic to eukaryotic cells and possess the most prominent photocatalytic antibacterial efficiency. Under visible light irradiation, it induced 100% bacterial growth inhibition at the concentration of 125 μg/mL and the bacteriostatic effect at the concentration of 63 μg/mL. CdS/MCM-41/HNTs showed 100% E. coli growth inhibition in the concentration of 1000 μg/mL under visible light irradiation.
Collapse
|
23
|
Han H, Xu X, Kan H, Tang Y, Liu C, Wen H, Wu L, Jiang Y, Wang Z, Liu J, Wang F. Synergistic photodynamic/photothermal bacterial inactivation over heterogeneous quaternized chitosan/silver/cobalt phosphide nanocomposites. J Colloid Interface Sci 2022; 616:304-315. [PMID: 35219196 DOI: 10.1016/j.jcis.2022.02.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
Abstract
Globally, drug-resistant bacteria are a potential threat to human society owing to the overuse of antibiotics and thus, non-antibiotic bactericides are urgently needed. Herein, an innovative antibacterial nanoplatform based on quaternized chitosan (QCS)/ silver (Ag)/ cobalt phosphide (CoP) nanocomposites is envisaged for achieving near-infrared (NIR) laser-inducible rapid sterilisation. In the core-shell hybrids, Ag nanoparticles (NPs) with a size of ∼ 25 nm were uniformly deposited on CoP nanoneedles, upon which a layer of QCS (approximately 10 wt%), is coated. Numerical calculations revealed that under NIR irradiation, high-energy hot electrons arising from the surface plasmon resonance effect of Ag migrate into the interface between Ag and CoP, and amplify the photothermal effect of CoP. Meanwhile, photo-excited electrons from CoP are transported onto Ag NPs because the Schottky heterostructure facilitates the production of reactive oxygen species. Ag loading simultaneously enhances the photocatalytic and photothermal effects of CoP, achieving rapid antibacterial activity synergistically. The QCS coating improves the dispersibility of power in an aqueous system and provides contact between the antiseptics and bacteria. The ternary QCS/Ag/CoP nanocomposites achieved greater than 99.6% inactivation against S. aureus and E. coli within 10 min. In addition, the nanocomposites were confirmed to be noncytotoxic to mammals. Consequently, the QCS/Ag/CoP nanoplatforms possess great potential for rapid and effective antibacterial applications.
Collapse
Affiliation(s)
- Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China
| | - Xiaoying Xu
- Department of Virology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Haopeng Kan
- Department of Virology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China
| | - Chang Liu
- Department of Virology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, Shandong 250012, China.
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
24
|
Yan W, Fu X, Gao Y, Shi L, Liu Q, Yang W, Feng J. Synthesis, antibacterial evaluation, and safety assessment of CuS NPs against Pectobacterium carotovorum subsp. carotovorum. PEST MANAGEMENT SCIENCE 2022; 78:733-742. [PMID: 34689404 DOI: 10.1002/ps.6686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/03/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Copper agents have been widely used in crop protection because of their unique mechanism against resistant pathogenic bacteria; however, their application brings environmental pollution and biosafety problems. Therefore, environmentally friendly copper agents have attracted attention. In this study, copper sulfide nanoparticles (CuS NPs) were prepared, characterized, analyzed for antibacterial activity and safety. RESULTS Characterization results showed that the prepared pure CuS NPs have flake nanostructures, hexagonal crystal system, and size range from 40 to 60 nm. These CuS NPs exerted excellent antibacterial effects [median effective concentration (EC50 ) = 17 mg L-1 ] against Pectobacterium carotovorum subsp. carotovorum (Pcc) in vitro and can effectively delay and reduce bacterial infection in vivo. Antibacterial mechanism analysis revealed that CuS NPs can increase the levels of reactive oxygen species (ROS) and lipid peroxidation and destroy the structure of bacterial cells as observed through scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. These NPs can also inhibit the motility of Pcc. At 7 and 14 days, the 50% lethal concentrations (LC50 ) of CuS NPs against earthworms were 1136 and 783 mg kg-1 , respectively, indicating their low acute toxicity to earthworms and environmental friendliness. Furthermore, the cells (L02) treated by CuS NPs showed relatively high cell viability (> 96%) and low apoptosis rate (only 5.2%), proving that CuS NPs had low cytotoxicity. CONCLUSION Compared with commercial dicopper chloride trihydroxide (Cu2 (OH)3 Cl), CuS NPs could be used as a highly effective, lowly toxic, and environmentally friendly antibacterial agent. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiyao Yan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuan Fu
- Medical College, Yangzhou University, Yangzhou, China
| | - Yuan Gao
- Medical College, Yangzhou University, Yangzhou, China
| | - Liyin Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Wenchao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Xie Y, Gan C, Li Z, Liu W, Yang D, Qiu X. Fabrication of a Lignin-Copper Sulfide-Incorporated PVA Hydrogel with Near-Infrared-Activated Photothermal/Photodynamic/Peroxidase-like Performance for Combating Bacteria and Biofilms. ACS Biomater Sci Eng 2022; 8:560-569. [PMID: 35077128 DOI: 10.1021/acsbiomaterials.1c01406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic-resistant bacteria and biofilms are among the most difficult challenges in infection treatment. Herein, lignin-copper sulfide (LS-CuS) nanocomposites were incorporated into a poly(vinyl alcohol) (PVA) hydrogel to fabricate a LS-CuS@PVA composite hydrogel with near-infrared-activated photothermal, photodynamic, and peroxidase-like performance. The antibacterial tests of LS-CuS@PVA exhibited the highest antibacterial rate that caused 3.8-log and 4.8-log reductions of colony forming units (CFUs) against Escherichia coli and Staphylococcus aureus in the presence of H2O2 under near-infrared (NIR) light irradiation for 10 min. The significantly improved bactericidal performance could be attributed to the synergistic effects of hyperthermia and reactive oxygen species (ROS). Furthermore, the LS-CuS@PVA hydrogel could eradicate the already formed biofilm and inhibit biofilm formation. Considering the highly effective antibacterial and antibiofilm activity of the LS-CuS@PVA hydrogel, this work could provide new insights for the design of poly(vinyl alcohol)-based composite hydrogels for wound healing and wound dressing.
Collapse
Affiliation(s)
- Yuanxiang Xie
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Chuchu Gan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
26
|
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022; 17:5947-5990. [PMID: 36510620 PMCID: PMC9739148 DOI: 10.2147/ijn.s382796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial-infected wounds are a serious threat to public health. Bacterial invasion can easily delay the wound healing process and even cause more serious damage. Therefore, effective new methods or drugs are needed to treat wounds. Nanozyme is an artificial enzyme that mimics the activity of a natural enzyme, and a substitute for natural enzymes by mimicking the coordination environment of the catalytic site. Due to the numerous excellent properties of nanozymes, the generation of drug-resistant bacteria can be avoided while treating bacterial infection wounds by catalyzing the sterilization mechanism of generating reactive oxygen species (ROS). Notably, there are still some defects in the nanozyme antibacterial agents, and the design direction is to realize the multifunctionalization and intelligence of a single system. In this review, we first discuss the pathophysiology of bacteria infected wound healing, the formation of bacterial infection wounds, and the strategies for treating bacterially infected wounds. In addition, the antibacterial advantages and mechanism of nanozymes for bacteria-infected wounds are also described. Importantly, a series of nanomaterials based on nanozyme synthesis for the treatment of infected wounds are emphasized. Finally, the challenges and prospects of nanozymes for treating bacterial infection wounds are proposed for future research in this field.
Collapse
Affiliation(s)
- Fayin Mo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Duanping Sun; Tianhui You, Email ;
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
27
|
Li Z, Chen H, Li Y, Wang H, Liu Y, Li X, Lin H, Li S, Wang L. Porous direct Z-scheme heterostructures of S-deficient CoS/CdS hexagonal nanoplates for robust photocatalytic H2 generation. CrystEngComm 2022. [DOI: 10.1039/d1ce01453f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Unique porous S-deficient CoS/CdS hexagonal nanoplates exhibited an outstanding photocatalytic capability for H2 production, due to excellent visible-light response, efficient Z-scheme charge separation, and abundant H2-evolving active sites.
Collapse
Affiliation(s)
- Zhihui Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hanchu Chen
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanyan Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hui Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanru Liu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xia Li
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China
| | - Haifeng Lin
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
28
|
Li J, Ma J, Hong L, Yang C. Prominent antibacterial effect of sub 5 nm Cu nanoparticles/MoS 2composite under visible light. NANOTECHNOLOGY 2021; 33:075706. [PMID: 34727538 DOI: 10.1088/1361-6528/ac3577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Achieving an efficient and inexpensive bactericidal effect is a key point for the design of antibacterial agent. Recent advances have proved molybdenum disulfide (MoS2) as a promising platform for antimicrobial applications, while the combination of metal nanoparticle would promote the antibacterial efficiency. Nevertheless, the dispersivity, cheapness and safety of metal nanoparticle loaded on MoS2raised some concerns. In this paper, we successfully realized a uniform decoration of copper nanoparticles (CuNPs) on surface of MoS2nanosheets, and the size of CuNPs could be controlled below 5 nm. Under 5 min irradiation of 660 nm visible light, the synthesized CuNPs/MoS2composite demonstrated superior antibacterial performances (almost 100% bacterial killed) towards both Gram-negativeE. coliand Gram-positiveS. aureusover the single component (Cu or MoS2), while the bactericidal effect could last for at least 6 h. The synergism of photodynamic generated hydroxyl radical (·OH), oxidative stress without reactive oxygen species production and the release of Cu ions was considered as the mechanism for the antibacterial properties of CuNPs/MoS2. Our findings provided new insights into the development of two-dimensional antibacterial nanomaterials of high cost performance.
Collapse
Affiliation(s)
- Jingze Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jiaxin Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liu Hong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
29
|
Peng Z, Zhang X, Yuan L, Li T, Chen Y, Tian H, Ma D, Deng J, Qi X, Yin X. Integrated endotoxin-adsorption and antibacterial properties of platelet-membrane-coated copper silicate hollow microspheres for wound healing. J Nanobiotechnology 2021; 19:383. [PMID: 34809612 PMCID: PMC8607565 DOI: 10.1186/s12951-021-01130-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serious infection caused by drug-resistant gram-negative bacteria and their secreted toxins (e.g., lipopolysaccharide) is a serious threat to human health. Thus, treatment strategies that efficiently kill bacteria and reducing the impact of their toxins simultaneously are urgently required. Herein, a novel antibacterial platform composed of a mesoporous copper silicate microsphere (CSO) core and a platelet membrane (PM) shell was prepared (CSO@PM). CSO@PM specifically targets bacteria owing to formyl peptide receptors on the PM and, combined with photothermal therapy (PTT), exhibits highly effective bacter icidal activity. Importantly, CSO@PM can adsorb lipopolysaccharide secreted by gram-negative bacteria, resulting in inflammation reduction. Thus, CSO@PM stimulates re-epithelialization and granulation-tissue formation, promoting wound healing. Moreover, this antibacterial platform exhibits no obvious toxicity at all the test concentrations in vitro and in vivo. Thus, CSO@PM exhibits a robust antibacterial effect and a strong toxin-adsorption capacity, facilitating the clinical treatment of many bacterial infections and the development of next-generation antibacterial nanoagents.
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaochun Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ting Li
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dandan Ma
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
30
|
Yang T, Zhu E, Guo H, Du J, Wu Y, Liu C, Che G. Visible Light-Driven D-A Conjugated Linear Polymer and Its Coating for Dual Highly Efficient Photocatalytic Degradation and Disinfection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51447-51458. [PMID: 34676747 DOI: 10.1021/acsami.1c14240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a novel donor-acceptor (D-A) conjugated linear polymeric system, poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-2,5-(3-carboxyl)-thiophene] (PBDT-F-COOH), with outstanding processing ability and its all-organic PBDT-F-COOH coating featuring chemical bonding for combination with polyurethane were prepared. Wide visible spectrum-driven PBDT-F-COOH and PBDT-F-COOH-PU showed dual efficient photocatalytic activities toward degradation and disinfection, mainly attributing to efficient dissociation of excitons and transfer of charge carriers, resulting from the large dipole moment of D-A PBDT-F-COOH. PBDT-F-COOH demonstrated >99.2% inactivation of Staphylococcus aureus (S. aureus) within 1 h and a 7-log decrease in 4 h under visible light irradiation. Additionally, the coating showed the 7-log inactivation of S. aureus in 7 h. These inactivation efficiency results are among those of the best reported D-A conjugated linear polymers. Importantly, PBDT-F-COOH and the PBDT-F-COOH-PU coating both presented satisfactory stability with high photocatalytic activity after recycling runs. This work provides a feasible approach for fabricating nontoxic and highly active organic photocatalysts with wide visible spectra and a large dipole moment via a D-A linear structure design protocol.
Collapse
Affiliation(s)
- Tingyu Yang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Enwei Zhu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Haiyong Guo
- School of Life Science, Jilin Normal University, Siping 136000, P. R. China
| | - Juan Du
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Yuanyuan Wu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Chunbo Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P. R. China
| |
Collapse
|
31
|
Lang S, Chen C, Xiang J, Liu Y, Li K, Hu Q, Liu G. Facile and Robust Antibacterial Functionalization of Medical Cotton Gauze with Gallic Acids to Accelerate Wound Healing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shiying Lang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jun Xiang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yuqi Liu
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Kaijun Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qinsheng Hu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gongyan Liu
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|