1
|
Danovaro R, Levin LA, Fanelli G, Scenna L, Corinaldesi C. Microbes as marine habitat formers and ecosystem engineers. Nat Ecol Evol 2024; 8:1407-1419. [PMID: 38844822 DOI: 10.1038/s41559-024-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/12/2024] [Indexed: 08/10/2024]
Abstract
Despite their small individual size, marine prokaryotic and eukaryotic microbes can form large 3D structures and complex habitats. These habitats contribute to seafloor heterogeneity, facilitating colonization by animals and protists. They also provide food and refuge for a variety of species and promote novel ecological interactions. Here we illustrate the role of microbes as ecosystem engineers and propose a classification based on five types of habitat: microbial mats, microbial forests, microbial-mineralized habitats, microbial outcrops and microbial nodules. We also describe the metabolic processes of microbial habitat formers and their ecological roles, highlighting current gaps in knowledge. Their biogeography indicates that these habitats are widespread in all oceans and are continuously being discovered across latitudes and depths. These habitats are also expected to expand under future global change owing to their ability to exploit extreme environmental conditions. Given their high ecological relevance and their role in supporting endemic species and high biodiversity levels, microbial habitats should be included in future spatial planning, conservation and management measures.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
- National Biodiversity Future Center, Palermo, Italy.
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Ginevra Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lorenzo Scenna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Center, Palermo, Italy.
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
2
|
Tominaga K, Takebe H, Murakami C, Tsune A, Okamura T, Ikegami T, Onishi Y, Kamikawa R, Yoshida T. Population-level prokaryotic community structures associated with ferromanganese nodules in the Clarion-Clipperton Zone (Pacific Ocean) revealed by 16S rRNA gene amplicon sequencing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13224. [PMID: 38146681 PMCID: PMC10866075 DOI: 10.1111/1758-2229.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Although deep-sea ferromanganese nodules are a potential resource for exploitation, their formation mechanisms remain unclear. Several nodule-associated prokaryotic species have been identified by amplicon sequencing of 16S rRNA genes and are assumed to contribute to nodule formation. However, the recent development of amplicon sequence variant (ASV)-level monitoring revealed that closely related prokaryotic populations within an operational taxonomic unit often exhibit distinct ecological properties. Thus, conventional species-level monitoring might have overlooked nodule-specific populations when distinct populations of the same species were present in surrounding environments. Herein, we examined the prokaryotic community diversity of nodules and surrounding environments at the Clarion-Clipperton Zone in Japanese licensed areas by 16S rRNA gene amplicon sequencing with ASV-level resolution for three cruises from 2017 to 2019. Prokaryotic community composition and diversity were distinct by habitat type: nodule, nodule-surface mud, sediment, bottom water and water column. Most ASVs (~80%) were habitat-specific. We identified 178 nodule-associated ASVs and 41 ASVs associated with nodule-surface mud via linear discriminant effect size analysis. Moreover, several ASVs, such as members of SAR324 and Woeseia, were highly specific to nodules. These nodule-specific ASVs are promising targets for future investigation of the nodule formation process.
Collapse
Affiliation(s)
- Kento Tominaga
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Hiroaki Takebe
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | | - Akira Tsune
- Deep Ocean Resources Development Co., Ltd.TokyoJapan
| | | | | | | | - Ryoma Kamikawa
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | |
Collapse
|
3
|
Zhang D, Li X, Wu Y, Xu X, Liu Y, Shi B, Peng Y, Dai D, Sha Z, Zheng J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. MICROBIOME 2023; 11:160. [PMID: 37491386 PMCID: PMC10367259 DOI: 10.1186/s40168-023-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.
Collapse
Affiliation(s)
- Dechao Zhang
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Yanxia Liu
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Benze Shi
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongli Sha
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Chemostratigraphic and Textural Indicators of Nucleation and Growth of Polymetallic Nodules from the Clarion-Clipperton Fracture Zone (IOM Claim Area). MINERALS 2021. [DOI: 10.3390/min11080868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The detailed mineralogical and microgeochemical characteristics of polymetallic nodules collected from the Interoceanmetal Joint Organization (IOM, Szczecin, Poland) claim area, Eastern Clarion-Clipperton Fracture Zone (CCFZ, Eastern Pacific) were described in this study. The obtained data were applied for the delimitation of nodule growth generations and estimation of the growth ratios (back-stripping using the Co-chronometer method). The applied methods included bulk X-ray powder diffraction (XRD) and electron probe microanalysis (EPMA), providing information about Mn-Fe minerals and clays composing nodules, as well as the geochemical zonation of the growth generations. The analyzed nodules were mostly diagenetic (Mn/Fe > 5), with less influence on the hydrogenous processes, dominated by the presence of 10-Å phyllomanganates represented by todorokite/buserite, additionally mixed with birnessite and vernadite. The specific lithotype (intranodulith), being an integral part of polymetallic nodules, developed as a result of the secondary diagenetic processes of lithification and the cementation of Fe-rich clays (potentially nontronite and Fe-rich smectite), barite, zeolites (Na-phillipsite), bioapatite, biogenic remnants, and detrital material, occurs in holes, microcaverns, and open fractures in between ore colloforms. The contents of ∑(Ni, Cu, and Co) varied from 1.54 to 3.06 wt %. Several remnants of siliceous microorganisms (radiolarians and diatoms) were found to form pseudomorphs. The applied Co-chronometer method indicated that the nodules’ age is mainly Middle Pliocene to Middle Pleistocene, and the growth rates are typical of diagenetic and mixed hydrogenetic–diagenetic (HD) processes. Additionally, few nodules showed suboxic conditions of nucleation. Growth processes in the eastern part of the CCFZ deposit might have been induced with the Plio-Pleistocene changes in the paleooceanographic conditions related to the deglaciation of the Northern Hemisphere.
Collapse
|
5
|
Wang S, Yu M, Wei J, Huang M, Shi X, Chen H. Microbial community composition and diversity in the Indian Ocean deep sea REY-rich muds. PLoS One 2018; 13:e0208230. [PMID: 30557300 PMCID: PMC6296507 DOI: 10.1371/journal.pone.0208230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/14/2018] [Indexed: 01/22/2023] Open
Abstract
Studies about the composition and diversity of microbial community in the Rare Earth Elements-rich muds are limited. In this research, we conducted a characterization for the composition and diversity of bacterial and archaeal communities from rare earth elements-rich gravity core sediment at approximately 4800 meters deep in the Indian Ocean by Illumina high-throughput sequencing targeting 16S rRNA genes. The results showed that the most abundant bacteria were Proteobacteria, followed by Firmicutes and Actinobacteria. Amongst Proteobacteria, Gammaproteobacteria are present in all sections of this sediment core accounted for a particularly large proportion of bacterial sequences. Candidatus Nitrosopumilus, with a higher relative abundance in our samples, belongs to Thaumarchaeota. This is the first report on the composition and diversity of rare earth elements-rich muds microbial communities in the Indian Ocean deep sea.
Collapse
Affiliation(s)
- Shuyan Wang
- Key Lab of Marine Bioactive Substances of SOA, The First Institute of Oceanography, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Qingdao Key Lab of Marine Natural Products R&D, Qingdao, China
| | - Miao Yu
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiaqiang Wei
- Key Lab of Marine Bioactive Substances of SOA, The First Institute of Oceanography, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Qingdao Key Lab of Marine Natural Products R&D, Qingdao, China
| | - Mu Huang
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuefa Shi
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Chen
- Key Lab of Marine Bioactive Substances of SOA, The First Institute of Oceanography, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Qingdao Key Lab of Marine Natural Products R&D, Qingdao, China
- * E-mail:
| |
Collapse
|
6
|
Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana volcanic arc. Sci Rep 2017; 7:17964. [PMID: 29269894 PMCID: PMC5740136 DOI: 10.1038/s41598-017-17445-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Seamounts are undersea mountains rising abruptly from the sea floor and interacting dynamically with underwater currents. They represent unique biological habitats with various microbial community structures. Certain seamount bacteria form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend our knowledge of seamount ecosystems, we performed an integrated study on population structure and the occurrence of magnetotactic bacteria (MTB) that synthesize intracellular iron oxide nanocrystals in sediments of a seamount in the Mariana volcanic arc. We found Proteobacteria dominant at 13 of 14 stations, but ranked second in abundance to members of the phylum Firmicutes at the deep-water station located on a steep slope facing the Mariana-Yap Trench. Live MTB dwell in biogenic sediments from all 14 stations ranging in depth from 238 to 2,023 m. Some magnetotactic cocci possess the most complex flagellar apparatus yet reported; 19 flagella are arranged in a 3:4:5:4:3 array within a flagellar bundle. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. Together the results obtained indicate that geographic properties of the seamount stations are important in shaping the bacterial community structure and the MTB composition.
Collapse
|
7
|
Shulse CN, Maillot B, Smith CR, Church MJ. Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities. Microbiologyopen 2016; 6. [PMID: 27868387 PMCID: PMC5387330 DOI: 10.1002/mbo3.428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/01/2023] Open
Abstract
Concentrated seabed deposits of polymetallic nodules, which are rich in economically valuable metals (e.g., copper, nickel, cobalt, manganese), occur over vast areas of the abyssal Pacific Ocean floor. Little is currently known about the diversity of microorganisms inhabiting abyssal habitats. In this study, sediment, nodule, and water column samples were collected from the Clarion-Clipperton Zone of the Eastern North Pacific. The diversities of prokaryote and microeukaryote communities associated with these habitats were examined. Microbial community composition and diversity varied with habitat type, water column depth, and sediment horizon. Thaumarchaeota were relatively enriched in the sediments and nodules compared to the water column, whereas Gammaproteobacteria were the most abundant sequences associated with nodules. Among the Eukaryota, rRNA genes belonging to the Cryptomonadales were relatively most abundant among organisms associated with nodules, whereas rRNA gene sequences deriving from members of the Alveolata were relatively enriched in sediments and the water column. Nine operational taxonomic unit (OTU)s were identified that occur in all nodules in this dataset, as well as all nodules found in a study 3000-9000 km from our site. Microbial communities in the sediments had the highest diversity, followed by nodules, and then by the water column with <1/3 the number of OTUs as in the sediments.
Collapse
Affiliation(s)
- Christine N Shulse
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brianne Maillot
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI, USA
| | - Craig R Smith
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Matthew J Church
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
8
|
Dong Y, Li J, Zhang W, Zhang W, Zhao Y, Xiao T, Wu LF, Pan H. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:239-249. [PMID: 26742990 DOI: 10.1111/1758-2229.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province.
Collapse
Affiliation(s)
- Yi Dong
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Wuchang Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenyan Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Yuan Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Long-Fei Wu
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
- Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, CNRS, F-13402, Marseille, France
| | - Hongmiao Pan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| |
Collapse
|
9
|
Bacterioplankton community analysis in tilapia ponds by Illumina high-throughput sequencing. World J Microbiol Biotechnol 2015; 32:10. [PMID: 26712625 DOI: 10.1007/s11274-015-1962-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
Abstract
The changes of microbial community in aquaculture systems under the effects of stocking densities and seasonality were investigated in tilapia ponds. Total DNAs were extracted from the water samples, 16S rRNA gene was amplified and the bacterial community analyzed by Illumina high-throughput sequencing obtaining 3486 OTUs, from a total read of 715,842 sequences. Basing on the analysis of bacterial compositions, richness, diversity, bacterial 16S rRNA gene abundance, water sample comparisons and existence of specific bacterial taxa within three fish ponds in a 4 months period, the study conclusively observed that the dominant phylum in all water samples were similar, and they included; Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Planctomycetes and Chlorobi, distributed in different proportions in the different months and ponds. The seasonal changes had a more pronounced effect on the bacterioplankton community than the stocking densities; however some differences between the ponds were more likely caused by feed coefficient than by stocking densities. At the same time, most bacterial communities were affected by the nutrient input except phylum Cyanobacteria that was also affected by the feed control of tilapia.
Collapse
|
10
|
Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea. J Microbiol 2015; 53:598-605. [DOI: 10.1007/s12275-015-5217-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
|
11
|
Rubin-Blum M, Antler G, Turchyn AV, Tsadok R, Goodman-Tchernov BN, Shemesh E, Austin JA, Coleman DF, Makovsky Y, Sivan O, Tchernov D. Hydrocarbon-related microbial processes in the deep sediments of the Eastern Mediterranean Levantine Basin. FEMS Microbiol Ecol 2013; 87:780-96. [DOI: 10.1111/1574-6941.12264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maxim Rubin-Blum
- The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Gilad Antler
- Department of Earth Sciences; University of Cambridge; Cambridge UK
| | | | - Rami Tsadok
- The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | | | - Eli Shemesh
- The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - James A. Austin
- Institute for Geophysics; Jackson School of Geosciences; University of Texas at Austin; Austin TX USA
| | - Dwight F. Coleman
- Graduate School of Oceanography; The University of Rhode Island; Narragansett RI USA
| | - Yizhaq Makovsky
- The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Orit Sivan
- Department of Geological and Environmental Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Dan Tchernov
- The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
12
|
Liao L, Xu XW, Jiang XW, Wang CS, Zhang DS, Ni JY, Wu M. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 2011; 78:565-85. [DOI: 10.1111/j.1574-6941.2011.01186.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/04/2011] [Accepted: 08/14/2011] [Indexed: 11/26/2022] Open
Affiliation(s)
- Li Liao
- College of Life Sciences; Zhejiang University; Hangzhou; China
| | | | - Xia-Wei Jiang
- College of Life Sciences; Zhejiang University; Hangzhou; China
| | | | | | | | - Min Wu
- College of Life Sciences; Zhejiang University; Hangzhou; China
| |
Collapse
|