1
|
Montanhero Cabrera VI, do Nascimento Sividanes G, Quintiliano NF, Hikari Toyama M, Ghilardi Lago JH, de Oliveira MA. Exploring functional and structural features of chemically related natural prenylated hydroquinone and benzoic acid from Piper crassinervium (Piperaceae) on bacterial peroxiredoxin inhibition. PLoS One 2023; 18:e0281322. [PMID: 36827425 PMCID: PMC9956870 DOI: 10.1371/journal.pone.0281322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple drug resistance (MDR) bacterial strains are responsible by 1.2 million of human deaths all over the world. The pathogens possess efficient enzymes which are able to mitigate the toxicity of reactive oxygen species (ROS) produced by some antibiotics and the host immune cells. Among them, the bacterial peroxiredoxin alkyl hydroperoxide reductase C (AhpC) is able to decompose efficiently several kinds of hydroperoxides. To decompose their substrates AhpC use a reactive cysteine residue (peroxidatic cysteine-CysP) that together with two other polar residues (Thr/Ser and Arg) comprise the catalytic triad of these enzymes and are involved in the substrate targeting/stabilization to allow a bimolecular nucleophilic substitution (SN2) reaction. Additionally to the high efficiency the AhpC is very abundant in the cells and present virulent properties in some bacterial species. Despite the importance of AhpC in bacteria, few studies aimed at using natural compounds as inhibitors of this class of enzymes. Some natural products were identified as human isoforms, presenting as common characteristics a bulk hydrophobic moiety and an α, β-unsaturated carbonylic system able to perform a thiol-Michael reaction. In this work, we evaluated two chemically related natural products: 1,4-dihydroxy-2-(3',7'-dimethyl-1'-oxo-2'E,6'-octadienyl) benzene (C1) and 4-hydroxy-2-(3',7'-dimethyl-1'-oxo-2'E,6'-octadienyl) benzoic acid (C2), both were isolated from branches Piper crassinervium (Piperaceae), over the peroxidase activity of AhpC from Pseudomonas aeruginosa (PaAhpC) and Staphylococcus epidermidis (SeAhpC). By biochemical assays we show that although both compounds can perform the Michael addition reaction, only compound C2 was able to inhibit the PaAhpC peroxidase activity but not SeAhpC, presenting IC50 = 20.3 μM. SDS-PAGE analysis revealed that the compound was not able to perform a thiol-Michael addition, suggesting another inhibition behavior. Using computer-assisted simulations, we also show that an acidic group present in the structure of compound C2 may be involved in the stabilization by polar interactions with the Thr and Arg residues from the catalytic triad and several apolar interactions with hydrophobic residues. Finally, C2 was not able to interfere in the peroxidase activity of the isoform Prx2 from humans or even the thiol proteins of the Trx reducing system from Escherichia coli (EcTrx and EcTrxR), indicating specificity for P. aeruginosa AhpC.
Collapse
Affiliation(s)
| | | | | | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, SP, Brazil
| | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
- * E-mail: (MAO); (JHGL)
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, SP, Brazil
- * E-mail: (MAO); (JHGL)
| |
Collapse
|
2
|
Relevance of peroxiredoxins in pathogenic microorganisms. Appl Microbiol Biotechnol 2021; 105:5701-5717. [PMID: 34258640 DOI: 10.1007/s00253-021-11360-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establishment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural peculiarities that differentiate them from the host's isoforms. In this context, the intrinsic characteristics of these enzymes may aid the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines. KEY POINTS: • Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress. • Functional and structural peculiarities differ pathogen and host enzymes. • Peroxiredoxins are potential targets to microbicidal drugs.
Collapse
|
3
|
Lee A, Kim MS, Cho D, Jang KK, Choi SH, Kim TS. Vibrio vulnificus RtxA Is a Major Factor Driving Inflammatory T Helper Type 17 Cell Responses in vitro and in vivo. Front Immunol 2018; 9:2095. [PMID: 30283443 PMCID: PMC6157323 DOI: 10.3389/fimmu.2018.02095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
T helper type 17 (Th17) cells are a subset of pro-inflammatory T helper cells that mediate host defense and pathological inflammation. We have previously reported that host dendritic cells (DCs) infected with Vibrio vulnificus induce Th17 responses through the production of several pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6. V. vulnificus produces RTX toxin (RtxA), an important virulence factor that determines successful pathophysiology. In this study, we investigated the involvement of RtxA from V. vulnificus in Th17 cell induction through the activation and maturation of DCs. The increased expression of the DC surface marker CD40 caused by V. vulnificus wild-type infection was reduced by rtxA gene mutation in V. vulnificus. The mRNA and protein levels of Th17 polarization-related cytokines also decreased in V. vulnificus rtxA mutant-infected DCs. In addition, the co-culture of Th cells and DCs infected with rtxA mutant V. vulnificus resulted in reduction in DC-mediated Th17 responses. Th17 cell responses in the small intestinal lamina propria decreased in mice inoculated with V. vulnificus rtxA mutant as compared to those inoculated with the wild-type strain. These decreases in DC maturation, Th17-polarizing cytokine secretion, and Th17 responses attributed to rtxA mutation were restored following infection with the rtxA revertant strain. Furthermore, the mutation in the hlyU gene encoding the activator of rtxA1 gene reproduced the results observed with rtxA mutation. Taken together, V. vulnificus, by means of RtxA, induces inflammatory Th17 responses, which may be associated with adaptive responses of the host against V. vulnificus infection.
Collapse
Affiliation(s)
- Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Myun Soo Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Kyung Ku Jang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
4
|
Yu SC, Fen SY, Chien CL, Wong HC. Protective roles of katG-homologous genes against extrinsic peroxides in Vibrio parahaemolyticus. FEMS Microbiol Lett 2016; 363:fnw038. [PMID: 26892020 DOI: 10.1093/femsle/fnw038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2016] [Indexed: 12/12/2022] Open
Abstract
The marine foodborne enteropathogen, Vibrio parahaemolyticus, has four putative catalase genes. Function of the katG-homologous genes, katG1(VPA0768) and katG2(VPA0453), was examined using gene deletion mutants, and compared with those of the katE-homologous genes, katE1(VPA1418) and katE2(VPA0305). Bacterial growth of ΔkatG1 was significantly delayed in the presence of 200-300 μM H2O2, and such inhibition was enhanced when incubation temperature was lowered from 37°C to 22°C. In the stationary phase, the ΔkatG1 strain was more susceptible to the lethal dosage of H2O2 than the ΔkatE1 strain. The minimum inhibitory concentrations and minimum bactericidal concentrations revealed that ΔkatE1/ΔkatE2 strains were more susceptible to H2O2 than the ΔkatG1/ΔkatG2 strains in exponential phase, while ΔkatG1 was more susceptible than the ΔkatE1/ΔkatE2 strains in the starved culture. This study demonstrated the chief antioxidative role of katG1 in the stationary phase and starved culture of V. parahaemolyticus, while katG1 and katG2 were also responsive to H2O2 and cumene hydroperoxide in the exponential phase.
Collapse
Affiliation(s)
- Shu-Chuan Yu
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| | - Shin-yuan Fen
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| | - Cheng-Lun Chien
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| | - Hin-chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| |
Collapse
|
5
|
Influence of oxyR on Growth, Biofilm Formation, and Mobility of Vibrio parahaemolyticus. Appl Environ Microbiol 2015; 82:788-96. [PMID: 26590276 DOI: 10.1128/aem.02818-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
Vibrio parahaemolyticus is a common marine food-borne enteropathogen. In this study, we examined the antioxidative activity, growth, biofilm formation, and cell mobility of an oxyR deletion mutant and its genetically complementary strain of V. parahaemolyticus. oxyR is the regulator of catalase and ahpC genes. Protection against extrinsic H2O2 and against the organic peroxides cumene hydroperoxide and tert-butyl hydroperoxide was weaker in the deletion mutant than in its parent strain. Expression of the major functional antioxidative genes, ahpC1 and VPA1418, was markedly decreased in the oxyR mutant. Growth of this mutant on agar medium was significantly inhibited by autoclaved 0.25% glucose and by 0.25% dipotassium hydrogen phosphate, 0.5% monosaccharides (glucose, galactose, xylose, and arabinose), or 114.8 mM phosphates. The inhibition of the growth of this oxyR mutant by extrinsic peroxides, autoclaved sugars, and phosphates was eliminated by the complementary oxyR gene or by the addition of catalase to the autoclaved medium, while no inhibition of growth was observed when filter-sterilized sugars were used. The formation of biofilm and swimming mobility were significantly inhibited in the oxyR mutant relative to that in the wild-type strain. This investigation demonstrates the antioxidative function of oxyR in V. parahaemolyticus and its possible roles in biofilm formation, cell mobility, and the protection of growth in heated rich medium.
Collapse
|
6
|
Lim JG, Bang YJ, Choi SH. Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation. J Biol Chem 2014; 289:36263-74. [PMID: 25398878 DOI: 10.1074/jbc.m114.611020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that reduce toxic peroxides. A new Vibrio vulnificus Prx, named Prx3, was identified and characterized in this study. Biochemical and mutational analyses revealed that Prx3 reduces H2O2, utilizing glutaredoxin 3 (Grx3) and glutathione (GSH) as reductants, and requires only N-terminal peroxidatic cysteine for its catalysis. These results, combined with the monomeric size of Prx3 observed under non-reducing conditions, suggested that Prx3 is a Grx3/GSH-dependent 1-Cys Prx and oxidized without forming intermolecular disulfide bonds. The prx3 mutation impaired growth in the medium containing peroxides and reduced virulence in mice, indicating that Prx3 is essential for survival under oxidative stress and pathogenesis of V. vulnificus. The Fe-S cluster regulator IscR activates prx3 by direct binding to a specific binding sequence centered at -44 from the transcription start site. The binding sequence was homologous to the Type 2 IscR-binding sequence, most likely recognized by the Fe-S clusterless apo-IscR in Escherichia coli. The iscR3CA mutant, chromosomally encoding the apo-locked IscR, exhibited 3-fold higher levels of activation of prx3 than the wild type and accumulated more IscR3CA protein in cells. The IscR-dependent activation of prx3 by aerobic growth and iron starvation was also associated with the increase in cellular levels of IscR protein. Taken together, the results suggested that IscR senses iron starvation as well as reactive oxygen species and shifts to the apo-form, which leads to the increase of cellular IscR and in turn prx3 expression, contributing to the survival and virulence of V. vulnificus during pathogenesis.
Collapse
Affiliation(s)
- Jong Gyu Lim
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Ye-Ji Bang
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Sang Ho Choi
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| |
Collapse
|
7
|
Activities of Alkyl Hydroperoxide Reductase Subunits C1 and C2 of Vibrio parahaemolyticus against Different Peroxides. Appl Environ Microbiol 2014; 80:7398-404. [PMID: 25239899 DOI: 10.1128/aem.02701-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/17/2014] [Indexed: 01/06/2023] Open
Abstract
Alkyl hydroperoxide reductase subunit C gene (ahpC) functions were characterized in Vibrio parahaemolyticus, a commonly occurring marine food-borne enteropathogenic bacterium. Two ahpC genes, ahpC1 (VPA1683) and ahpC2 (VP0580), encoded putative two-cysteine peroxiredoxins, which are highly similar to the homologous proteins of Vibrio vulnificus. The responses of deletion mutants of ahpC genes to various peroxides were compared with and without gene complementation and at different incubation temperatures. The growth of the ahpC1 mutant and ahpC1 ahpC2 double mutant in liquid medium was significantly inhibited by organic peroxides, cumene hydroperoxide and tert-butyl hydroperoxide. However, inhibition was higher at 12°C and 22°C than at 37°C. Inhibiting effects were prevented by the complementary ahpC1 gene. Inconsistent detoxification of H2O2 by ahpC genes was demonstrated in an agar medium but not in a liquid medium. Complementation with an ahpC2 gene partially restored the peroxidase effect in the double ahpC1 ahpC2 mutant at 22°C. This investigation reveals that ahpC1 is the chief peroxidase gene that acts against organic peroxides in V. parahaemolyticus and that the function of the ahpC genes is influenced by incubation temperature.
Collapse
|
8
|
Kim S, Bang YJ, Kim D, Lim JG, Oh MH, Choi SH. Distinct characteristics of OxyR2, a new OxyR-type regulator, ensuring expression of Peroxiredoxin 2 detoxifying low levels of hydrogen peroxide inVibrio vulnificus. Mol Microbiol 2014; 93:992-1009. [DOI: 10.1111/mmi.12712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Suyeon Kim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Ye-Ji Bang
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Dukyun Kim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science; Dankook University; Cheonan 330-714 Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| |
Collapse
|
9
|
Lim JG, Choi SH. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 2014; 82:569-78. [PMID: 24478072 PMCID: PMC3911388 DOI: 10.1128/iai.01141-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022] Open
Abstract
A mutant that exhibited less cytotoxic activity toward INT-407 human intestinal epithelial cells than the wild type was screened from a random transposon mutant library of Vibrio vulnificus, and an open reading frame encoding an Fe-S cluster regulator, IscR, was identified using a transposon-tagging method. A mutational analysis demonstrated that IscR contributes to mouse mortality as well as cytotoxicity toward the INT-407 cells, indicating that IscR is essential for the pathogenesis of V. vulnificus. A whole-genome microarray analysis revealed that IscR influenced the expression of 67 genes, of which 52 were upregulated and 15 were downregulated. Among these, 12 genes most likely involved in motility and adhesion to host cells, hemolytic activity, and survival under oxidative stress of the pathogen during infection were selected and experimentally verified to be upregulated by IscR. Accordingly, the disruption of iscR resulted in a significant reduction in motility and adhesion to INT-407 cells, in hemolytic activity, and in resistance to reactive oxygen species (ROS) such as H2O2 and tert-butyl hydroperoxide (t-BOOH). Furthermore, the present study demonstrated that iscR expression was induced by exposure of V. vulnificus to the INT-407 cells, and the induction appeared to be mediated by ROS generated by the host cells during infection. Consequently, the combined results indicated that IscR is a global regulator that contributes to the overall success in the pathogenesis of V. vulnificus by regulating the expression of various virulence and survival genes in addition to Fe-S cluster genes.
Collapse
Affiliation(s)
- Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
10
|
Wang HW, Chung CH, Ma TY, Wong HC. Roles of alkyl hydroperoxide reductase subunit C (AhpC) in viable but nonculturable Vibrio parahaemolyticus. Appl Environ Microbiol 2013; 79:3734-43. [PMID: 23563952 PMCID: PMC3675929 DOI: 10.1128/aem.00560-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/03/2013] [Indexed: 11/20/2022] Open
Abstract
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for the detoxification of reactive oxygen species that form in bacterial cells or are derived from the host; thus, AhpC facilitates the survival of pathogenic bacteria under environmental stresses or during infection. This study investigates the role of AhpC in the induction and maintenance of a viable but nonculturable (VBNC) state in Vibrio parahaemolyticus. In this investigation, ahpC1 (VPA1683) and ahpC2 (VP0580) were identified in chromosomes II and I of this pathogen, respectively. Mutants with deletions of these two ahpC genes and their complementary strains were constructed from the parent strain KX-V231. The growth of these strains was monitored on tryptic soy agar-3% NaCl in the presence of the extrinsic peroxides H(2)O(2) and tert-butyl hydroperoxide (t-BOOH) at different incubation temperatures. The results revealed that both ahpC genes were protective against t-BOOH, while ahpC1 was protective against H(2)O(2). The protective function of ahpC2 at 4°C was higher than that of ahpC1. The times required to induce the VBNC state (4.7 weeks) at 4°C in a modified Morita mineral salt solution with 0.5% NaCl and then to maintain the VBNC state (4.7 weeks) in an ahpC2 mutant and an ahpC1 ahpC2 double mutant were significantly shorter than those for the parent strain (for induction, 6.2 weeks; for maintenance, 7.8 weeks) and the ahpC1 mutant (for induction, 6.0 weeks; for maintenance, 8.0 weeks) (P < 0.03). Complementation with an ahpC2 gene reversed the effects of the ahpC2 mutation in shortening the times for induction and maintenance of the VBNC state. This investigation identified the different functions of the two ahpC genes and confirmed the particular role of ahpC2 in the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hen-Wei Wang
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
11
|
Bang YJ, Oh MH, Choi SH. Distinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress. J Biol Chem 2012; 287:42516-24. [PMID: 23095744 DOI: 10.1074/jbc.m112.421214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes reducing toxic peroxides. Two distinct 2-Cys Prxs, Prx1 and Prx2, were identified in Vibrio vulnificus, a facultative aerobic pathogen. Both Prxs have two conserved catalytic cysteines, C(P) and C(R), but Prx2 is more homologous in amino acid sequences to eukaryotic Prx than to Prx1. Prx2 utilized thioredoxin A as a reductant, whereas Prx1 required AhpF. Prx2 contained GGIG and FL motifs similar to the motifs conserved in sensitive Prxs and exhibited sensitivity to overoxidation. MS analysis and C(P)-SO(3)H specific immunoblotting demonstrated overoxidation of C(P) to C(P)-SO(2)H (or C(P)-SO(3)H) in vitro and in vivo, respectively. In contrast, Prx1 was robust and C(P) was not overoxidized. Discrete expression of the Prxs implied that Prx2 is induced by trace amounts of H(2)O(2) and thereby residential in cells grown aerobically. In contrast, Prx1 was occasionally expressed only in cells exposed to high levels of H(2)O(2). A mutagenesis study indicated that lack of Prx2 accumulated sufficient H(2)O(2) to induce Prx1. Kinetic properties indicated that Prx2 effectively scavenges low levels of peroxides because of its high affinity to H(2)O(2), whereas Prx1 quickly degrades higher levels of peroxides because of its high turnover rate and more efficient reactivation. This study revealed that the two Prxs are differentially optimized for detoxifying distinct ranges of H(2)O(2), and proposed that Prx2 is a residential scavenger of peroxides endogenously generated, whereas Prx1 is an occasional scavenger of peroxides exogenously encountered. Furthermore, genome sequence database search predicted widespread coexistence of the two Prxs among bacteria.
Collapse
Affiliation(s)
- Ye-Ji Bang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, South Korea
| | | | | |
Collapse
|
12
|
Schleicher TR, Nyholm SV. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri. PLoS One 2011; 6:e25649. [PMID: 21998678 PMCID: PMC3187790 DOI: 10.1371/journal.pone.0025649] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/07/2011] [Indexed: 11/26/2022] Open
Abstract
The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.
Collapse
Affiliation(s)
- Tyler R. Schleicher
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
Evidence that Vibrio vulnificus ahpC2 is essential for survival under high salinity by modulating intracellular level of ROS. J Microbiol 2010; 48:129-33. [PMID: 20221741 DOI: 10.1007/s12275-009-0227-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/09/2009] [Indexed: 12/19/2022]
Abstract
Expression of ahpC2 encoding an alkyl hydroperoxide reductase of Vibrio vulnificus, a foodborne pathogen, was incrementally induced depending on NaCl concentrations in the culture. Growth of the ahpC2 mutant was significantly impaired with longer lag phase and lower growth rate when cultured under high salinity. ROS was accumulated in V. vulnificus cells when stressed by exposure to high salinity, and the ahpC2 mutant accumulated higher level of ROS as compared with the parental wild type. Consequently, the combined results suggest that AhpC2 contributes to the growth of V. vulnificus under high salinity by scavenging ROS in cells.
Collapse
|