1
|
Saito T, Kurosu Y, Sato H, Katoh E, Hosoya T. Analysis of the components of Cassia nomame and their antioxidant activity. Nat Prod Res 2024:1-9. [PMID: 39529441 DOI: 10.1080/14786419.2024.2426060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cassia nomame, an annual herb belonging to the Leguminosae family, is traditionally consumed as tea in the form of dried whole herbs or beans. To deepen our understanding of the chemical constituents of C. nomame, we isolated 16 compounds, categorised as flavone derivatives (1-4), including a novel compound nomameflavone A (4), a chalcone derivative (5), an aurone derivative (6), a chromone derivative (7), a juglone derivative (8), anthraquinone derivatives (9-11), phenolic compounds (12-14), and sterol derivatives (15, 16). The structure of each compound was elucidated using NMR and MS. Compounds 2, 6, 7, 8, 12, 13, and 14 were successfully isolated from C. nomame for the first time. Furthermore, compounds 1, 3, 5, and 6 exhibited DPPH radical scavenging activities, and the bioactivity of 3 was discovered. The elucidation of the diverse chemical constituents of C. nomame underscores its potential functional ingredients.
Collapse
Affiliation(s)
- Tetsuya Saito
- Graduate School of Food and Nutritional Sciences, Toyo University, Saitama, Japan
| | - Yuria Kurosu
- Graduate School of Food and Nutritional Sciences, Toyo University, Saitama, Japan
| | - Hajime Sato
- Bruker Japan Co., Ltd., NMR Application, Yokohama-city, Kanagawa, Japan
| | - Etsuko Katoh
- Graduate School of Food and Nutritional Sciences, Toyo University, Saitama, Japan
| | - Takahiro Hosoya
- Graduate School of Food and Nutritional Sciences, Toyo University, Saitama, Japan
| |
Collapse
|
2
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Xie WL, Lu ZY, Xu J, Chen Y, Teng HL, Yang GZ. Chemical Constituents from Berchemia polyphylla var. Leioclada. ACS OMEGA 2024; 9:3942-3949. [PMID: 38284073 PMCID: PMC10809260 DOI: 10.1021/acsomega.3c08357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
One previously undescribed naphthoquinone-benzisochromanquinone dimer berpolydiquinone A (1), along with two previously undescribed naphthoquinone-anthraquinone dimers berpolydiquinones B and C (2-3), and one previously undescribed dimeric naphthalene berpolydinaphthalene A (4), were isolated from the stems and leaves of Berchemia polyphylla var. leioclada. The chemical structures of these compounds were determined using high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS), spectroscopic data, the exciton chirality method (ECM), and quantum chemical calculation. Notably, compounds (1-2 and 5) are dimeric quinones that share the same naphthoquinone moiety, specifically identified as 2-methoxystypandron. Compound (4) is a derivative of dimeric naphthalene with a symmetrical structure, which is a new structure type isolated from B. polyphylla var. leioclada for the first time. These findings suggest that B. polyphylla var. leioclada serves as a significant reservoir of structurally diverse phenolic compounds. This study provides a scientific foundation for regarding B. polyphylla var. leioclada as a potential source of "Tiebaojin".
Collapse
Affiliation(s)
- Wen-Li Xie
- Ethnopharmacology
Level 3 Laboratory, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Zheng-Yang Lu
- College
of Chemistry and Material Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Jing Xu
- Ethnopharmacology
Level 3 Laboratory, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yu Chen
- College
of Chemistry and Material Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Hong-Li Teng
- Guangxi
International Zhuang Medicine Hospital, Nanning 530201, P. R. China
| | - Guang-Zhong Yang
- Ethnopharmacology
Level 3 Laboratory, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Aierken K, Li J, Xu N, Wu T, Zang D, Aisa HA. Chemical constituents of Rumex dentatus L. and their antimicrobial and anti-inflammatory activities. PHYTOCHEMISTRY 2023; 205:113509. [PMID: 36372239 DOI: 10.1016/j.phytochem.2022.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial bioactivity-guided isolation of the root extract of Rumex dentatus L. resulted in the characterization of nineteen natural products, including three undescribed compounds (rumexs A-C). Rumexs A and B are rare anthraquinone-anthrone dimers consisting of an emodin-10-C-glycoside linked via C-10 to C-7 of a chrysophanol moiety. They differed only in their configuration at C-10; their absolute configurations were determined by NOESY and ECD analysis. LC-HRMS analysis was performed to identify nineteen compounds. Anthraquinone derivatives such as anthraquinone aglycone, oxanthrone C-glycoside, anthraquinone O-glycoside and anthraquinone dimer were found to be the dominant components of R. dentatus. In addition, naphthol, naphthoquinone, chromone, flavonoid, isocoumarin, and lignanamide derivatives were also identified. Chrysophanol and emodin were the most abundant compounds in the crude ethanol extract; their contents were determined by HPLC to be 7.38 and 5.74 mg/g, respectively. The fractions and isolated compounds were tested for their inhibitory activity against Staphylococcus aureus, Candida albicans, and Escherichia coli. Most of them showed inhibitory activity against S. aureus, some fractions and 2-methoxy-6-acetyl-7-methyljuglone exhibited moderate inhibitory activity against C. albicans, and 2-methoxy-6-acetyl-7-methyljuglone had moderate inhibitory effects against E. coli. Emodin exhibited inhibitory activity against NO release in LPS-reduced RAW264.7 cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Kailibinuer Aierken
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of the Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Jun Li
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Nannan Xu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Tao Wu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Deng Zang
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Haji Akber Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| |
Collapse
|
5
|
Mishra S, Sahu PK, Agarwal V, Singh N. Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol 2021; 105:6579-6596. [PMID: 34463800 DOI: 10.1007/s00253-021-11527-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/19/2023]
Abstract
Plant secondary metabolites have significant potential applications in a wide range of pharmaceutical, food, and cosmetic industries by providing new chemistries and compounds. However, direct isolation of such compounds from plants has resulted in over-harvesting and loss of biodiversity, currently threatening several medicinal plant species to extinction. With the breakthrough report of taxol production by an endophytic fungus of Taxus brevifolia, a new era in natural product research was established. Since then, the ability of endophytic microbes to produce metabolites similar to those produced by their host plants has been discovered. The plant "endosphere" represents a rich and unique biological niche inhabited by organisms capable of producing a range of desired compounds. In addition, plants growing in diverse habitats and adverse environmental conditions represent a valuable reservoir for obtaining rare microbes with potential applications. Despite being an attractive and sustainable approach for obtaining economically important metabolites, the industrial exploitation of microbial endophytes for the production and isolation of plant secondary metabolites remains in its infancy. The present review provides an updated overview of the prospects, challenges, and possible solutions for using microbial endophytes as micro-factories for obtaining commercially important plant metabolites.Key points• Some "plant" metabolites are rather synthesized by the associated endophytes.• Challenges: Attenuation, silencing of BGCs, unculturability, complex cross-talk.• Solutions: Simulation of in planta habitat, advanced characterization methods.
Collapse
Affiliation(s)
- Sushma Mishra
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India.
| | - Pramod Kumar Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Vishad Agarwal
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| | - Namrata Singh
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| |
Collapse
|
6
|
Pramisandi A, Dobashi K, Mori M, Nonaka K, Matsumoto A, Tokiwa T, Higo M, Kristiningrum, Amalia E, Nurkanto A, Inaoka DK, Waluyo D, Kita K, Nozaki T, Ōmura S, Shiomi K. Microbial inhibitors active against Plasmodium falciparum dihydroorotate dehydrogenase derived from an Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979. J GEN APPL MICROBIOL 2020; 66:273-278. [PMID: 32669511 DOI: 10.2323/jgam.2019.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979 was cultured to find novel scaffolds of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. We obtained altenusin (1), which inhibits PfDHODH, with an IC50 value of 5.9 μM, along with other metabolites: mitorubrinol (2) and mitorubrinic acid (3). Compounds 1 and 2 inhibited PfDHODH but displayed no activity against the human orthologue. They also inhibited P. falciparum 3D7 cell growth in vitro. Compound 3 showed little PfDHODH inhibitory activity or cell growth inhibitory activity.
Collapse
Affiliation(s)
- Amila Pramisandi
- Graduate School of Infection Control Sciences, Kitasato University.,Laboratory for Biotechnology, Agency for the Assessment and Application of Technology (BPPT)
| | - Kazuyuki Dobashi
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Mihoko Mori
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Atsuko Matsumoto
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Toshiyuki Tokiwa
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Mayuka Higo
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Kristiningrum
- Laboratory for Biotechnology, Agency for the Assessment and Application of Technology (BPPT)
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Arif Nurkanto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo.,Research Center for Biology, Indonesia Institute of Sciences (LIPI)
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo.,School of Tropical Medicine and Global Health, Nagasaki University.,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| | - Danang Waluyo
- Laboratory for Biotechnology, Agency for the Assessment and Application of Technology (BPPT)
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo.,School of Tropical Medicine and Global Health, Nagasaki University.,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Satoshi Ōmura
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University.,Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences
| |
Collapse
|
7
|
He ZH, Zhang G, Yan QX, Zou ZB, Xiao HX, Xie CL, Tang XX, Luo LZ, Yang XW. Cladosporactone A, a Unique Polyketide with 7-Methylisochromen-3-one Skeleton from the Deep-Sea-Derived Fungus Cladosporium cladosporioides. Chem Biodivers 2020; 17:e2000158. [PMID: 32259395 DOI: 10.1002/cbdv.202000158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
A unique polyketide cladosporactone A along with eight known compounds were isolated from the deep-sea-derived Cladosporium cladosporioides. The structure of cladosporactone A was established by spectroscopic analyses, and the absolute configuration was clarified by the theoretical ECD calculation. Cladosporactone A is the first member of polyketide with the 7-methylisochromen-3-one skeleton.
Collapse
Affiliation(s)
- Zhi-Hui He
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Gang Zhang
- Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen, 361023, R. P. China
| | - Qin-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Zhen-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Lian-Zhong Luo
- Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen, 361023, R. P. China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| |
Collapse
|
8
|
Liu TT, Liao XJ, Xu SH, Zhao BX. Solieritide A, a new polyketide from the red alga Solieria sp. Nat Prod Res 2020; 35:3780-3786. [PMID: 32146837 DOI: 10.1080/14786419.2020.1737057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A new polyketide, solieritide A (1), along with six known ones (2-7), had been isolated from the red alga Solieria sp. The structures of these compounds were elucidated by spectroscopic analysis. The absolute configuration of 1 was determined by the method of X-ray diffraction. Compound 1 was a rare polyketide bearing benzopyrone ring fused with γ-butyrolactone. Compounds 2-7 were isolated from the red algae of genus Solieria for the first time. The antibacterial activities of 1-7 were also discussed.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Xiao-Jian Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Shi-Hai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Bing-Xin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
9
|
Kunyeit L, Kurrey NK, Anu-Appaiah KA, Rao RP. Probiotic Yeasts Inhibit Virulence of Non -albicans Candida Species. mBio 2019; 10:e02307-19. [PMID: 31615960 PMCID: PMC6794482 DOI: 10.1128/mbio.02307-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Systemic infections of Candida species pose a significant threat to public health. Toxicity associated with current therapies and emergence of resistant strains present major therapeutic challenges. Here, we report exploitation of the probiotic properties of two novel, food-derived yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (strain ApC), as an alternative approach to combat widespread opportunistic fungal infections. Both yeasts inhibit virulence traits such as adhesion, filamentation, and biofilm formation of several non-albicans Candida species, including Candida tropicalis, Candida krusei, Candida glabrata, and Candida parapsilosis as well as the recently identified multidrug-resistant species Candida auris They inhibit adhesion to abiotic surfaces as well as cultured colon epithelial cells. Furthermore, probiotic treatment blocks the formation of biofilms of individual non-albicans Candida strains as well as mixed-culture biofilms of each non-albicans Candida strain in combination with Candida albicans The probiotic yeasts attenuated non-albicans Candida infections in a live animal. In vivo studies using Caenorhabditis elegans suggest that exposure to probiotic yeasts protects nematodes from infection with non-albicans Candida strains compared to worms that were not exposed to the probiotic yeasts. Furthermore, application of probiotic yeasts postinfection with non-albicans Candida alleviated pathogenic colonization of the nematode gut. The probiotic properties of these novel yeasts are better than or comparable to those of the commercially available probiotic yeast Saccharomyces boulardii, which was used as a reference strain throughout this study. These results indicate that yeasts derived from food sources could serve as an effective alternative to antifungal therapy against emerging pathogenic Candida species.IMPORTANCE Non-albicans Candida-associated infections have emerged as a major risk factor in the hospitalized and immunecompromised patients. Besides, antifungal-associated complications occur more frequently with these non-albicans Candida species than with C. albicans Therefore, as an alternative approach to combat these widespread non-albicans Candida-associated infections, here we showed the probiotic effect of two yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (ApC), in preventing adhesion and biofilm formation of five non-albicans Candida strains, Candida tropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, and Candida auris The result would influence the current trend of the conversion of conventional antimicrobial therapy into beneficial probiotic microbe-associated antimicrobial treatment.
Collapse
Affiliation(s)
- Lohith Kunyeit
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CFTRI, Mysore, India
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Nawneet K Kurrey
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CFTRI, Mysore, India
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
10
|
Liao HX, Zheng CJ, Huang GL, Mei RQ, Nong XH, Shao TM, Chen GY, Wang CY. Bioactive Polyketide Derivatives from the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004. JOURNAL OF NATURAL PRODUCTS 2019; 82:2211-2219. [PMID: 31373815 DOI: 10.1021/acs.jnatprod.9b00241] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Five new tetralones, daldiniones A-E (1-5), three new chromones, 7-hydroxy-5-methoxy-2,3-dimethylchromone (9), 5-methoxy-2-propylchromone (10), and 7-ethyl-8-hydroxy-6-methoxy-2,3-dimethylchromone (11), and two new lactones, helicascolides D and E (16 and 17), together with nine known metabolites (6-8, 12-15, and 18-19) were isolated from the mangrove-derived fungus Daldinia eschscholtzii HJ004. The structures and absolute configurations of the new compounds were determined by analyzing MS and NMR data and utilizing GIAO based 13C NMR chemical shift calculations and quantum chemical electronic circular dichroism (ECD) calculations. Compounds 9, 13, and 18 showed inhibitory activities against α-glucosidase with IC50 values of 13, 15, and 16 μM, respectively.
Collapse
Affiliation(s)
- Hai-Xia Liao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering , Hainan Normal University , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science , Yulin Normal University , Yulin , Guangxi 537000 , People's Republic of China
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering , Hainan Normal University , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Haikou , Hainan 571158 , People's Republic of China
| | - Guo-Lei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering , Hainan Normal University , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Haikou , Hainan 571158 , People's Republic of China
| | - Rong-Qing Mei
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering , Hainan Normal University , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Haikou , Hainan 571158 , People's Republic of China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering , Hainan Normal University , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Haikou , Hainan 571158 , People's Republic of China
| | - Tai-Ming Shao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering , Hainan Normal University , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Haikou , Hainan 571158 , People's Republic of China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science , Yulin Normal University , Yulin , Guangxi 537000 , People's Republic of China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering , Hainan Normal University , Haikou , Hainan 571158 , People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Haikou , Hainan 571158 , People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| |
Collapse
|
11
|
Endophytic Fungi from Terminalia Species: A Comprehensive Review. J Fungi (Basel) 2019; 5:jof5020043. [PMID: 31137730 PMCID: PMC6616413 DOI: 10.3390/jof5020043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Endophytic fungi have proven their usefulness for drug discovery, as suggested by the structural complexity and chemical diversity of their secondary metabolites. The diversity and biological activities of endophytic fungi from the Terminalia species have been reported. Therefore, we set out to discuss the influence of seasons, locations, and even the plant species on the diversity of endophytic fungi, as well as their biological activities and secondary metabolites isolated from potent strains. Our investigation reveals that among the 200-250 Terminalia species reported, only thirteen species have been studied so far for their endophytic fungi content. Overall, more than 47 fungi genera have been reported from the Terminalia species, and metabolites produced by some of these fungi exhibited diverse biological activities including antimicrobial, antioxidant, antimalarial, anti-inflammatory, anti-hypercholesterolemic, anticancer, and biocontrol varieties. Moreover, more than 40 compounds with eighteen newly described secondary metabolites were reported; among these, metabolites are the well-known anticancer drugs, a group that includes taxol, antioxidant compounds, isopestacin, and pestacin. This summary of data illustrates the considerable diversity and biological potential of fungal endophytes of the Terminalia species and gives insight into important findings while paving the way for future investigations.
Collapse
|
12
|
Berestetskiy AO, Gannibal FB, Minkovich EV, Osterman IA, Salimova DR, Sergiev PV, Sokornova SV. Spectrum of Biological Activity of the Alternaria Fungi Isolated from the Phyllosphere of Herbaceous Plants. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Chen Y, Chen R, Xu J, Tian Y, Xu J, Liu Y. Two New Altenusin/Thiazole Hybrids and a New Benzothiazole Derivative from the Marine Sponge-Derived Fungus Alternaria sp. SCSIOS02F49. Molecules 2018; 23:molecules23112844. [PMID: 30388842 PMCID: PMC6278658 DOI: 10.3390/molecules23112844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Two novel altenusin-thiazole hybrids named altenusinoides A and B (1 and 2), a new benzothiazole derivative (3), and three known altenusin derivatives (4–6) have been obtained from the solid culture of the marine sponge-derived fungal strain, Alternaria sp. SCSIOS02F49. The structures of these new compounds were characterized by NMR, HRESIMS, and X-ray single crystal analysis. Compounds 1 and 2 possess an unusual altenusin-thiazole-fused skeleton core (6/6/5), and compound 3 represents the first benzothiazole derivative from fungi. Compounds 4 and 5 showed significant DPPH free-radical-scavenging activities with the prominent IC50 values of 10.7 ± 0.09 μM and 100.6 ± 0.025 μM, respectively. Additionally, compound 5 exhibited COX-2 inhibitory activity with an IC50 value of 9.5 ± 0.08 μM.
Collapse
Affiliation(s)
- Yaping Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ruyan Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.
| | - Jinhuai Xu
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.
| | - Yongqi Tian
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
14
|
Perylenequione Derivatives with Anticancer Activities Isolated from the Marine Sponge-Derived Fungus, Alternaria sp. SCSIO41014. Mar Drugs 2018; 16:md16080280. [PMID: 30110969 PMCID: PMC6117713 DOI: 10.3390/md16080280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Seven new secondary metabolites classified as two perylenequinone derivatives (1 and 2), an altenusin derivative (3), two phthalide racemates (4 and 5), and two phenol derivatives (6 and 7), along with twenty-one known compounds (8–28) were isolated from cultures of the sponge-derived fungus, Alternaria sp. SCSIO41014. The structures and absolute configurations of these new compounds (1–7) were determined by spectroscopic analysis, X-ray single crystal diffraction, chiral-phase HPLC separation, and comparison of ECD spectra to calculations. Altertoxin VII (1) is the first example possessing a novel 4,8-dihydroxy-substituted perylenequinone derivative, while the phenolic hydroxy groups have commonly always substituted at C-4 and C-9. Compound 1 exhibited cytotoxic activities against human erythroleukemia (K562), human gastric carcinoma cells (SGC-7901), and hepatocellular carcinoma cells (BEL-7402) with IC50 values of 26.58 ± 0.80, 8.75 ± 0.13, and 13.11 ± 0.95 μg/mL, respectively. Compound 11 showed selectively cytotoxic activity against K562, with an IC50 value of 19.67 ± 0.19 μg/mL. Compound 25 displayed moderate inhibitory activity against Staphylococcus aureus with an MIC value of 31.25 μg/mL.
Collapse
|
15
|
Deshmukh SK, Gupta MK, Prakash V, Saxena S. Endophytic Fungi: A Source of Potential Antifungal Compounds. J Fungi (Basel) 2018; 4:E77. [PMID: 29941838 PMCID: PMC6162562 DOI: 10.3390/jof4030077] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 01/27/2023] Open
Abstract
The emerging and reemerging forms of fungal infections encountered in the course of allogeneic bone marrow transplantations, cancer therapy, and organ transplants have necessitated the discovery of antifungal compounds with enhanced efficacy and better compatibility. A very limited number of antifungal compounds are in practice against the various forms of topical and systemic fungal infections. The trends of new antifungals being introduced into the market have remained insignificant while resistance towards the introduced drug has apparently increased, specifically in patients undergoing long-term treatment. Considering the immense potential of natural microbial products for the isolation and screening of novel antibiotics for different pharmaceutical applications as an alternative source has remained largely unexplored. Endophytes are one such microbial community that resides inside all plants without showing any symptoms with the promise of producing diverse bioactive molecules and novel metabolites which have application in medicine, agriculture, and industrial set ups. This review substantially covers the antifungal compounds, including volatile organic compounds, isolated from fungal endophytes of medicinal plants during 2013⁻2018. Some of the methods for the activation of silent biosynthetic genes are also covered. As such, the compounds described here possess diverse configurations which can be a step towards the development of new antifungal agents directly or precursor molecules after the required modification.
Collapse
Affiliation(s)
- Sunil K Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Manish K Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Deemed to be a University, Patiala, Punjab 147004, India.
| |
Collapse
|
16
|
Pan Y, Liu L, Guan F, Li E, Jin J, Li J, Che Y, Liu G. Characterization of a Prenyltransferase for Iso-A82775C Biosynthesis and Generation of New Congeners of Chloropestolides. ACS Chem Biol 2018; 13:703-711. [PMID: 29384350 DOI: 10.1021/acschembio.7b01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloropupukeananin and chloropestolides are novel metabolites of the plant endophyte Pestalotiopsis fici, showing antimicrobial, antitumor, and anti-HIV activities. Their highly complex and unique skeletons were generated from the coisolated pestheic acid (1) and iso-A82775C (10) based on our previous studies. Here, we identified the biosynthetic gene cluster iac of 10 and characterized an iacE encoded prenyltransferase. Deletion of iacE abolished iso-A82775C production, accumulated the prenyl group-lacking siccayne (2), and generated four new chloropestolides (3-6). Compounds 5 and 6 showed antibacterial effects against Staphylococcus aureus and Bacillus subtilis, and 5 was also cytotoxic to human tumor cell lines HeLa, MCF-7, and SW480. These results provided the first genetic and biochemical insights into the biosynthesis of natural prenylepoxycyclohexanes and demonstrated the feasibility for generation of diversified congeners by manipulating the biosynthetic genes of 10.
Collapse
Affiliation(s)
- Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feifei Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jinyang Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Che
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
|
18
|
Ding H, Zhang D, Zhou B, Ma Z. Inhibitors of BRD4 Protein from a Marine-Derived Fungus Alternaria sp. NH-F6. Mar Drugs 2017; 15:md15030076. [PMID: 28300771 PMCID: PMC5367033 DOI: 10.3390/md15030076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 12/14/2022] Open
Abstract
Bromodomains (BRD) are readers of the epigenetic code that regulate gene transcription through their recognition of acetyl-lysine modified histone tails. Recently, bromodomain-containing proteins such as BRD4 have been demonstrated to be druggable through the discovery of potent inhibitors. These protein–protein interaction inhibitors have the potential to modulate multiple diseases by their profound anti-inflammatory and antiproliferative effects. In order to explore new BRD4 inhibitors as well as lead compounds for the development of new drugs, the secondary metabolites of Alternaria sp. NH-F6, a fungus isolated from deep-sea sediment samples, were analyzed systematically. Five new compounds including two new perylenequinones (1–2), one new alternaric acid (3), 2-(N-vinylacetamide)-4-hydroxymethyl-3-ene-butyrolactone (4), one new cerebroside (5), together with 19 known compounds (6–24) were isolated from the ethyl acetate extracts of this strain. Their structures were elucidated using nuclear magnetic resonance (NMR) and high resolution electrospray ionization mass spectrometry (HR-ESI-MS) analyses. Finally, all these compounds were evaluated for their inhibitory activity against BRD4 protein, and compound 2 exhibited a potent inhibition rate of 88.1% at a concentration of 10 µM. This research provides a new BRD4 inhibitor which may possess potential antitumoral, antiviral, or anti-inflammatory pharmaceutical values.
Collapse
Affiliation(s)
- Hui Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| | - Dashan Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| | - Biao Zhou
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| | - Zhongjun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan Campus, No. 1 Zheda Road, Zhoushan 316021, China.
| |
Collapse
|