1
|
Tang M, Zhang Z, Lin L, Niu J, Meng G, Wang W, Wang J, Wang Y. Comparative Analysis of Growth Dynamics and Relative Abundances of Gut Microbiota Influenced by Ketogenic Diet. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:65-75. [PMID: 40313600 PMCID: PMC12040800 DOI: 10.1007/s43657-025-00228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 05/03/2025]
Abstract
Although the compositional alterations of gut bacteria in ketogenic diet (KD) have been intensively investigated, the causal relationship between this extreme diet and the microbiota changes is not fully understood. Here, we studied the growth dynamics of intestinal bacteria in KD. We used the CoPTR method to calculate the peak-to-trough ratio (PTR) based on metagenomic sequencing data, serving as an indicator of bacterial growth rates. Notably, Akkermansia muciniphila, a bacterium strongly linked to the therapeutic benefits of KD, exhibited one of the highest growth rates, aligning with its markedly elevated abundance. Our findings also revealed discrepancies in the change patterns of CoPTR values and relative abundances for various bacteria across different diet groups, some of which might be attributed to the exceptionally high or low growth rates of specific species. For some of the species demonstrating obvious differences in growth rates between KD and standard diet, we conducted in vitro culture experiments, supplementing them with diverse nutritional sources to elucidate the underlying mechanisms. The integrative analysis of bacterial abundance and growth dynamics can help deepen our understanding of the gut microbiota changes caused by KD and the therapeutic effects of this special diet. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-025-00228-7.
Collapse
Affiliation(s)
- Mi Tang
- Department of Neurology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Zhidong Zhang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Liyuan Lin
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Junling Niu
- The Center for Microbes, Development, and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Guangxun Meng
- The Center for Microbes, Development, and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yingyan Wang
- Department of Neurology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
2
|
Hsu C, Moore-Gillon C, Vithayathil M, Karim S. Pseudomembranous colitis and Parabacteroides distasonis bacteraemia: a rare clinical presentation. Clin J Gastroenterol 2024; 17:457-460. [PMID: 38483783 DOI: 10.1007/s12328-024-01939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/13/2024] [Indexed: 05/26/2024]
Abstract
We present the case of a male with end-stage diabetic nephropathy on haemodialysis who initially presented with acute-on-chronic digital ulceration. While awaiting vascular intervention, he became septic with abdominal pain and diarrhoea. Flexible sigmoidoscopy confirmed pseudomembranous colitis secondary to Clostridium difficile. Blood cultures grew Parabacteroides distasonis, a Gram-negative gut anaerobe. Enterobacter cloacae, another Gram-negative anaerobic gut bacilli, was grown in colonic cultures and swabs of the digital ulcers. We hypothesise that the pseudomembranous colitis increased gut translocation and thus led to the systemic spread of both gut anaerobes. This is the first reported case of Parabacteroides distasonis bacteraemia in the context of Clostridium difficile infection. Our patient recovered with antibiotics and went on to have vascular intervention for his digital ulceration.
Collapse
Affiliation(s)
| | | | - Mathew Vithayathil
- Imperial College Healthcare NHS Trust, London, UK.
- Imperial College London, London, UK.
| | - Shwan Karim
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
3
|
Zhao H, Mo Q, Kulyar MFEA, Guan J, Zhang X, Luo X, Li J. Metagenomic Analysis Reveals A Gut Microbiota Structure and Function Alteration between Healthy and Diarrheic Juvenile Yaks. Animals (Basel) 2024; 14:1181. [PMID: 38672329 PMCID: PMC11047321 DOI: 10.3390/ani14081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Diarrhea-induced mortality among juvenile yaks is highly prevalent in the pastoral areas of the Qinghai-Tibet plateau. Although numerous diseases have been linked to the gut microbial community, little is known about how diarrhea affects the gut microbiota in yaks. In this work, we investigated and compared changes in the gut microbiota of juvenile yaks with diarrhea. The results demonstrated a considerable drop in the alpha diversity of the gut microbiota in diarrheic yaks, accompanied by Eysipelatoclostridium, Parabacteroides, and Escherichia-Shigella, which significantly increased during diarrhea. Furthermore, a PICRust analysis verified the elevation of the gut-microbial metabolic pathways in diarrhea groups, including glycine, serine, and threonine metabolism, alanine, aspartate, oxidative phosphorylation, glutamate metabolism, antibiotic biosynthesis, and secondary metabolite biosynthesis. Taken together, our study showed that the harmful bacteria increased, and beneficial bacteria decreased significantly in the gut microbiota of yaks with diarrhea. Moreover, these results also indicated that the dysbiosis of the gut microbiota may be a significant driving factor of diarrhea in yaks.
Collapse
Affiliation(s)
- Hongwen Zhao
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.M.); (M.F.-e.-A.K.)
| | | | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.M.); (M.F.-e.-A.K.)
| |
Collapse
|
4
|
Litterio M, Castello L, Venuta ME, Abel S, Fernández-Canigia L, Legaria MC, Rollet R, Vaustat D, Azula N, Fox B, Otero S, Maldonado ML, Mangieri NA, Rossetti MA, Predari SC, Cejas D, Barberis C. Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina. Rev Argent Microbiol 2024; 56:33-61. [PMID: 38368217 DOI: 10.1016/j.ram.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 02/19/2024] Open
Abstract
The aim of this study was to compare the performance of two MALDI-TOF MS systems in the identification of clinically relevant strict anaerobic bacteria. The 16S rRNA gene sequencing was the gold standard method when discrepancies or inconsistencies were observed between platforms. A total of 333 isolates were recovered from clinical samples of different centers in Buenos Aires City between 2016 and 2021. The isolates were identified in duplicate using two MALDI-TOF MS systems, BD Bruker Biotyper (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMèrieux, Marcy-l'Etoile, France). Using the Vitek MS system, the identification of anaerobic isolates yielded the following percentages: 65.5% (n: 218) at the species or species-complex level, 71.2% (n: 237) at the genus level, 29.4% (n: 98) with no identification and 5.1% (n: 17) with misidentification. Using the Bruker Biotyper system, the identification rates were as follows: 85.3% (n: 284) at the species or species-complex level, 89.7% (n: 299) at the genus level, 14.1% (n: 47) with no identification and 0.6% (n: 2) with misidentification. Differences in the performance of both methods were statistically significant (p-values <0.0001). In conclusion, MALDI-TOF MS systems speed up microbial identification and are particularly effective for slow-growing microorganisms, such as anaerobic bacteria, which are difficult to identify by traditional methods. In this study, the Bruker system showed greater accuracy than the Vitek system. In order to be truly effective, it is essential to update the databases of both systems by increasing the number of each main spectrum profile within the platforms.
Collapse
Affiliation(s)
- Mirta Litterio
- Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Liliana Castello
- Universidad de Buenos Aires, Instituto de Investigaciones Médicas Alfredo Lanari, Departamento de Microbiología, Buenos Aires, Argentina
| | - María Elena Venuta
- Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Sofía Abel
- Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | | | - María Cristina Legaria
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
| | - Raquel Rollet
- Hospital de Enfermedades Infecciosas Dr. Francisco Javier Muñiz, Buenos Aires, Argentina
| | - Daniela Vaustat
- Hospital de Enfermedades Infecciosas Dr. Francisco Javier Muñiz, Buenos Aires, Argentina
| | - Natalia Azula
- Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina
| | | | - Silvina Otero
- Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | | | - Natalia Alejandra Mangieri
- Universidad de Buenos Aires, Instituto de Investigaciones Médicas Alfredo Lanari, Departamento de Microbiología, Buenos Aires, Argentina
| | - María Adelaida Rossetti
- Hospital Interzonal de Agudos Presidente Perón, Avellaneda, Provincia de Buenos Aires, Argentina
| | - Silvia Carla Predari
- Universidad de Buenos Aires, Instituto de Investigaciones Médicas Alfredo Lanari, Departamento de Microbiología, Buenos Aires, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Claudia Barberis
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Byun JH, Cho HW, Lee H, Lee WK, Yong D. Parabacteroides leei sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2023; 73. [PMID: 37999940 DOI: 10.1099/ijsem.0.006187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
An obligate anaerobic, Gram-negative, rod-shaped and non-spore-forming bacterium, designated as strain GYB001T, was isolated from the blood of a patient with a sigmoid colon perforation. Taxonomic characterization of the novel isolate was performed using a polyphasic approach. A phylogenetic analysis based on 16S rRNA gene and whole genome sequences revealed that GYB001T represented a member of the genus Parabacteroides, in the family Tannerellaceae. The closest species, based on 16S rRNA sequence, was Parabacteroides gordonii DSM 23371T with 97.4 % similarity. Average nucleotide identity and digital DNA-DNA hybridization values between strain GYB001T and P. gordonii DSM 23371T were 86.7 and 28.7% and between GYB001T and Parabacteroides faecis JCM 18682T were 86.6 and 27.7 %, respectively. The genome was 6.57 Mbp long with 43.3 mol% G+C content. Colonies on Brucella blood agar (BBA) were circular, convex, smooth, grey and small in size. Growth was observed on trypticase soy agar (TSA), TSA +5 % sheep blood and Euglena gracilis agar. Growth occurred at 18-42 °C on BBA in the presence of 0-3 % NaCl (w/v) and at pH 6.0-8.5. The major polar lipids were phosphatidylethanolamine and phospholipids. The major fatty acids in strain GYB001T were anteiso-C15 : 0 and iso-C17 : 0 3-OH, and the predominant respiratory quinones were menaquinone-10 (MK-10) and MK-9. The cell wall contained meso-diaminopimelic acid. Considering these phenotypic features and comparative genome analyses, we propose strain GYB001T as the type strain of Parabacteroides leei sp. nov. (=KCTC 25738T=KBN12P06525T=LMG 32797T).
Collapse
Affiliation(s)
- Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hae Weon Cho
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Myongji Hospital, Goyang, Republic of Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wen Y, Tan L, Chen S, Wu N, Yao Y, Xu L, Xu M, Zhao Y, Tu Y. Egg yolk phosphatidylcholine alleviates DSS-induced colitis in BALB/c mice. Food Funct 2023; 14:9309-9323. [PMID: 37781872 DOI: 10.1039/d3fo02885b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ulcerative colitis (UC) is a common inflammatory bowel disease, whose incidence is on the rise worldwide. The drugs commonly used for UC are often associated with a number of side effects. Therefore, the development of effective, food-borne substances for UC is in line with the current needs. Egg yolk phosphatidylcholine (EYPC) is one of the abundant lipids in egg yolk and possesses various biological activities. However, its protective effect against UC has not been clarified. In this study, the anti-UC activity of EYPC was investigated using a dextran sodium sulfate (DSS)-induced colitis model of BALB/c mice. The results showed that EYPC supplementation inhibited DSS-induced colon shortening, the spleen index and disease activity index increase and intestinal structural damage. EYPC could down-regulate the levels of TNF-α, IL-1β, IL-6 and MPO in the colon and restore the number of goblet cells and the level of tight junction (TJ) proteins. Besides, EYPC modulated the composition of the gut microbiota, lowered the relative abundance of the pathogenic bacterium Parabacteroides and upregulated the abundance of the beneficial bacteria Alistipes and Lachnospiraceae_NK4A136_group. These results evidenced that EYPC could attenuate DSS-induced colitis in mice and had the potential to prevent and treat UC.
Collapse
Affiliation(s)
- Yunpeng Wen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lixin Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Cui Y, Zhang L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Roles of intestinal Parabacteroides in human health and diseases. FEMS Microbiol Lett 2022; 369:6659190. [PMID: 35945336 DOI: 10.1093/femsle/fnac072] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The stability of gut microbiota is essential for the host health. Parabacteroides spp., core members of the human gut microbiota, have average abundance of 1.27% in the human of 12 populations. Parabacteroides has been recently reported to have a close relationship with host health (E.g., metabolic syndrome, inflammatory bowel disease and obesity). Parabacteroides have the physiological characteristics of carbohydrate metabolism and secreting SCFAs. However, antimicrobial resistance of Parabacteroides to antibiotic (such as clindamycin, moxifloxacin and cefoxitin) should not be ignored. In this review, we primarily focused on Parabacteroides distasoniss, Parabacteroides goldsteinii, Parabacteroides johnsonii and Parabacteroides merdae and discussed their relationships with host disease, diet and the prevention or induction of diseases. P. distasonis and P. goldsteinii may be viewed as the potential next generation probiotics (NGP) candidate due to their protective effects on inflammation and obesity in mice. We also discussed the potential therapeutic application of Parabacteroides spp. in maintaining host-intestine homeostasis.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Leshan Zhang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
8
|
Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 2022; 13:1922241. [PMID: 34196581 PMCID: PMC8253142 DOI: 10.1080/19490976.2021.1922241] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' (P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been associated with reports of both beneficial and pathogenic effects in human health. Herein, we review the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this bacterium, illustrating the effects of P. distasonis on human and animal health.
Collapse
Affiliation(s)
- Jessica C. Ezeji
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daven K. Sarikonda
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Austin Hopperton
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Hailey L. Erkkila
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel E. Cohen
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Fabio Cominelli
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Armand E. K. Dichosa
- B-10 Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Caryn E. Good
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael R. Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Alida Veloo
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Rodriguez-Palacios
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,CONTACT Alexander Rodriguez-Palacios Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Zhao TS, Xie LW, Cai S, Xu JY, Zhou H, Tang LF, Yang C, Fang S, Li M, Tian Y. Dysbiosis of Gut Microbiota Is Associated With the Progression of Radiation-Induced Intestinal Injury and Is Alleviated by Oral Compound Probiotics in Mouse Model. Front Cell Infect Microbiol 2021; 11:717636. [PMID: 34760714 PMCID: PMC8573182 DOI: 10.3389/fcimb.2021.717636] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The acute radiation-induced intestinal injury (RIII) has raised much concerns and is influenced by non-cytocidal radiation effects including the perturbations in gut microbiota. Although a number of studies have reported alteration in gut microbiota following radiation, little is known about its dynamic variation in the progression of acute RIII. In this study, mouse model were treated with total body irradiation (TBI) of 0, 4, 8 and 12 Gy, and the intestinal tissues and fecal samples were collected at 6 h, 3.5 d and 7 d post radiation. We found that the intestinal injuries were manifested in a radiation dose-dependent manner. Results from 16S rRNA gene sequencing demonstrated that the diversity of gut microbiota was not significantly affected at the prodromal stage of acute RIII, after 6 h of radiation. At the critical stage of acute RIII, after 3.5 d of radiation, the composition of gut microbiota was correlated with the radiation dose. The Pearson’s correlation analysis showed that the relative abundances of phylum Proteobacteria, genera Escherichia-Shigella and Eubacterium xylanophilum_group, and species Lactobacillus murinus exhibited linear correlations with radiation dose. At the recovery stage of acute RIII, after 7 d of radiation, the diversity of gut microbiota decreased as a whole, among which the relative abundance of phyla Proteobacteria and Bacteroides increased, while that of phylum Tenericutes and genus Roseburia decreased. The intra-gastric administration of compound probiotics for 14 days improved the survival duration of mice exposed to 9 Gy TBI, alleviated the intestinal epithelial injury and partially restored the diversity of gut microbiota. Our findings suggest that acute RIII is accompanied by the dysbiosis of gut microbiota, including its decreased diversity, reduced abundance of beneficial bacteria and increased abundance of pathogens. The gut microbiota cannot be used as sensitive biomarkers at the prodromal stage in acute RIII, but are potential biomarkers at the critical stage of acute RIII. The dysbiosis is persistent until the recovery stage of acute RIII, and interventions are needed to restore it. The administration of probiotics is an effective strategy to protect against acute RIII and subsequent dysbiosis.
Collapse
Affiliation(s)
- Tian-Shu Zhao
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Li-Wei Xie
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Jia-Yu Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chao Yang
- Department of Nucleus Radiation-Related Injury Treatment, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | | | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Munson E, Carroll KC. Summary of Novel Bacterial Isolates Derived from Human Clinical Specimens and Nomenclature Revisions Published in 2018 and 2019. J Clin Microbiol 2021; 59:e01309-20. [PMID: 32967902 PMCID: PMC8111135 DOI: 10.1128/jcm.01309-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Knowledge of novel prokaryotic taxon discovery and nomenclature revisions is of importance to clinical microbiology laboratory practice, infectious disease epidemiology, and studies of microbial pathogenesis. Relative to bacterial isolates derived from human clinical specimens, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2018 and 2019. Included are several changes pertinent to former designations of or within Propionibacterium spp., Corynebacterium spp., Clostridium spp., Mycoplasma spp., Methylobacterium spp., and Enterobacteriaceae Future efforts to ascertain clinical relevance for many of these changes may be augmented by a document development committee that has been appointed by the Clinical and Laboratory Standards Institute.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:1247-1250. [PMID: 31066659 DOI: 10.1099/ijsem.0.003357] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|