1
|
Yuan C, Gao J, Huang L, Jian S. Chromolaena odorata affects soil nitrogen transformations and competition in tropical coral islands by altering soil ammonia oxidizing microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175196. [PMID: 39097027 DOI: 10.1016/j.scitotenv.2024.175196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Invasive plants can change the community structure of soil ammonia-oxidizing microbes, affect the process of soil nitrogen (N) transformation, and gain a competitive advantage. However, the current researches on competition mechanism of Chromolaena odorata have not involved soil nitrogen transformation. In this study, we compared the microbially mediated soil transformations of invasive C. odorata and natives (Pisonia grandis and Scaevola taccada) of tropical coral islands. We assessed how differences in plant biomass and tissue N contents, soil nutrients, N transformation rates, microbial biomass and activity, and diversity and abundance of ammonia oxidizing microbes associated with these species impact their competitiveness. The results showed that C. odorata outcompeted both native species by allocating more proportionally biomass to aboveground parts in response to interspecific competition (12.92 % and 22.72 % more than P. grandis and S. taccada, respectively). Additionally, when C. odorata was planted with native plants, the available N and net mineralization rates in C. odorata rhizosphere soil were higher than in native plants rhizosphere soils. Higher abundance of ammonia-oxidizing bacteria in C. odorata rhizosphere soil confirmed this, being positively correlated with soil N mineralization rates and available N. Our findings help to understand the soil N acquisition and competition strategies of C. odorata, and contribute to improving evaluations and predictions of invasive plant dynamics and their ecological effects in tropical coral islands.
Collapse
Affiliation(s)
- Chengzhi Yuan
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Gao
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luping Huang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
2
|
Wang S, Li S, Ji M, Li J, Huang J, Dang Z, Jiang Z, Zhang S, Zhu X, Ji G. Long-neglected contribution of nitrification to N 2O emissions in the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124099. [PMID: 38703980 DOI: 10.1016/j.envpol.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Rivers play a significant role in the global nitrous oxide (N2O) budget. However, the microbial sources and sinks of N2O in river systems are not well understood or quantified, resulting in the prolonged neglect of nitrification. This study investigated the isotopic signatures of N2O, thereby quantifying the microbial source of N2O production and the degree of N2O reduction in the Yellow River. Although denitrification has long been considered to be the dominant pathway of N2O production in rivers, our findings indicated that denitrification only accounted for 18.3% (8.2%-43.0%) of the total contribution to N2O production in the Yellow River, with 50.2%-80.2% being concurrently reduced. The denitrification contribution to N2O production (R2 = 0.44, p < 0.01) and N2O reduction degree (R2 = 0.70, p < 0.01) were positively related to the dissolved organic carbon (DOC) content. Similar to urban rivers and eutrophic lakes, denitrification was the primary process responsible for N2O production (43.0%) in certain reaches with high organic content (DOC = 5.29 mg/L). Nevertheless, the denitrification activity was generally constrained by the availability of electron donors (average DOC = 2.51 mg/L) throughout the Yellow River basin. Consequently, nitrification emerged as the primary contributor in the well-oxygenated Yellow River. Additionally, our findings further distinguished the respective contribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to N2O emissions. Although AOB dominated the N2O production in the Yellow River, the AOA specie abundance (AOA/(AOA + AOB)) contributed up to 32.6%, which resulted in 25.6% of the total nitrifier-produced N2O, suggesting a significant occurrence of AOA in the oligotrophic Yellow River. Overall, this study provided a non-invasive approach for quantifying the microbial sources and sinks to N2O emissions, and demonstrated the substantial role of nitrification in the large oligotrophic rivers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Mingfei Ji
- Collaborative Innovation Centre of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiarui Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jilin Huang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuqi Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Zhao W, Bi X, Bai M, Wang Y. Research advances of ammonia oxidation microorganisms in wastewater: metabolic characteristics, microbial community, influencing factors and process applications. Bioprocess Biosyst Eng 2023; 46:621-633. [PMID: 36988685 DOI: 10.1007/s00449-023-02866-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Ammonia oxidation carried out by ammonia-oxidizing microorganisms (AOMs) is a central step in the global nitrogen cycle. Aerobic AOMs comprise conventional ammonia-oxidizing bacteria (AOB), novel ammonia-oxidizing archaea (AOA), which could exist in complex and extreme conditions, and complete ammonia oxidizers (comammox), which directly oxidize ammonia to nitrate within a single cell. Anaerobic AOMs mainly comprise anaerobic ammonia-oxidizing bacteria (AnAOB), which can transform NH4+-N and NO2--N into N2 under anaerobic conditions. In this review, the unique metabolic characteristics, microbial community of AOMs and the influencing factors are discussed. Process applications of nitrification/denitrification, nitritation/denitrification, nitritation/anammox and partial denitrification/anammox in wastewater treatment systems are emphasized. The future development of nitrogen removal processes using AOMs is expected, enrichment of comammox facilitates the complete nitrification performance, inhibiting the activity of comammox and NOB could achieve stable nitritation, and additionally, AnAOB conducting the anammox process in municipal wastewater is a promising development direction.
Collapse
Affiliation(s)
- Weihua Zhao
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
- Qingdao University of Technology, Huangdao District, Qingdao, 266525, People's Republic of China.
| | - Xuejun Bi
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Meng Bai
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yanyan Wang
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| |
Collapse
|
4
|
Zhou Z, Liu Y, Wang S, Xiao J, Cao X, Zhou Y, Song C. Interactions between Phosphorus Enrichment and Nitrification Accelerate Relative Nitrogen Deficiency during Cyanobacterial Blooms in a Large Shallow Eutrophic Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2992-3001. [PMID: 36753734 DOI: 10.1021/acs.est.2c07599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regime shifts between nitrogen (N) and phosphorus (P) limitation, which trigger cyanobacterial succession, occur in shallow eutrophic lakes seasonally. However, the underlying mechanism is not yet fully illustrated. We provide a novel insight to address this from interactions between sediment P and nitrification through monthly field investigations including 204 samples and microcosm experiments in Lake Chaohu. Total N to P mass ratios (TN/TP) varied significantly across seasons especially during algal bloom in summer, with the average value being 26.1 in June and descending to 7.8 in September gradually, triggering dominant cyanobacterial succession from Microcystis to Dolichospermum. The regulation effect of sediment N/P on water column TN/TP was stronger in summer than in other seasons. Iron-bound P and alkaline phosphatase activity in sediment, rather than ammonium, contributed to the higher part of nitrification. Furthermore, our microcosm experiments confirmed that soluble active P and enzymatic hydrolysis of organic P, accumulating during algal bloom, fueled nitrifiers and nitrification in sediments. These processes promoted lake N removal and led to relative N deficiency in turn. Our results highlight that N and P cycles do not exist independently but rather interact with each other during lake eutrophication, supporting the dual N and P reduction program to mitigate eutrophication in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Zijun Zhou
- Institute of Yellow River Water Resources Protection, Zhengzhou 450004, PR China
| | - Yuqian Liu
- Institute of Yellow River Water Resources Protection, Zhengzhou 450004, PR China
| | - Siyang Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, PR China
| | - Jian Xiao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
5
|
Campbell KS, Keller P, Golovko SA, Seeger D, Golovko MY, Kerby JL. Connecting the Pipes: Agricultural Tile Drains and Elevated Imidacloprid Brain Concentrations in Juvenile Northern Leopard Frogs ( Rana pipiens). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2758-2767. [PMID: 36753680 DOI: 10.1021/acs.est.2c06527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neonicotinoids are neurotoxic insecticides and are often released into nearby wetlands via subsurface tile drains and can negatively impact nontarget organisms, such as amphibians. Previous studies have indicated that imidacloprid, a commonly used neonicotinoid, can cross the amphibian blood-brain barrier under laboratory conditions; however, little is known about the impact of low concentrations in a field-based setting. Here, we report aqueous pesticide concentrations at wetland production areas that were either connected or not connected to agricultural tile drains, quantified imidacloprid and its break down products in juvenile amphibian brains and livers, and investigated the relationship between imidacloprid brain concentration and brain size. Imidacloprid concentrations in brain and water samples were nearly 2.5 and 5 times higher at tile wetlands (brain = 4.12 ± 1.92 pg/mg protein; water = 0.032 ± 0.045 μg/L) compared to reference wetlands, respectively. Tile wetland amphibians also had shorter cerebellums (0.013 ± 0.001 mm), depicting a negative relationship between imidacloprid brain concentration and cerebellum length. The metabolite, desnitro-imidacloprid, had liver concentrations that were 2 times higher at tile wetlands (2 ± 0.3 μg/g). Our results demonstrate that imidacloprid can cross the amphibian blood-brain barrier under ecological conditions and may alter brain dimensions and provide insight into the metabolism of imidacloprid in amphibians.
Collapse
Affiliation(s)
- Kaitlyn S Campbell
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Peyton Keller
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, United States
| | - Drew Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, United States
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, United States
| | - Jacob L Kerby
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, United States
| |
Collapse
|
6
|
Ohbayashi T, Wang Y, Aoyagi LN, Hara S, Tago K, Hayatsu M. Diversity of the Hydroxylamine Oxidoreductase (HAO) Gene and Its Enzyme Active Site in Agricultural Field Soils. Microbes Environ 2023; 38:ME23068. [PMID: 38092410 PMCID: PMC10728637 DOI: 10.1264/jsme2.me23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023] Open
Abstract
Nitrification is a key process in the biogeochemical nitrogen cycle and a major emission source of the greenhouse gas nitrous oxide (N2O). The periplasmic enzyme hydroxylamine oxidoreductase (HAO) is involved in the oxidation of hydroxylamine to nitric oxide in the second step of nitrification, producing N2O as a byproduct. Its three-dimensional structure demonstrates that slight differences in HAO active site residues have inhibitor effects. Therefore, a more detailed understanding of the diversity of HAO active site residues in soil microorganisms is important for the development of novel nitrification inhibitors using structure-guided drug design. However, this has not yet been examined. In the present study, we investigated hao gene diversity in beta-proteobacterial ammonia-oxidizing bacteria (β-AOB) and complete ammonia-oxidizing (comammox; Nitrospira spp.) bacteria in agricultural fields using a clone library ana-lysis. A total of 1,949 hao gene sequences revealed that hao gene diversity in β-AOB and comammox bacteria was affected by the fertilizer treatment and field type, respectively. Moreover, hao sequences showed the almost complete conservation of the six HAO active site residues in both β-AOB and comammox bacteria. The diversity of nitrifying bacteria showed similarity between hao and amoA genes. The nxrB amplicon sequence revealed the dominance of Nitrospira cluster II in tea field soils. The present study is the first to reveal hao gene diversity in agricultural soils, which will accelerate the efficient screening of HAO inhibitors and evaluations of their suppressive effects on nitrification in agricultural soils.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Yong Wang
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Luciano Nobuhiro Aoyagi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Shintaro Hara
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| |
Collapse
|
7
|
Ye J, Wu J, Deng W, Li Y, Jiang C, Wang Y, Hong Y. Novel database and cut-off value for bacterial amoA gene revealed a spatial variability pattern of the ammonia-oxidizing bacteria community from river to sea. MARINE POLLUTION BULLETIN 2022; 185:114351. [PMID: 36401947 DOI: 10.1016/j.marpolbul.2022.114351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) catalyze the first step of nitrification, oxidizing ammonia to nitrite, and are characterized by amoA gene encoding ammonia monooxygenase. To analyze the AOB community effectively, an integral taxonomy database containing 14,058 amoA sequences and the optimal cut-off value at 95 % for OTU clustering were determined. This method was evaluated to be efficient by the analysis of environmental samples from the river, estuary, and sea. Using this method, a significant spatial variance of the AOB community was found. The diversity of AOB was highest in the estuary and lowest in the ocean. Nitrosomonas were the predominant AOB in the sediments of the freshwater river and estuary. Nearly all the AOB-amoA sequences belonged to uncultured bacterium in the sediments of deep sea. In general, an integral AOB taxonomic database and a suitable cut-off value were constructed for the comprehensive exploration of the diversity of AOB from river to sea.
Collapse
Affiliation(s)
- Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenfang Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yiben Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Aryal B, Gurung R, Camargo AF, Fongaro G, Treichel H, Mainali B, Angove MJ, Ngo HH, Guo W, Puadel SR. Nitrous oxide emission in altered nitrogen cycle and implications for climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120272. [PMID: 36167167 DOI: 10.1016/j.envpol.2022.120272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N2O) emissions, which are accelerating at an unprecedented rate. N2O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N2O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N2O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N2O generation. The authors also estimate the N2O-N emission mainly due to anthropogenic activities will be around 8.316 Tg N2O-N yr-1 in 2050. In order to minimize and tackle the N2O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Collapse
Affiliation(s)
- Babita Aryal
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Roshni Gurung
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Aline F Camargo
- Federal University of Santa Catarina, Post-graduation Program in Biotechnology and Biosciences, Florianopólis, Brazil; Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Bandita Mainali
- School of Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC, 3550, Australia; School of Engineering, Macquarie University, Sydney, Australia
| | - Michael J Angove
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bendigo, VIC-3550, Australia
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Wenshan Guo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Shukra Raj Puadel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuwan University, Pulchowk, Lalitpur, 44700, Nepal; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
9
|
Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs). THE ISME JOURNAL 2022; 16:1348-1362. [PMID: 34987183 PMCID: PMC9038741 DOI: 10.1038/s41396-021-01177-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
Copper membrane monooxygenases (CuMMOs) play critical roles in the global carbon and nitrogen cycles. Organisms harboring these enzymes perform the first, and rate limiting, step in aerobic oxidation of ammonia, methane, or other simple hydrocarbons. Within archaea, only organisms in the order Nitrososphaerales (Thaumarchaeota) encode CuMMOs, which function exclusively as ammonia monooxygenases. From grassland and hillslope soils and aquifer sediments, we identified 20 genomes from distinct archaeal species encoding divergent CuMMO sequences. These archaea are phylogenetically clustered in a previously unnamed Thermoplasmatota order, herein named the Ca. Angelarchaeales. The CuMMO proteins in Ca. Angelarchaeales are more similar in structure to those in Nitrososphaerales than those of bacteria, and contain all functional residues required for general monooxygenase activity. Ca. Angelarchaeales genomes are significantly enriched in blue copper proteins (BCPs) relative to sibling lineages, including plastocyanin-like electron carriers and divergent nitrite reductase-like (nirK) 2-domain cupredoxin proteins co-located with electron transport machinery. Ca. Angelarchaeales also encode significant capacity for peptide/amino acid uptake and degradation and share numerous electron transport mechanisms with the Nitrososphaerales. Ca. Angelarchaeales are detected at high relative abundance in some of the environments where their genomes originated from. While the exact substrate specificities of the novel CuMMOs identified here have yet to be determined, activity on ammonia is possible given their metabolic and ecological context. The identification of an archaeal CuMMO outside of the Nitrososphaerales significantly expands the known diversity of CuMMO enzymes in archaea and suggests previously unaccounted organisms contribute to critical global nitrogen and/or carbon cycling functions.
Collapse
|
10
|
Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water. WATER 2022. [DOI: 10.3390/w14081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nowadays, ammonia nitrogen (NH4+) pollution gets more and more attention in drinking water sources. This study investigated the main behavior of biogeochemical NH4+ from groundwater to surface water in a hyporheic zone (HZ) sediment from a reservoir. The experiments were conducted using synthetic groundwater to investigate ammonium transformation. The results indicated that ammonium concentration decreased, apparently resulting from the influence of microbial oxidation and ion exchange with Ca2+, Mg2+, K+, and Na+. However, all the ammonium in the sediment was oxidized, then the adsorbed NH4+ became bioavailable by being released back when NH4+ concentration decreased in the aqueous phase. The results showed NH4+ behavior in a HZ where the aerobic and anaerobic environments frequently exchange, with different hydrological conditions controlled by a strong coupling between microbial activities, geochemistry, hydrology, and ion exchange.
Collapse
|
11
|
Abstract
Anaerobic ammonium oxidation (anammox) is important for converting bioavailable nitrogen into dinitrogen gas, particularly in carbon-poor environments. However, the diversity and prevalence of anammox bacteria in the terrestrial subsurface-a typically oligotrophic environment-are little understood. To determine the distribution and activity of anammox bacteria across a range of aquifer lithologies and physicochemistries, we analyzed 16S rRNA genes and quantified hydrazine synthase genes and transcripts sampled from 59 groundwater wells and metagenomes and metatranscriptomes from an oxic-to-dysoxic subset. Data indicate that anammox and anammox-associated bacteria (class "Candidatus Brocadiae") are prevalent in the aquifers studied, and that anammox community composition is strongly differentiated by dissolved oxygen (DO), but not ammonia/nitrite. While "Candidatus Brocadiae" diversity decreased with increasing DO, "Candidatus Brocadiae" 16S rRNA genes and hydrazine synthase (hzsB) genes and transcripts were detected across a wide range of bulk groundwater DO concentrations (0 to 10 mg/L). Anammox genes and transcripts correlated significantly with those involved in aerobic ammonia oxidation (amoA), potentially representing a major source of nitrite for anammox. Eight "Candidatus Brocadiae" genomes (63 to 95% complete), representing 2 uncharacterized families and 6 novel species, were reconstructed. Six genomes have genes characteristic of anammox, all for chemolithoautotrophy. Anammox and aerotolerance genes of up to four "Candidatus Brocadiae" genomes were transcriptionally active under oxic and dysoxic conditions, although activity was highest in dysoxic groundwater. The coexpression of nrfAH nitrite reductase genes by "Candidatus Brocadiae" suggests active regeneration of ammonia for anammox. Our findings indicate that anammox bacteria contribute to loss of fixed N across diverse anoxic-to-oxic aquifer conditions, which is likely supported by nitrite from aerobic ammonia oxidation. IMPORTANCE Anammox is increasingly shown to play a major role in the aquatic nitrogen cycle and can outcompete heterotrophic denitrification in environments low in organic carbon. Given that aquifers are characteristically oligotrophic, anammox may represent a major route for the removal of fixed nitrogen in these environments, including agricultural nitrogen, a common groundwater contaminant. Our research confirms that anammox bacteria and the anammox process are prevalent in aquifers and occur across diverse lithologies (e.g., sandy gravel, sand-silt, and volcanic) and groundwater physicochemistries (e.g., various oxygen, carbon, nitrate, and ammonium concentrations). Results reveal niche differentiation among anammox bacteria largely driven by groundwater oxygen contents and provide evidence that anammox is supported by proximity to oxic niches and handoffs from aerobic ammonia oxidizers. We further show that this process, while anaerobic, is active in groundwater characterized as oxic, likely due to the availability of anoxic niches.
Collapse
|
12
|
Ronan E, Aqeel H, Wolfaardt GM, Liss SN. Recent advancements in the biological treatment of high strength ammonia wastewater. World J Microbiol Biotechnol 2021; 37:158. [PMID: 34420110 DOI: 10.1007/s11274-021-03124-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The estimated global population growth of 81 million people per year, combined with increased rates of urbanization and associated industrial processes, result in volumes of high strength ammonia wastewater that cannot be treated in a cost-effective or sustainable manner using the floc-based conventional activated sludge approach of nitrification and denitrification. Biofilm and aerobic granular sludge technologies have shown promise to significantly improve the performance of biological nitrogen removal systems treating high strength wastewater. This is partly due to enhanced biomass retention and their ability to sustain diverse microbial populations with juxtaposing growth requirements. Recent research has also demonstrated the value of hybrid systems with heterogeneous bioaggregates to mitigate biofilm and granule instability during long-term operation. In the context of high strength ammonia wastewater treatment, conventional nitrification-denitrification is hampered by high energy costs and greenhouse gas emissions. Anammox-based processes such as partial nitritation-anammox and partial denitrification-anammox represent more cost-effective and sustainable methods of removing reactive nitrogen from wastewater. There is also growing interest in the use of photosynthetic bacteria for ammonia recovery from high strength waste streams, such that nitrogen can be captured and concentrated in its reactive form and recycled into high value products. The purpose of this review is to explore recent advancements and emerging approaches related to high strength ammonia wastewater treatment.
Collapse
Affiliation(s)
- Evan Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Hussain Aqeel
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.,School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Gideon M Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Steven N Liss
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada. .,School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada. .,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
13
|
He Y, Zhou Y, Weng R, Wang J, Chen J, Huang M. Responses of Ammonia-Oxidizing Archaea and Bacteria in Malodorous River Sediments to Different Remediation Techniques. MICROBIAL ECOLOGY 2021; 81:314-322. [PMID: 32935184 DOI: 10.1007/s00248-020-01597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, the joint use of high throughput sequencing, real-time quantitative PCR, and ammonia-oxidizing bacteria (AOB)-inhibiting allylthiourea was used to differentiate between the contributions of ammonia-oxidizing archaea (AOA) vs AOB to ammonia oxidation and ascertain how AOA and AOB responded to two widely used river remediation techniques (aeration and Ca(NO3)2 injection). Results showed that ammonia oxidation was largely attributed to ATU-sensitive AOB rather than AOA and Nitrosomonas was the predominant AOB-related genus (53.86%) in the malodorous river. The contribution of AOB to ammonia oxidation in the context of aeration and Ca(NO3)2 injection was 75.51 ± 2.77% and 60.19 ± 10.44%, respectively. The peak of AOB/AOA ratio and the marked increase of relative abundances of Nitrosomonas and Nitrosospira in aeration runs further demonstrated aeration favored the ammonia oxidation of AOB. Comparatively, Ca(NO3)2 injection could increase the ammonia oxidation contribution of AOA from 31.32 ± 6.06 to 39.81 ± 10.44% and was significantly correlated with Nitrosococcus of AOB (r = 0.796, p < 0.05), Candidatus_Nitrosopelagicus of AOA (r = 0.986, p < 0.01), and AOA Simpson diversity (r = - 0.791, p < 0.05). Moreover, Candidatus_Nitrosopelagicus was only present in Ca(NO3)2 runs. Taken together, Ca(NO3)2 was recognized as an important factor in mediating the growth and ecological niches of ammonia oxidizers.Graphical abstract.
Collapse
Affiliation(s)
- Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China.
| | - Yunchang Zhou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Rui Weng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Jianhua Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Jinghan Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
14
|
Wei D, Zeng S, Hou D, Zhou R, Xing C, Deng X, Yu L, Wang H, Deng Z, Weng S, Huang Z, He J. Community diversity and abundance of ammonia-oxidizing archaea and bacteria in shrimp pond sediment at different culture stages. J Appl Microbiol 2020; 130:1442-1455. [PMID: 33021028 DOI: 10.1111/jam.14846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
AIMS Ammonia oxidation is a significant process of nitrogen cycles in a lot of ecosystems sediments while there are few studies in shrimp culture pond (SCP) sediments. This paper attempted to explore the community diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in SCP sediments at different culture stages. METHODS AND RESULTS We collected SCP sediments and analysed the community diversity and abundance of AOA and bacteria in shrimp pond sediment at different culture stages using the ammonia monooxygenase (amoA) gene with quantitative PCR (qPCR) and 16S rRNA gene sequencing. The AOB-amoA gene abundance was showed higher than AOA-amoA gene abundance in SCP sediments on Day 50 and Day 60 after shrimp larvae introducing into the pond, and the diversity of AOA in SCP sediments was higher than that of AOB. The phylogenetic tree revealed that the most of AOA were the member of Nitrosopumilus and Nitrososphaera, and the majority of AOB sequences were clustered into Nitrosospira, Nitrosomonas clusters 6a and 7. The AOA community has close relationship with total organic carbon (TOC), pH, total phosphorus (TP), nitrate reductase, urease, acid phosphatase and β-glucosidase. The AOB community was related to TOC, C/N and nitrate reductase. CONCLUSIONS AOA and AOB play the different ecological roles in SCP sediments at different culture stages. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggested that the different community diversity and abundance of AOA and AOB in SCP sediments, which may improve our ecological cognition of shrimp culture stages in SCP ecosystems.
Collapse
Affiliation(s)
- D Wei
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - S Zeng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - D Hou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - R Zhou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - C Xing
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - X Deng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - L Yu
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - H Wang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Z Deng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - S Weng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Z Huang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - J He
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
15
|
Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe. Sci Rep 2020; 10:17165. [PMID: 33051504 PMCID: PMC7555866 DOI: 10.1038/s41598-020-74163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/24/2020] [Indexed: 11/25/2022] Open
Abstract
The community composition of betaproteobacterial ammonia-oxidizing bacteria (ß-AOB) in the River Elbe Estuary was investigated by high throughput sequencing of ammonia monooxygenase subunit A gene (amoA) amplicons. In the course of the seasons surface sediment samples from seven sites along the longitudinal profile of the upper Estuary of the Elbe were investigated. We observed striking shifts of the ß-AOB community composition according to space and time. Members of the Nitrosomonas oligotropha-lineage and the genus Nitrosospira were found to be the dominant ß-AOB within the river transect, investigated. However, continuous shifts of balance between members of both lineages along the longitudinal profile were determined. A noticeable feature was a substantial increase of proportion of Nitrosospira-like sequences in autumn and of sequences affiliated with the Nitrosomonas marina-lineage at downstream sites in spring and summer. Slightly raised relative abundances of sequences affiliated with the Nitrosomonas europaea/Nitrosomonas mobilis-lineage and the Nitrosomonas communis-lineage were found at sampling sites located in the port of Hamburg. Comparisons between environmental parameters and AOB-lineage (ecotype) composition revealed promising clues that processes happening in the fluvial to marine transition zone of the Elbe estuary are reflected by shifts in the relative proportion of ammonia monooxygenase sequence abundance, and hence, we propose ß-AOB as appropriate indicators for environmental dynamics and the ecological condition of the Elbe Estuary.
Collapse
|
16
|
Versantvoort W, Pol A, Jetten MSM, van Niftrik L, Reimann J, Kartal B, Op den Camp HJM. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proc Natl Acad Sci U S A 2020; 117:24459-24463. [PMID: 32913059 PMCID: PMC7533708 DOI: 10.1073/pnas.2011299117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aerobic and nitrite-dependent methanotrophs make a living from oxidizing methane via methanol to carbon dioxide. In addition, these microorganisms cometabolize ammonia due to its structural similarities to methane. The first step in both of these processes is catalyzed by methane monooxygenase, which converts methane or ammonia into methanol or hydroxylamine, respectively. Methanotrophs use methanol for energy conservation, whereas toxic hydroxylamine is a potent inhibitor that needs to be rapidly removed. It is suggested that many methanotrophs encode a hydroxylamine oxidoreductase (mHAO) in their genome to remove hydroxylamine, although biochemical evidence for this is lacking. HAOs also play a crucial role in the metabolism of aerobic and anaerobic ammonia oxidizers by converting hydroxylamine to nitric oxide (NO). Here, we purified an HAO from the thermophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV and characterized its kinetic properties. This mHAO possesses the characteristic P460 chromophore and is active up to at least 80 °C. It catalyzes the rapid oxidation of hydroxylamine to NO. In methanotrophs, mHAO efficiently removes hydroxylamine, which severely inhibits calcium-dependent, and as we show here, lanthanide-dependent methanol dehydrogenases, which are more prevalent in the environment. Our results indicate that mHAO allows methanotrophs to thrive under high ammonia concentrations in natural and engineered ecosystems, such as those observed in rice paddy fields, landfills, or volcanic mud pots, by preventing the accumulation of inhibitory hydroxylamine. Under oxic conditions, methanotrophs mainly oxidize ammonia to nitrite, whereas in hypoxic and anoxic environments reduction of both ammonia-derived nitrite and NO could lead to nitrous oxide (N2O) production.
Collapse
Affiliation(s)
- Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
17
|
Kniggendorf AK, Nogueira R, Nasiri Bahmanabad S, Pommerening-Röser A, Roth BW. Small Sample Stress: Probing Oxygen-Deprived Ammonia-Oxidizing Bacteria with Raman Spectroscopy In Vivo. Microorganisms 2020; 8:microorganisms8030432. [PMID: 32204374 PMCID: PMC7143505 DOI: 10.3390/microorganisms8030432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
The stress response of ammonia-oxidizing bacteria (AOB) to oxygen deprivation limits AOB growth and leads to different nitrification pathways that cause the release of greenhouse gases. Measuring the stress response of AOB has proven to be a challenge due to the low growth rates of stressed AOB, making the sample volumes required to monitor the internal stress response of AOB prohibitive to repeated analysis. In a proof-of-concept study, confocal Raman microscopy with excitation resonant to the heme c moiety of cytochrome c was used to compare the cytochrome c content and activity of stressed and unstressed Nitrosomonas europaea (Nm 50), Nitrosomonas eutropha (Nm 57), Nitrosospira briensis (Nsp 10), and Nitrosospira sp. (Nsp 02) in vivo. Each analysis required no more than 1000 individual cells per sampling; thus, the monitoring of cultures with low cell concentrations was possible. The identified spectral marker delivered reproducible results within the signal-to-noise ratio of the underlying Raman spectra. Cytochrome c content was found to be elevated in oxygen-deprived and previously oxygen-deprived samples. In addition, cells with predominantly ferrous cytochrome c content were found in deprived Nitrosomonas eutropha and Nitrosospira samples, which may be indicative of ongoing electron storage at the time of measurement.
Collapse
Affiliation(s)
- Ann-Kathrin Kniggendorf
- Hannover Centre for Optical Technologies, Gottfried Wilhelm Leibniz University of Hannover, Nienburger Str. 17, 30167 Hannover, Germany
- Correspondence: (A.-K.K.); (R.N.); Tel.: +49-511-762-17910 (A.-K.K.)
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Correspondence: (A.-K.K.); (R.N.); Tel.: +49-511-762-17910 (A.-K.K.)
| | - Somayeh Nasiri Bahmanabad
- Institute for Sanitary Engineering and Waste Management, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | | | - Bernhard Wilhelm Roth
- Hannover Centre for Optical Technologies, Gottfried Wilhelm Leibniz University of Hannover, Nienburger Str. 17, 30167 Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering – Innovation Across Disciplines), Welfengarten 1, 30167 Hannover, Germany
| |
Collapse
|
18
|
Parro V, Puente-Sánchez F, Cabrol NA, Gallardo-Carreño I, Moreno-Paz M, Blanco Y, García-Villadangos M, Tambley C, Tilot VC, Thompson C, Smith E, Sobrón P, Demergasso CS, Echeverría-Vega A, Fernández-Martínez MÁ, Whyte LG, Fairén AG. Microbiology and Nitrogen Cycle in the Benthic Sediments of a Glacial Oligotrophic Deep Andean Lake as Analog of Ancient Martian Lake-Beds. Front Microbiol 2019; 10:929. [PMID: 31130930 PMCID: PMC6509559 DOI: 10.3389/fmicb.2019.00929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Potential benthic habitats of early Mars lakes, probably oligotrophic, could range from hydrothermal to cold sediments. Dynamic processes in the water column (such as turbidity or UV penetration) as well as in the benthic bed (temperature gradients, turbation, or sedimentation rate) contribute to supply nutrients to a potential microbial ecosystem. High altitude, oligotrophic, and deep Andean lakes with active deglaciation processes and recent or past volcanic activity are natural models to assess the feasibility of life in other planetary lake/ocean environments and to develop technology for their exploration. We sampled the benthic sediments (down to 269 m depth) of the oligotrophic lake Laguna Negra (Central Andes, Chile) to investigate its ecosystem through geochemical, biomarker profiling, and molecular ecology studies. The chemistry of the benthic water was similar to the rest of the water column, except for variable amounts of ammonium (up to 2.8 ppm) and nitrate (up to 0.13 ppm). A life detector chip with a 300-antibody microarray revealed the presence of biomass in the form of exopolysaccharides and other microbial markers associated to several phylogenetic groups and potential microaerobic and anaerobic metabolisms such as nitrate reduction. DNA analyses showed that 27% of the Archaea sequences corresponded to a group of ammonia-oxidizing archaea (AOA) similar (97%) to Nitrosopumilus spp. and Nitrosoarchaeum spp. (Thaumarchaeota), and 4% of Bacteria sequences to nitrite-oxidizing bacteria from the Nitrospira genus, suggesting a coupling between ammonia and nitrite oxidation. Mesocosm experiments with the specific AOA inhibitor 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) demonstrated an AOA-associated ammonia oxidation activity with the simultaneous accumulation of nitrate and sulfate. The results showed a rich benthic microbial community dominated by microaerobic and anaerobic metabolisms thriving under aphotic, low temperature (4°C), and relatively high pressure, that might be a suitable terrestrial analog of other planetary settings.
Collapse
Affiliation(s)
- Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | - Nathalie A. Cabrol
- SETI Institute, Carl Sagan Center, Mountain View, CA, United States
- NASA Ames Research Center, Mountain View, CA, United States
| | | | | | | | | | | | - Virginie C. Tilot
- Instituto Español de Oceanografía (IEO), Málaga, Spain
- Muséum National d’Histoire Naturelle, Paris, France
| | - Cody Thompson
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Eric Smith
- SETI Institute, Carl Sagan Center, Mountain View, CA, United States
| | - Pablo Sobrón
- SETI Institute, Carl Sagan Center, Mountain View, CA, United States
| | | | - Alex Echeverría-Vega
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | | | - Lyle G. Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, United States
| |
Collapse
|
19
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
20
|
Szukics U, Grigulis K, Legay N, Kastl EM, Baxendale C, Bardgett RD, Clément JC, Lavorel S, Schloter M, Bahn M. Management versus site effects on the abundance of nitrifiers and denitrifiers in European mountain grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:745-753. [PMID: 30134212 DOI: 10.1016/j.scitotenv.2018.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
It is well established that the abundances of nitrogen (N) transforming microbes are strongly influenced by land-use intensity in lowland grasslands. However, their responses to management change in less productive and less fertilized mountain grasslands are largely unknown. We studied eight mountain grasslands, positioned along gradients of management intensity in Austria, the UK, and France, which differed in their historical management trajectories. We measured the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) as well as nitrite-reducing bacteria using specific marker genes. We found that management affected the abundance of these microbial groups along each transect, though the specific responses differed between sites, due to different management histories and resulting variations in environmental parameters. In Austria, cessation of management caused an increase in nirK and nirS gene abundances. In the UK, intensification of grassland management led to 10-fold increases in the abundances of AOA and AOB and doubling of nirK gene abundance. In France, ploughing of previously mown grassland caused a 20-fold increase in AOA abundance. Across sites the abundance of AOB was most strongly related to soil NO3--N availability, and AOA were favored by higher soil pH. Among the nitrite reducers, nirS abundance correlated most strongly with N parameters, such as soil NO3--N, microbial N, leachate NH4+-N, while the abundance of nirK-denitrifiers was affected by soil total N, organic matter (SOM) and water content. We conclude that alteration of soil environmental conditions is the dominant mechanism by which land management practices influence the abundance of each group of ammonia oxidizers and nitrite reducers.
Collapse
Affiliation(s)
- Ute Szukics
- Universität Innsbruck, Institut für Ökologie, Sternwartestr. 15, Innsbruck, Austria
| | - Karl Grigulis
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS, Université Joseph Fourier, Grenoble, France
| | - Nicolas Legay
- École de la Nature et du Paysage, INSA Centre Val de Loire, 9 Rue Chocolaterie, 41000 Blois, France; CNRS, CITERES, UMR 7324, 37200 Tours, France
| | - Eva-Maria Kastl
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, 85758 Oberschleissheim, Germany
| | | | - Richard D Bardgett
- School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Sandra Lavorel
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS, Université Joseph Fourier, Grenoble, France
| | - Michael Schloter
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, 85758 Oberschleissheim, Germany
| | - Michael Bahn
- Universität Innsbruck, Institut für Ökologie, Sternwartestr. 15, Innsbruck, Austria.
| |
Collapse
|
21
|
Isoda R, Hara S, Tahvanainen T, Hashidoko Y. Comparison of Archaeal Communities in Mineral Soils at a Boreal Forest in Finland and a Cold-Temperate Forest in Japan. Microbes Environ 2017; 32:390-393. [PMID: 29109334 PMCID: PMC5745025 DOI: 10.1264/jsme2.me17100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Archaeal communities in mineral soils were compared between a boreal forest in Finland and cold-temperate forest in Japan using 16S rRNA gene-targeted high-throughput sequencing. In boreal soils, Thaumarchaeota Group 1.1c archaea predominated and Thaumarchaeota Group 1.1a-associated and Group 1.1b archaea were also detected. In temperate soils, Thaumarchaeota Group 1.1a-associated and Group 1.1b archaea were dominant members at the subsurface, whereas their dominancy was replaced by Thermoplasmata archaea at the subsoil. An analysis of the ammonia monooxygenase subunit A gene of Archaea also indicated the distribution of Thaumarchaeota Group 1.1a-associated and Group 1.1b archaea in these soils.
Collapse
Affiliation(s)
- Reika Isoda
- Research Faculty of Agriculture, Hokkaido University
| | - Shintaro Hara
- Research Faculty of Agriculture, Hokkaido University
| | | | | |
Collapse
|
22
|
Zheng M, Fu HZ, Ho YS. Research trends and hotspots related to ammonia oxidation based on bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20409-20421. [PMID: 28707243 DOI: 10.1007/s11356-017-9711-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Ammonia oxidation is the rate-limiting and central step in global biogeochemistry cycle of nitrogen. A bibliometric analysis based on 4314 articles extracted from Science Citation Index Expanded database was carried out to provide insights into publication performances and research trends of ammonia oxidation in the period 1991-2014. These articles were originated from a wide range of 602 journals and 95 Web of Science Categories, among which Applied and Environmental Microbiology and Environmental Sciences took the leading position, respectively. Furthermore, co-citation analysis conducted with help of CiteSpace software clearly illustrated that ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and anaerobic ammonia oxidation (anammox) were three dominant research themes. A total of 15 landmark works identified with the highest co-citation frequencies at every 8 years were extracted, which demonstrated that the establishments of culture-independent molecular biotechnologies as well as the discoveries of anammox and AOA played the most significant roles in promoting the evolution and development of ammonia oxidation research. Finally, word cluster analysis further suggested that microbial abundance and community of AOA and AOB was the most prominent hotspot, with soil and high-throughput sequencing as the most promising ecosystem and molecular biotechnology. In addition, application of anammox in nitrogen removal from wastewater has become another attractive research hotspot. This study provides a basis for better understanding the situations and prospective directions of the research field of ammonia oxidation.
Collapse
Affiliation(s)
- Maosheng Zheng
- MOE Key Laboratory of Regional Energy Systems Optimization, Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Hui-Zhen Fu
- Department of Information Resources Management, School of Public Affairs, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yuh-Shan Ho
- Trend Research Centre, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
23
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Castellano-Hinojosa A, Gonzalez-Lopez J, van Loosdrecth MCM, Vahala R, Gonzalez-Martinez A. Quantitative and qualitative studies of microorganisms involved in full-scale autotrophic nitrogen removal performance. AIChE J 2017. [DOI: 10.1002/aic.15925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Barbara Muñoz-Palazon
- Institute of Water Research; University of Granada, C/Ramon y Cajal, 4; Granada 18071 Spain
| | | | | | - Jesus Gonzalez-Lopez
- Institute of Water Research; University of Granada, C/Ramon y Cajal, 4; Granada 18071 Spain
- Faculty of Pharmacy; University of Granada, Campus de Cartuja, s/n; Granada 18071 Spain
| | - Mark C. M. van Loosdrecth
- Dept. of Biotechnology; Technical University of Delft, Julianaalan 67, 2628 BC; Delft The Netherlands
| | - Riku Vahala
- Dept. of Built Environment; Aalto University, P.O. Box 15200; Aalto Espoo FI-00076 Finland
| | | |
Collapse
|
24
|
Screening and optimizing of inhibitors for ammonia-oxidizing bacteria in sediments of malodorous river. Appl Microbiol Biotechnol 2017; 101:6193-6203. [PMID: 28540424 DOI: 10.1007/s00253-017-8318-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
Abstract
The proper use of selective ammonia-oxidizing archaea (AOA) and/or ammonia-oxidizing bacteria (AOB) inhibitors is critical to distinguish AOA and AOB contribution. In this research, three inhibitors including ampicillin, dicyandiamide (DCD), and allylthiourea (ATU) were examined mainly focusing on inhibiting dosage, adaptability, and effects. The results showed that the optimized inhibitory dosage of ampicillin, DCD, and ATU was separately 1.5 g L-1, 1 mM, and 25 μM. Among the three inhibitors, ATU exhibited the strongest and persistent inhibition effects and resulted in up to 90% inhibition in the AOB-enriched culture. The seemingly weakening inhibiting effects of ATU in the simulated river systems can be attributed to the involved role of AOA, the uneven spatial distribution of ATU, and protection by sediment structure in complex malodorous rivers. The high-throughput pyrosequencing analysis showed the AOB-related genus Nitrosomonas and Nitrosococcus were mostly affected by ATU in the enrichments and the river systems, respectively. The inhibition of ATU was realized mainly by reducing the abundance and activity of AOB. The decrease of the ratio of AOB/AOA amoA gene copy numbers after addition of ATU further confirmed the inhibiting effectiveness of ATU in complex microbial community of malodorous rivers.
Collapse
|
25
|
Hynes RK. Commentary on ‘Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea’. FEMS Microbiol Lett 2017; 364:3101028. [DOI: 10.1093/femsle/fnx068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/03/2017] [Indexed: 11/12/2022] Open
|
26
|
Tsujino S, Uematsu C, Dohra H, Fujiwara T. Pyruvic oxime dioxygenase from heterotrophic nitrifier Alcaligenes faecalis is a nonheme Fe (II)-dependent enzyme homologous to class II aldolase. Sci Rep 2017; 7:39991. [PMID: 28059164 PMCID: PMC5216522 DOI: 10.1038/srep39991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/30/2016] [Indexed: 11/09/2022] Open
Abstract
Pyruvic oxime dioxygenase (POD), a key enzyme in heterotrophic nitrification, was purified from Alcaligenes faecalis, and the molecular and catalytic characteristics were reexamined. POD was purified as the homotetramer of the subunit whose molecular weight was 30,000. The deduced amino acid sequence of POD was homologous with a class II aldolase that has been regarded as the Zn(II)-dependent enzyme catalyzing aldol reactions. The recombinant protein showed weak POD activity, and was activated by reconstitution with Fe(II). Affinity and catalytic constants were estimated at 470 μM and 4.69 sec-1, respectively. The POD was inactivated by EDTA to remove bound divalent metal cations. A reconstitution experiment demonstrated that Fe(II), not Zn(II), is essential for POD activity and that Mn(II) could partially fulfill the function of Fe(II). A mutant POD with replacement of His183, corresponding to one of three Zn(II)-binding ligands in the class II aldolase, by Asn was purified as a homotetrameric protein but showed no catalytic activities. Those results suggest that the POD is homologous to class II aldolase having non-heme Fe(II) as a catalytic center instead of Zn(II). A possible mechanism of the POD reaction is discussed on the basis of that of a known Fe(II)-dependent dioxygenase.
Collapse
Affiliation(s)
- Shuhei Tsujino
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Chisato Uematsu
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
27
|
Kartal B, Keltjens JT. Anammox Biochemistry: a Tale of Heme c Proteins. Trends Biochem Sci 2016; 41:998-1011. [DOI: 10.1016/j.tibs.2016.08.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
|
28
|
Tomasova L, Konopelski P, Ufnal M. Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules 2016; 21:E1558. [PMID: 27869680 PMCID: PMC6273628 DOI: 10.3390/molecules21111558] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence suggests that gut bacteria play a role in homeostasis of the circulatory system in mammals. First, gut bacteria may affect the nervous control of the circulatory system via the sensory fibres of the enteric nervous system. Second, gut bacteria-derived metabolites may cross the gut-blood barrier and target blood vessels, the heart and other organs involved in the regulation of the circulatory system. A number of studies have shown that hydrogen sulfide (H₂S) is an important biological mediator in the circulatory system. Thus far, research has focused on the effects of H₂S enzymatically produced by cardiovascular tissues. However, some recent evidence indicates that H₂S released in the colon may also contribute to the control of arterial blood pressure. Incidentally, sulfate-reducing bacteria are ubiquitous in mammalian colon, and H₂S is just one among a number of molecules produced by the gut flora. Other gut bacteria-derived compounds that may affect the circulatory system include methane, nitric oxide, carbon monoxide, trimethylamine or indole. In this paper, we review studies that imply a role of gut microbiota and their metabolites, such as H₂S, in circulatory system homeostasis.
Collapse
Affiliation(s)
- Lenka Tomasova
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 845 05, Slovakia.
| | - Piotr Konopelski
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
| |
Collapse
|
29
|
Liu T, Liu S, Zheng M, Chen Q, Ni J. Performance Assessment of Full-Scale Wastewater Treatment Plants Based on Seasonal Variability of Microbial Communities via High-Throughput Sequencing. PLoS One 2016; 11:e0152998. [PMID: 27049964 PMCID: PMC4822889 DOI: 10.1371/journal.pone.0152998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Microbial communities of activated sludge (AS) play a key role in the performance of wastewater treatment processes. However, seasonal variability of microbial population in varying AS-based processes has been poorly correlated with operation of full-scale wastewater treatment systems (WWTSs). In this paper, significant seasonal variability of AS microbial communities in eight WWTSs located in the city of Guangzhou were revealed in terms of 16S rRNA-based Miseq sequencing. Furthermore, variation redundancy analysis (RDA) demonstrated that the microbial community compositions closely correlated with WWTS operation parameters such as temperature, BOD, NH4+-N and TN. Consequently, support vector regression models which reasonably predicted effluent BOD, SS and TN in WWTSs were established based on microbial community compositions. This work provided an alternative tool for rapid assessment on performance of full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Tang Liu
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Shufeng Liu
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Maosheng Zheng
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- * E-mail: (JN)
| |
Collapse
|
30
|
Souza RC, Mendes IC, Reis-Junior FB, Carvalho FM, Nogueira MA, Vasconcelos ATR, Vicente VA, Hungria M. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado? BMC Microbiol 2016; 16:42. [PMID: 26983403 PMCID: PMC4794851 DOI: 10.1186/s12866-016-0657-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Cerrado--an edaphic type of savannah--comprises the second largest biome of the Brazilian territory and is the main area for grain production in the country, but information about the impact of land conversion to agriculture on microbial diversity is still scarce. We used a shotgun metagenomic approach to compare undisturbed (native) soil and soils cropped for 23 years with soybean/maize under conservation tillage--"no-till" (NT)--and conventional tillage (CT) systems in the Cerrado biome. RESULTS Soil management and fertilizer inputs with the introduction of agriculture improved chemical properties, but decreased soil macroporosity and microbial biomass of carbon and nitrogen. Principal coordinates analyses confirmed different taxonomic and functional profiles for each treatment. There was predominance of the Bacteria domain, especially the phylum Proteobacteria, with higher numbers of sequences in the NT and CT treatments; Archaea and Viruses also had lower numbers of sequences in the undisturbed soil. Within the Alphaproteobacteria, there was dominance of Rhizobiales and of the genus Bradyrhizobium in the NT and CT systems, attributed to massive inoculation of soybean, and also of Burkholderiales. In contrast, Rhizobium, Azospirillum, Xanthomonas, Pseudomonas and Acidobacterium predominated in the native Cerrado. More Eukaryota, especially of the phylum Ascomycota were detected in the NT. The functional analysis revealed lower numbers of sequences in the five dominant categories for the CT system, whereas the undisturbed Cerrado presented higher abundance. CONCLUSION High impact of agriculture in taxonomic and functional microbial diversity in the biome Cerrado was confirmed. Functional diversity was not necessarily associated with taxonomic diversity, as the less conservationist treatment (CT) presented increased taxonomic sequences and reduced functional profiles, indicating a strategy to try to maintain soil functioning by favoring taxa that are probably not the most efficient for some functions. Our results highlight that underneath the rustic appearance of the Cerrado vegetation there is a fragile soil microbial community.
Collapse
Affiliation(s)
- Renata Carolini Souza
- />Embrapa Soja, Soil Biotechnology, C.P. 231, 86001-970 Londrina, PR Brazil
- />Department Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990 Curitiba, PR Brazil
| | - Iêda Carvalho Mendes
- />Embrapa Cerrado, Soil Microbiology, C.P. 08223, 73301-970 Planaltina, DF Brazil
| | | | | | | | | | - Vânia Aparecida Vicente
- />Department Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990 Curitiba, PR Brazil
| | - Mariangela Hungria
- />Embrapa Soja, Soil Biotechnology, C.P. 231, 86001-970 Londrina, PR Brazil
| |
Collapse
|
31
|
Fisher KA, Meisinger JJ, James BR. Urea Hydrolysis Rate in Soil Toposequences as Influenced by pH, Carbon, Nitrogen, and Soluble Metals. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:349-359. [PMID: 26828191 DOI: 10.2134/jeq2015.05.0228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simultaneous increase in the use of urea fertilizer and the incidence of harmful algal blooms worldwide has generated interest in potential loss pathways of urea from agricultural areas. The objective of this research was to study the rate of urea hydrolysis in soil profile toposequences sampled from the Coastal Plain (CP) and Piedmont (PM) regions of Maryland to understand native urea hydrolysis rates (UHRs) as well as the controls governing urea hydrolysis both across a landscape and with depth in the soil profile. A pH-adjustment experiment was conducted to explore the relationship between pH and urea hydrolysis because of the importance of pH to both agronomic productivity and microbial communities. Soils were sampled from both A and B horizons along transects containing an agricultural field (AG), a grassed field border (GB), and a perennially vegetated zone adjacent to surface water. On average, the A-horizon UHRs were eight times greater than corresponding B-horizon rates, and within the CP, the riparian zone (RZ) soils hydrolyzed urea faster than the agricultural soils. The pH adjustment of these soils indicated the importance of organic-matter-related factors (C, N, extractable metals) in determining UHR. These results suggest that organic-matter-rich RZ soils may be valuable in mitigating losses of urea from neighboring fields. Additional field-scale urea hydrolysis studies would be valuable to corroborate the mechanisms described herein and to explore the conditions affecting the fate and transport of urea in agroecosystems.
Collapse
|
32
|
Zhou L, Wang S, Zou Y, Xia C, Zhu G. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China. Sci Rep 2015; 5:15969. [PMID: 26522086 PMCID: PMC4629152 DOI: 10.1038/srep15969] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/06/2015] [Indexed: 12/28/2022] Open
Abstract
Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.
Collapse
Affiliation(s)
- Leiliu Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Yuxuan Zou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Chao Xia
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.,Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Breme, Germany
| |
Collapse
|
33
|
Papp B, Török T, Sándor E, Fekete E, Flipphi M, Karaffa L. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. Folia Microbiol (Praha) 2015; 61:191-8. [PMID: 26358065 DOI: 10.1007/s12223-015-0425-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023]
Abstract
Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date.
Collapse
Affiliation(s)
- Benedek Papp
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032, Egyetem tér 1, Debrecen, Hungary
| | - Tibor Török
- Safety and Environmental Department, TEVA Pharmaceutical Ltd., H-4032, Pallagi u. 13, Debrecen, Hungary
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032, Böszörményi út 138, Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032, Egyetem tér 1, Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032, Egyetem tér 1, Debrecen, Hungary
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032, Egyetem tér 1, Debrecen, Hungary.
| |
Collapse
|
34
|
Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 2015; 6:439. [PMID: 26029183 PMCID: PMC4429474 DOI: 10.3389/fmicb.2015.00439] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023] Open
Abstract
Cytochromes c (Cytc) are widespread electron transfer proteins and important enzymes in the global nitrogen and sulfur cycles. The distribution of Cytc in more than 300 archaeal proteomes deduced from sequence was analyzed with computational methods including pattern and similarity searches, secondary and tertiary structure prediction. Two hundred and fifty-eight predicted Cytc (with single, double, or multiple heme c attachment sites) were found in some but not all species of the Desulfurococcales, Thermoproteales, Archaeoglobales, Methanosarcinales, Halobacteriales, and in two single-cell genome sequences of the Thermoplasmatales, all of them Cren- or Euryarchaeota. Other archaeal phyla including the Thaumarchaeota are so far free of these proteins. The archaeal Cytc sequences were bundled into 54 clusters of mutual similarity, some of which were specific for Archaea while others had homologs in the Bacteria. The cytochrome c maturation system I (CCM) was the only one found. The highest number and variability of Cytc were present in those species with known or predicted metal oxidation and/or reduction capabilities. Paradoxical findings were made in the haloarchaea: several Cytc had been purified biochemically but corresponding proteins were not found in the proteomes. The results are discussed with emphasis on cell morphologies and envelopes and especially for double-membraned Archaea-like Ignicoccus hospitalis. A comparison is made with compartmentalized bacteria such as the Planctomycetes of the Anammox group with a focus on the putative localization and roles of the Cytc and other electron transport proteins.
Collapse
Affiliation(s)
- Arnulf Kletzin
- Department of Biology, Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt Darmstadt, Germany
| | - Thomas Heimerl
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Jennifer Flechsler
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Reinhard Rachel
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development, Biocenter LMU Munich Planegg-Martinsried, Germany
| |
Collapse
|
35
|
Barton HA, Giarrizzo JG, Suarez P, Robertson CE, Broering MJ, Banks ED, Vaishampayan PA, Venkateswaran K. Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c. Front Microbiol 2014; 5:615. [PMID: 25505450 PMCID: PMC4244709 DOI: 10.3389/fmicb.2014.00615] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023] Open
Abstract
The majority of caves are formed within limestone rock and hence our understanding of cave microbiology comes from carbonate-buffered systems. In this paper, we describe the microbial diversity of Roraima Sur Cave (RSC), an orthoquartzite (SiO4) cave within Roraima Tepui, Venezuela. The cave contains a high level of microbial activity when compared with other cave systems, as determined by an ATP-based luminescence assay and cell counting. Molecular phylogenetic analysis of microbial diversity within the cave demonstrates the dominance of Actinomycetales and Alphaproteobacteria in endolithic bacterial communities close to the entrance, while communities from deeper in the cave are dominated (82–84%) by a unique clade of Ktedonobacterales within the Chloroflexi. While members of this phylum are commonly found in caves, this is the first identification of members of the Class Ktedonobacterales. An assessment of archaeal species demonstrates the dominance of phylotypes from the Thaumarchaeota Group I.1c (100%), which have previously been associated with acidic environments. While the Thaumarchaeota have been seen in numerous cave systems, the dominance of Group I.1c in RSC is unique and a departure from the traditional archaeal community structure. Geochemical analysis of the cave environment suggests that water entering the cave, rather than the nutrient-limited orthoquartzite rock, provides the carbon and energy necessary for microbial community growth and subsistence, while the poor buffering capacity of quartzite or the low pH of the environment may be selecting for this unusual community structure. Together these data suggest that pH, imparted by the geochemistry of the host rock, can play as important a role in niche-differentiation in caves as in other environmental systems.
Collapse
Affiliation(s)
- Hazel A Barton
- Department of Biology and Department of Geosciences, University of Akron Akron, OH, USA
| | - Juan G Giarrizzo
- Department of Biological Sciences, Northern Kentucky University, Highland Heights KY, USA
| | - Paula Suarez
- Departamento de Biología de Organismos, Universidad Simón Bolívar Caracas, Venezuela
| | - Charles E Robertson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder CO, USA
| | - Mark J Broering
- Department of Biological Sciences, Northern Kentucky University, Highland Heights KY, USA
| | - Eric D Banks
- Department of Biological Sciences, Northern Kentucky University, Highland Heights KY, USA
| | - Parag A Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| | - Kasthisuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
36
|
Magalhães CM, Machado A, Frank-Fahle B, Lee CK, Cary SC. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Front Microbiol 2014; 5:515. [PMID: 25324835 PMCID: PMC4179728 DOI: 10.3389/fmicb.2014.00515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/12/2014] [Indexed: 12/03/2022] Open
Abstract
The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs) were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four dry valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity). Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA), revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints.
Collapse
Affiliation(s)
- Catarina M Magalhães
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto Porto, Portugal
| | - Ana Machado
- Institute of Biomedical Sciences University of Porto Porto, Portugal
| | - Béatrice Frank-Fahle
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg, Germany
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato Hamilton, New Zealand
| | - S Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato Hamilton, New Zealand ; College of Earth, Ocean and Environment, University of Delaware Lewes, DE, USA
| |
Collapse
|