1
|
Nguyen HT, Hoa-Tran TN, Tran HQ, Nguyen TTT. In Vitro Inhibitory Effect of Berberine Against Rotavirus. Chem Biodivers 2025; 22:e202400986. [PMID: 39400499 DOI: 10.1002/cbdv.202400986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Although berberine (BBR) is well known as an active constituent in traditional medicines used in the treatment of gastrointestinal diseases, its potential against viral gastroenteritis has not been specifically reported. This study aims to investigate the antiviral activity of BBR against rotavirus and evaluate its cytotoxicity and pharmacological efficacies, including antioxidant and anti-inflammatory activities in vitro. Using ultraviolet-visible absorption spectroscopy, the saturation concentration of BBR was determined as 2261 μg/mL, indicating that BBR is a poor water-soluble compound. The inhibition rate of nitric oxide (NO) production of BBR solution at a concentration of 283 μg/mL was similar to that of Cardamonin 0.3 μM with a cell viability of 92.46±0.35 %, revealing the anti-inflammatory activity of BBR. The cytotoxicity of the BBR solution depended on its concentration, whereby the 50 % cytotoxicity concentration (CC50) of BBR after 96 h exposure was 664 μg/mL. Investigation of cytopathic effects (CPEs) of MA104 cells treated with BBR and BBR-incubated rotavirus indicates that BBR could effectively inhibit the replication of rotavirus. CPEs were not observed in the cells inoculated with rotavirus (100TCID50) which was pre-incubated with BBR for 96 hours at a BBR concentration of 283 μg/mL. Therefore, the study provides reliable results to demonstrate the ability of BBR to inhibit the replication of rotavirus.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, 12116, Vietnam
| | - Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Huy Quang Tran
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, 12116, Vietnam
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| |
Collapse
|
2
|
Zhang W, Chen Y, Yang F, Zhang H, Su T, Wang J, Zhang Y, Song X. Antiviral effect of palmatine against infectious bronchitis virus through regulation of NF-κB/IRF7/JAK-STAT signalling pathway and apoptosis. Br Poult Sci 2024; 65:119-128. [PMID: 38166582 DOI: 10.1080/00071668.2023.2296929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024]
Abstract
1. Infectious bronchitis virus (IBV), a gamma-coronavirus, can infect chickens of all ages and leads to an acute contact respiratory infection. This study evaluated the anti-viral activity of palmatine, a natural non-flavonoid alkaloid, against IBV in chicken embryo kidney (CEK) cells.2. The half toxic concentration (CC50) of palmatine was 672.92 μM, the half inhibitory concentration (IC50) of palmatine against IBV was 7.76 μM and the selection index (SI) was 86.74.3. Mode of action assay showed that palmatine was able to directly inactivate IBV and inhibited the adsorption, penetration and intracellular replication of IBV.4. Palmatine significantly upregulated TRAF6, TAB1 and IKK-β compared with the IBV-infected group, leading to the increased expressions of pro-inflammatory cytokines IL-1β and TNF-α in the downstream NF-κB signalling pathway.5. Palmatine significantly up-regulated the levels of MDA5, MAVS, IRF7, IFN-α and IFN-β in the IRF7 pathway, inducing type I interferon production. It up-regulated the expression of 2'5'-oligoadenylate synthase (OAS) in the JAK-STAT pathway.6. IBV infection induced cell apoptosis and palmatine-treatment delayed the process of apoptosis by regulation of the expression of apoptosis-related genes (BAX, BCL-2, CASPASE-3 and CASPASE-8).7. Palmatine could exert anti-IBV activity through regulation of NF-κB/IRF7/JAK-STAT signalling pathways and apoptosis, providing a theoretical basis for the utilisation of palmatine to treat IBV infection.
Collapse
Affiliation(s)
- W Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - F Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - H Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - T Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - X Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Duan X, Xu M, Wang Y, Liu N, Wang X, Liu Y, Zhang W, Ma W, Ma L, Fan Y. Effect of miR-17 on Polygonum Cillinerve polysaccharide against transmissible gastroenteritis virus. Front Vet Sci 2024; 11:1360102. [PMID: 38444776 PMCID: PMC10912159 DOI: 10.3389/fvets.2024.1360102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) could cause diarrhea, vomiting, dehydration and even death in piglets, miRNA played an important role in the interaction between virus and cell. The study aimed to investigate the impact of miR-17 on the polysaccharide of Polygonum Cillinerve (PCP) in combating TGEV. miR-17 was screened and transfection validation was performed by Real-time PCR. The function of miR-17 on PK15 cells infected with TGEV and treated with PCP was investigated by DCFH-DA loading probe, JC-1 staining and Hoechst fluorescence staining. Furthermore, the effect of miR-17 on PCP inhibiting TGEV replication and apoptosis signaling pathways during PCP against TGEV infection was measured through Real-time PCR and Western blot. The results showed that miR-17 mimic and inhibitor could be transferred into PK15 cells and the expression of miR-17 significantly increased and decreased respectively compared with miR-17 mimic and inhibitor (P < 0.05). A total 250 μg/mL of PCP could inhibit cells apoptosis after transfection with miR-17. PCP (250 μg/mL and 125 μg/mL) significantly inhibited the decrease in mitochondrial membrane potential induced by TGEV after transfection with miR-17 (P < 0.05). After transfection of miR-17 mimic, PCP at concentrations of 250 μg/mL and 125 μg/mL significantly promoted the mRNA expression of P53, cyt C and caspase 9 (P < 0.05). Compared with the control group, the replication of TGEV gRNA and gene N was significantly inhibited by PCP at concentrations of 250 μg/mL and 125 μg/mL after transfection of both miR-17 mimic and inhibitor (P < 0.05). PCP at 62.5 μg/mL significantly inhibited the replication of gene S following transfection with miR-17 inhibitor (P < 0.05). These results suggested that PCP could inhibit the replication of TGEV and apoptosis induced by TGEV by regulating miR-17.
Collapse
Affiliation(s)
- Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Yang J, Zhang Z, Liu H, Wang J, Xie S, Li P, Wen J, Wei S, Li R, Ma X, Zhao Y. Network Pharmacology and Experimental Validation of Qingwen Baidu Decoction Therapeutic Potential in COVID-19-related Lung Injury. Comb Chem High Throughput Screen 2024; 27:1286-1302. [PMID: 37957903 DOI: 10.2174/0113862073236899230919062725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.
Collapse
Affiliation(s)
- Ju Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Zhao Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Honghong Liu
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jiawei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shuying Xie
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Pengyan Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Ruisheng Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| |
Collapse
|
5
|
Chathuranga K, Shin Y, Uddin MB, Paek J, Chathuranga WAG, Seong Y, Bai L, Kim H, Shin JH, Chang YH, Lee JS. The novel immunobiotic Clostridium butyricum S-45-5 displays broad-spectrum antiviral activity in vitro and in vivo by inducing immune modulation. Front Immunol 2023; 14:1242183. [PMID: 37881429 PMCID: PMC10595006 DOI: 10.3389/fimmu.2023.1242183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Clostridium butyricum is known as a probiotic butyric acid bacterium that can improve the intestinal environment. In this study, we isolated a new strain of C. butyricum from infant feces and evaluated its physiological characteristics and antiviral efficacy by modulating the innate immune responses in vitro and in vivo. The isolated C. butyricum S-45-5 showed typical characteristics of C. butyricum including bile acid resistance, antibacterial ability, and growth promotion of various lactic acid bacteria. As an antiviral effect, C. butyricum S-45-5 markedly reduced the replication of influenza A virus (PR8), Newcastle Disease Virus (NDV), and Herpes Simplex Virus (HSV) in RAW264.7 cells in vitro. This suppression can be explained by the induction of antiviral state in cells by the induction of antiviral, IFN-related genes and secretion of IFNs and pro-inflammatory cytokines. In vivo, oral administration of C. butyricum S-45-5 exhibited prophylactic effects on BALB/c mice against fatal doses of highly pathogenic mouse-adapted influenza A subtypes (H1N1, H3N2, and H9N2). Before challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed increased levels of IFN-β, IFN-γ, IL-6, and IL-12 in serum, the small intestine, and bronchoalveolar lavage fluid (BALF), which correlated with observed prophylactic effects. Interestingly, after challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed reduced levels of pro-inflammatory cytokines and relatively higher levels of anti-inflammatory cytokines at day 7 post-infection. Taken together, these findings suggest that C. butyricum S-45-5 plays an antiviral role in vitro and in vivo by inducing an antiviral state and affects immune modulation to alleviate local and systemic inflammatory responses caused by influenza virus infection. Our study provides the beneficial effects of the new C. butyricum S-45-5 with antiviral effects as a probiotic.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeseul Shin
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jayoung Paek
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | - Yebin Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Lu Bai
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hongik Kim
- Research and Development Division, Vitabio, Inc., Daejeon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
He MF, Liang JH, Shen YN, Zhang CW, Yang KY, Liu LC, Xie Q, Hu C, Song X, Wang Y. Coptisine Inhibits Influenza Virus Replication by Upregulating p21. Molecules 2023; 28:5398. [PMID: 37513270 PMCID: PMC10386263 DOI: 10.3390/molecules28145398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The activation of innate antiviral immunity is a promising approach for combatting viral infections. In this study, we screened Chinese herbs that activated human immunity and identified coptisine as a potent inhibitor of the influenza virus with an EC50 of 10.7 μM in MDCK cells. The time of an addition assay revealed that pre-treatment with coptisine was more effective at reducing viral replication than co-treatment or post-treatment. Our bulk RNA-sequencing data showed that coptisine upregulated the p21 signaling pathway in MDCK cells, which was responsible for its antiviral effects. Specifically, coptisine increased the expression of p21 and FOXO1 in a dose-dependent manner while leaving the MELK expression unchanged. Docking analysis revealed that coptisine likely inhibited MELK activity directly by forming hydrogen bonds with ASP-150 and GLU-87 in the catalytic pocket. These findings suggest that coptisine may be a promising antiviral agent that regulates the p21 signaling pathway to inhibit viral replication.
Collapse
Affiliation(s)
- Ming-Feng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Jian-Hui Liang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan-Ni Shen
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chao-Wei Zhang
- School of Pharmaceutical Science, Shenzhen University, Shenzhen 518000, China
| | - Kuang-Yang Yang
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Li-Chu Liu
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Qian Xie
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xun Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Wang D, Qi M, Zhao H, Wu H, Chen H, Lan Y, Wang Y, Jiang Y, Wang J. Interventional effect of processing temperature on anti-angiogenesis of Coptis chinensis and screening of active components by UPLC-MS/MS on quail chick chorioallantoic membrane model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116014. [PMID: 36581161 DOI: 10.1016/j.jep.2022.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch. (CC), as a commonly used heat-clearing and toxin-resolving traditional Chinese herbal medicine, has gained increased attention for its anti-tumor activity. However, little is known about the anti-tumor angiogenesis effect of CC and its possible bioactive components. Also, it has been shown that temperature affects the quality of CC, albeit whether and how it affects the anti-angiogenic activity of CC is currently unknown. AIM OF THE STUDY To determine the processing temperatures (40, 60, 80, 120, 140, 150, 160 and 200 °C) at which CC has the strongest anti-angiogenic effect and speculate the possible bioactive components. MATERIALS AND METHODS The q-CAM model was constructed to explore the anti-angiogenesis agents of CC. The angiogenesis inhibition effects of CC samples at different processing temperatures and its seven alkaloids were determined based on morphological observation and vascular area proportion analysis. UPLC-MS/MS was employed to screen the potent active components of CC on anti-angiogenesis. RESULTS All the intervention by CC at different processing temperatures and its seven alkaloids could inhibit angiogenesis on q-CAM vessels, as evidenced by a poor vasular development in morphological observation and a low vascular area proportion in vascular quantitative analysis, most evident in CC processed at 40 °C and palmatine. LC-MS revealed that palmatine displayed strongest inhibitory effect on q-CAM vessels with a high absorption due to its stable structure. And the maternal nucleus transformation phenomenon of CC alkaloids was found in the quail embryo metabolism. CONCLUSIONS The q-CAM models in conjunction with the UPLC-MS/MS technique could be a useful tool for assessing tumor angiogenesis and screening tumor-targeted medicines. Processing temperature can affect the anti-angiogenesis effect of CC because of its function on the content of alkaloids, and palmatine can be considered as a prospective anti-angiogenic drug.
Collapse
Affiliation(s)
- Dan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Miao Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Hedi Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Haozhong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Han Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yanan Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yanmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yani Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Jingjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| |
Collapse
|
8
|
Arita R, Ono R, Saito N, Suzuki S, Kikuchi A, Ohsawa M, Tadano Y, Akaishi T, Kanno T, Abe M, Onodera K, Takayama S, Ishii T. Refractory Chest Pain in Mild to Moderate Coronavirus Disease 2019 Successfully Treated with Saikanto, a Japanese Traditional Medicine. TOHOKU J EXP MED 2022; 257:241-249. [DOI: 10.1620/tjem.2022.j040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ryutaro Arita
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Rie Ono
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Natsumi Saito
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Satoko Suzuki
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Akiko Kikuchi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Minoru Ohsawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Yasunori Tadano
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Takeshi Kanno
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Ko Onodera
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Shin Takayama
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| |
Collapse
|
9
|
Liu W, Zeng Y, Li Y, Li N, Peng M, Cheng J, Tian B, Chen M. Exploring the Potential Targets and Mechanisms of Huang Lian Jie Du Decoction in the Treatment of Coronavirus Disease 2019 Based on Network Pharmacology. Int J Gen Med 2021; 14:9873-9885. [PMID: 34938107 PMCID: PMC8687521 DOI: 10.2147/ijgm.s337025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Background In December 2019, coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2; previously known as 2019-nCoV) emerged in Wuhan, China, and caused many infections and deaths. At present, there are no specific drugs for the etiology and treatment of COVID-19. A combination of traditional Chinese and western medicine is proposed to treat COVID-19, in which Huang Lian Jie Du decoction (HLJDD) is recommended for the treatment of COVID-19 in many provinces in China and has been widely used in the clinic. This study explored the potential targets of HLJDD in the treatment of COVID-19 based on network pharmacology. Methods First, the chemical composition and targets of HLJDD and COVID-19-related targets were obtained through the TCMSP, UniProt, GeneCards and OMIM databases. Second, HLJDD target and HLJDD-COVID-19 target networks were constructed via the STRING database and Cytoscape software. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the HLJDD-COVID-19 targets was applied via the DAVID database. Results Our study identified a total of 67 active ingredients of HLJDD and 204 targets of HLJDD. A total of 502 COVID-19-related targets were obtained, of which 47 were intersecting targets of HLJDD and COVID-19. A total of 179 GO terms and 77 KEGG terms, including the TNF signaling pathway, NF-κB signaling pathway and HIF-1 signaling pathway, were identified. Conclusion The present study explored the potential targets and signaling pathways of HLJDD during the treatment of COVID-19, which may provide a basis for the research and development of drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wang Liu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Yanda Li
- Department of Internal Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, People's Republic of China
| | - Nanhong Li
- Department of Pathology and Pathophysiology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Min Peng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Junfen Cheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Binbin Tian
- Department of Critical Care Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, People's Republic of China
| | - Mingdi Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Huang CW, Ha HA, Tsai SC, Lu CC, Lee CY, Tsai YF, Tsai FJ, Chiu YJ, Wang GK, Hsu CH, Yang JS. In Silico Target Analysis of Treatment for COVID-19 Using Huang-Lian-Shang-Qing-Wan, a Traditional Chinese Medicine Formula. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Due to the significantly negative impact of the coronavirus (CoV) disease (COVID-19) pandemic on the health of the community and the economy, it remains urgent and necessary to develop a safe and effective treatment method for COVID-19. Huang-Lian-Shang-Qing-Wan (HLSQW) is a herbal formula of traditional Chinese medicine (TCM) that has been applied extensively for treating “wind-heat-associated” symptoms in the upper parts of the body. The objective of the present in silico study was to investigate the potential effects of HLSQW in the context of severe acute respiratory syndrome (SARS)-CoV-2 infection. We analyzed the possible interactions between bioactive compounds within HLSQW on targets that may confer antiviral activity using network pharmacology and pharmacophore-based screening. HLSQW was found to potentially target a number of pathways and the expression of various genes to regulate cell physiology and, consequently, the anti-viral effects against SARS-CoV-2. Bioactive compounds contained within HLSQW may exert combined effects to reduce the production of proinflammatory factors, which may trigger the “cytokine storm” in patients with severe COVID-19. Results from molecular modeling suggested that the bioactive HLSQW components puerarin, baicalin, and daidzin exhibit high binding affinity to the active site of 3-chymotrypsin-like cysteine protease (3CLpro) to form stable ligand-protein complexes, thereby suppressing SARS-CoV-2 replication. In addition, our results also demonstrated protective effects of the HLSQW extract against cell injury induced by the proinflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, against reactive oxygen species production and nuclear factor-κB activity in normal human lung cells in vitro. To conclude, HLSQW is a potential TCM remedy that warrants further study with the aim of developing an effective treatment for COVID-19 in the future.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University,
Taipei, Taiwan
| | - Hai-Anh Ha
- China Medical University, Taichung, Taiwan
- Duy Tan University, Da Nang, Vietnam
| | | | - Chi-Cheng Lu
- National Taiwan University of Sport, Taichung, Taiwan
| | | | - Yuh-Feng Tsai
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University,
Taipei, Taiwan
- Fu-Jen Catholic University, New Taipei, Taiwan
| | - Fuu-Jen Tsai
- China Medical University, Taichung, Taiwan
- China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chiu
- Taipei Veteran General Hospital, Taipei, Taiwan
- National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Guo-Kai Wang
- Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University,
Taipei, Taiwan
- Branch of Linsen, Chinese Medicine, and Kunming, Taipei City Hospital, Taipei, Taiwan
| | - Jai-Sing Yang
- China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Balkrishna A, Khandrika L, Varshney A. Giloy Ghanvati ( Tinospora cordifolia (Willd.) Hook. f. and Thomson) Reversed SARS-CoV-2 Viral Spike-Protein Induced Disease Phenotype in the Xenotransplant Model of Humanized Zebrafish. Front Pharmacol 2021; 12:635510. [PMID: 33953674 PMCID: PMC8091047 DOI: 10.3389/fphar.2021.635510] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
The current Severe Acute Respiratory Syndrome disease caused by Coronavirus-2 (SARS-CoV-2) has been a serious strain on the healthcare infrastructure mainly due to the lack of a reliable treatment option. Alternate therapies aimed at symptomatic relief are currently prescribed along with artificial ventilation to relieve distress. Traditional medicine in the form of Ayurveda has been used since ancient times as a holistic treatment option rather than targeted therapy. The practice of Ayurveda has several potent herbal alternatives for chronic cough, inflammation, and respiratory distress which are often seen in the SARS-CoV-2 infection. In this study we have used the aqueous extracts of Tinospora cordifolia (willd.) Hook. f. and Thomson in the form of Giloy Ghanvati, as a means of treatment to the SARS-CoV-2 spike-protein induced disease phenotype in a humanized zebrafish model. The introduction of spike-protein in the swim bladder transplanted with human lung epithelial cells (A549), caused an infiltration of pro-inflammatory immune cells such as granulocytes and macrophages into the swim bladder. There was also an increased systemic damage as exemplified by renal tissue damage and increased behavioral fever in the disease induction group. These features were reversed in the treatment group, fed with three different dosages of Giloy Ghanvati. The resultant changes in the disease phenotype were comparable to the group that were given the reference compound, Dexamethasone. These findings correlated well with various phyto-compounds detected in the Giloy Ghanvati and their reported roles in the viral disease phenotype amelioration.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| | | | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| |
Collapse
|
12
|
Chathuranga K, Weerawardhana A, Dodantenna N, Ranathunga L, Cho WK, Ma JY, Lee JS. Inhibitory Effect of Sargassum fusiforme and Its Components on Replication of Respiratory Syncytial Virus In Vitro and In Vivo. Viruses 2021; 13:548. [PMID: 33806073 PMCID: PMC8064456 DOI: 10.3390/v13040548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Lakmal Ranathunga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Won-Kyung Cho
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; (W.-K.C.); (J.Y.M.)
| | - Jin Yeul Ma
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; (W.-K.C.); (J.Y.M.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| |
Collapse
|
13
|
Lee HJ, Park M, Choi H, Nowakowska A, Moon C, Kwak JH, Kim YB. Pine Needle Extract Applicable to Topical Treatment for the Prevention of Human Papillomavirus Infection. J Microbiol Biotechnol 2021; 31:137-143. [PMID: 33203819 PMCID: PMC9705833 DOI: 10.4014/jmb.2010.10055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Most cervical cancers are associated with high-risk human papillomavirus (HPV) infection. Currently, cervical cancer treatment entails surgical removal of the lesion, but treatment of infection and preventing tissue damage are issues that still remain to be addressed. Herbal medicine and biological studies have focused on developing antiviral drugs from natural sources. In this study, we analyzed the potential antiviral effects of Pinus densiflora Sieb. et Zucc. leaf extracts against HPV. The pine needle extracts from each organic solvent were analyzed for antiviral activity. The methylene chloride fraction (PN-MC) showed the highest activity against HPV pseudovirus (PV). The PN-MC extract was more effective before, rather than after treatment, and therefore represents a prophylactic intervention. Mice were pre-treated with PN-MC via genital application or oral administration, followed by a genital or subcutaneous challenge with HPV PV, respectively. The HPV challenge results showed that mice treated via genital application exhibited complete protection against HPV. In conclusion, PN-MC represents a potential topical virucide for HPV infection.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Mina Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - HeeJae Choi
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Aleksandra Nowakowska
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-4208 E-mail:
| |
Collapse
|
14
|
Balkrishna A, Solleti SK, Verma S, Varshney A. Application of Humanized Zebrafish Model in the Suppression of SARS-CoV-2 Spike Protein Induced Pathology by Tri-Herbal Medicine Coronil via Cytokine Modulation. Molecules 2020; 25:molecules25215091. [PMID: 33147850 PMCID: PMC7662214 DOI: 10.3390/molecules25215091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Zebrafish has been a reliable model system for studying human viral pathologies. SARS-CoV-2 viral infection has become a global chaos, affecting millions of people. There is an urgent need to contain the pandemic and develop reliable therapies. We report the use of a humanized zebrafish model, xeno-transplanted with human lung epithelial cells, A549, for studying the protective effects of a tri-herbal medicine Coronil. At human relevant doses of 12 and 58 µg/kg, Coronil inhibited SARS-CoV-2 spike protein, induced humanized zebrafish mortality, and rescued from behavioral fever. Morphological and cellular abnormalities along with granulocyte and macrophage accumulation in the swim bladder were restored to normal. Skin hemorrhage, renal cell degeneration, and necrosis were also significantly attenuated by Coronil treatment. Ultra-high-performance liquid chromatography (UHPLC) analysis identified ursolic acid, betulinic acid, withanone, withaferine A, withanoside IV-V, cordifolioside A, magnoflorine, rosmarinic acid, and palmatine as phyto-metabolites present in Coronil. In A549 cells, Coronil attenuated the IL-1β induced IL-6 and TNF-α cytokine secretions, and decreased TNF-α induced NF-κB/AP-1 transcriptional activity. Taken together, we show the disease modifying immunomodulatory properties of Coronil, at human equivalent doses, in rescuing the pathological features induced by the SARS-CoV-2 spike protein, suggesting its potential use in SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249 405, Uttarakhand, India; (A.B.); (S.K.S.); (S.V.)
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249 405, Uttarakhand, India
- Correspondence: ; Tel.: +91-13-3424-4107 (ext. 7458)
| |
Collapse
|
15
|
Feng X, Wang K, Hu X, Chai L, Cao S, Ding L, Qiu F. Systematic screening and characterization of absorbed constituents and
in vivo
metabolites in rats after oral administration of
Rhizoma coptidis
using UPLC‐Q‐TOF/MS. Biomed Chromatogr 2020; 34:e4919. [DOI: 10.1002/bmc.4919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Xinchi Feng
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Kun Wang
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin State Key Laboratory of Modern Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Xintong Hu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin State Key Laboratory of Modern Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Liwei Chai
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin State Key Laboratory of Modern Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Feng Qiu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin State Key Laboratory of Modern Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
16
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
17
|
Anti-Respiratory Syncytial Virus Activity of Plantago asiatica and Clerodendrum trichotomum Extracts In Vitro and In Vivo. Viruses 2019; 11:v11070604. [PMID: 31277257 PMCID: PMC6669655 DOI: 10.3390/v11070604] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
The herbs Plantago asiatica and Clerodendrum trichotomum have been commonly used for centuries in indigenous and folk medicine in tropical and subtropical regions of the world. In this study, we show that extracts from these herbs have antiviral effects against the respiratory syncytial virus (RSV) in vitro cell cultures and an in vivo mouse model. Treatment of HEp2 cells and A549 cells with a non-cytotoxic concentration of Plantago asiatica or Clerodendrum trichotomum extract significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and also blocked syncytia formation. Interestingly, oral inoculation with each herb extract significantly improved viral clearance in the lungs of BALB/c mice. Based on reported information and a high-performance liquid chromatography (HPLC) analysis, the phenolic glycoside acteoside was identified as an active chemical component of both herb extracts. An effective dose of acteoside exhibited similar antiviral effects as each herb extract against RSV in vitro and in vivo. Collectively, these results suggest that extracts of Plantago asiatica and Clerodendrum trichotomum could provide a potent natural source of an antiviral drug candidate against RSV infection.
Collapse
|
18
|
|
19
|
Methanolic Extract of Rhizoma Coptidis Inhibits the Early Viral Entry Steps of Hepatitis C Virus Infection. Viruses 2018; 10:v10120669. [PMID: 30486350 PMCID: PMC6315547 DOI: 10.3390/v10120669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C Virus (HCV) remains an important public health threat with approximately 170 million carriers worldwide who are at risk of developing hepatitis C-associated end-stage liver diseases. Despite improvement of HCV treatment using the novel direct-acting antivirals (DAAs) targeting viral replication, there is a lack of prophylactic measures for protection against HCV infection. Identifying novel antivirals such as those that target viral entry could help broaden the therapeutic arsenal against HCV. Herein, we investigated the anti-HCV activity of the methanolic extract from Rhizoma coptidis (RC), a widely used traditional Chinese medicine documented by the WHO and experimentally reported to possess several pharmacological functions including antiviral effects. Using the cell culture-derived HCV system, we demonstrated that RC dose-dependently inhibited HCV infection of Huh-7.5 cells at non-cytotoxic concentrations. In particular, RC blocked HCV attachment and entry/fusion into the host cells without exerting any significant effect on the cell-free viral particles or modulating key host cell entry factors to HCV. Moreover, RC robustly suppressed HCV pseudoparticles infection of Huh-7.5 cells and impeded infection by several HCV genotypes. Collectively, our results identified RC as a potent antagonist to HCV entry with potential pan-genotypic properties, which deserves further evaluation for use as an anti-HCV agent.
Collapse
|
20
|
Metabolism of Rhizoma coptidis in Human Urine by Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Eur J Drug Metab Pharmacokinet 2018; 43:441-452. [DOI: 10.1007/s13318-018-0463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|