1
|
Chi W, Zhang H, Li X, Zhou Y, Meng Q, He L, Yang Y, Liu S, Shi K. Comparative genomic analysis of 255 Oenococcus oeni isolates from China: unveiling strain diversity and genotype-phenotype associations of acid resistance. Microbiol Spectr 2025:e0326524. [PMID: 40261018 DOI: 10.1128/spectrum.03265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Oenococcus oeni, the only species of lactic acid bacteria capable of fully completing malolactic fermentation under challenging wine conditions, continues to intrigue researchers owing to its remarkable adaptability, particularly in combating acid stress. However, the mechanism underlying its superior adaptation to wine stresses still remains elusive due to the lack of viable genetic manipulation tools for this species. In this study, we conducted genomic sequencing and acid resistance phenotype analysis of 255 O. oeni isolates derived from diverse wine regions across China, aiming to elucidate their strain diversity and genotype-phenotype associations of acid resistance through comparative genomics. A significant correlation between phenotypes and evolutionary relationships was observed. Notably, phylogroup B predominantly consisted of acid-resistant isolates, primarily originating from Shandong and Shaanxi wine regions. Furthermore, we uncovered a noteworthy linkage between prophage genomic islands and acid resistance phenotype. Using genome-wide association studies, we identified key genes correlated with acid resistance, primarily involved in carbohydrates and amino acid metabolism processes. This study offers profound insights into the genetic diversity and genetic basis underlying adaptation mechanisms to acid stress in O. oeni.IMPORTANCEThis study provides valuable insights into the genetic basis of acid resistance in Oenococcus oeni, a key lactic acid bacterium in winemaking. By analyzing 255 isolates from diverse wine regions in China, we identified significant correlations between strain diversity, genomic islands, and acid resistance phenotypes. Our findings reveal that certain prophage-related genomic islands and specific genes are closely linked to acid resistance, offering a deeper understanding of how O. oeni adapts to acidic environments. These discoveries not only advance our knowledge of microbial stress responses but also pave the way for selecting and engineering acid-resistant strains, enhancing malolactic fermentation efficiency and wine quality. This research underscores the importance of genomics in improving winemaking practices and addressing challenges posed by high-acidity wines.
Collapse
Affiliation(s)
- Wei Chi
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Hanwen Zhang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Li
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Yeqin Zhou
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Ling He
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Yafan Yang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuwen Liu
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Kan Shi
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Xu W, Liu Y, Cheng Y, Zhang J. Plant Growth-Promoting Effect and Complete Genomic Sequence Analysis of the Beneficial Rhizosphere Streptomyces sp. GD-4 Isolated from Leymus secalinus. Microorganisms 2025; 13:286. [PMID: 40005653 PMCID: PMC11857848 DOI: 10.3390/microorganisms13020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria residing in the rhizosphere and are capable of enhancing plant growth through various mechanisms. Streptomyces sp. GD-4 is a plant growth-promoting bacterium isolated from the rhizosphere soil of Leymus secalinus. To further elucidate the molecular mechanisms underlying the beneficial effects of the strain on plant growth, we evaluated the growth-promoting effects of Streptomyces sp. GD-4 on forage grasses and conducted comprehensive genome mining and comparative genomic analysis of the strain. Strain GD-4 effectively colonized the rhizosphere of three forages and significantly promoted the growth of both plant roots and leaves. Genome sequence functional annotation of GD-4 revealed lots of genes associated with nitrogen, phosphorus, and sulfur metabolism. Additionally, genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, and phosphate solubilization were annotated. Whole-genome analysis revealed that GD-4 may possess molecular mechanisms involved in soil nutrient cycling in rhizosphere soil and plant growth promotion. The bacteria also possess genes associated with adaptability to abiotic stress conditions, further supporting the ability of Streptomyces sp. GD-4 to colonize nutrient-poor soils. These findings provide a foundation for further research into soil remediation technologies in plateau regions.
Collapse
Affiliation(s)
| | | | | | - Jie Zhang
- Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (W.X.); (Y.L.); (Y.C.)
| |
Collapse
|
3
|
Park Y, Kim B, Min J, Park W. Comamonas halotolerans sp. nov., isolated from the faecal sample of a zoo animal, Naemorhedus caudatus. Int J Syst Evol Microbiol 2025; 75. [PMID: 39878779 DOI: 10.1099/ijsem.0.006665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Strain NoAHT (=KACC 23135T=JCM 35999T), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species Naemorhedus caudatus. The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAHT exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl. Based on phylogenetic analyses using 16S rRNA gene sequencing, strain NoAHT was found to have the closest relatedness to Comamonas jiangduensis YW1T (98.5%), Comamonas aquatica ATCC 11330T (97.9%), Comamonas resistens KCTC 82561T (97.9%), Comamonas fluminis CJ34T (97.7%) and Comamonas suwonensis EJ-4T (97.6%). The genome size and genomic DNA G+C content of strain NoAHT were 4.05 Mbp and 55.9 mol%, respectively. A whole-genome-level comparison of strain NoAHT with C. jiangduensis YWT, Comamonas kerstersii LMG 3475T, C. aquatica NBRC 14918T, Comamonas terrigena NBRC 12685T and C. fluminis CJ34T revealed the following orthologous average nucleotide identity values: 80.1, 79.0, 78.6, 76.3 and 75.2%, respectively. The major polar lipids of strain NoAHT were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Considering our findings in chemotaxonomic, genotypic and phenotypic characteristics, strain NoAHT is identified as a novel species within the genus Comamonas, for which the name Comamonas halotolerans sp. nov. is proposed.
Collapse
Affiliation(s)
- Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bitnara Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
4
|
Suleiman IM, Yu H, Xu J, Zhen J, Xu H, Abudukadier A, Hafiza AR, Xie J. Mycobacterium smegmatis MraZ Regulates Multiple Genes within and Outside of the dcw Operon during Hypoxia. ACS Infect Dis 2024; 10:4301-4313. [PMID: 39556327 DOI: 10.1021/acsinfecdis.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mycobacterium tuberculosis is the most ancient human tuberculosis pathogen and has been the leading cause of death from bacterial infectious diseases throughout human history. According to the World Health Organization Global Tuberculosis Report, in 2022, 7.5 million new tuberculosis cases were identified, marking the highest number of cases since the World Health Organization initiated its worldwide tuberculosis surveillance program in 1995. The 2019 peak was 7.1 million cases, with 5.8 million cases in 2020 and 6.4 million in 2021. The increase in 2022, which may be attributed to the COVID-19 pandemic complicating tuberculosis case tracing, has raised concerns. To better understand the regulation spectrum of Mycobacterium smegmatis mraZ under hypoxia, we performed a transcriptome analysis of M. smegmatis mutant and wild-type strains using Illumina Agilent 5300 sequencing. The study identified 6898 differentially expressed genes, which were annotated with NCBI nonredundant protein sequences, a manually annotated and reviewed protein sequence database, Pfam, Clusters of Orthologous Groups of Proteins, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Several mycobacteria transcriptional regulators, virulence genes, membrane transporters, and cell wall biosynthesis genes were annotated. These data serve as a valuable resource for future investigations and may offer insight into the development of drugs to combat M. tuberculosis infection.
Collapse
Affiliation(s)
- Ismail Mohamed Suleiman
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- Department of Science and Laboratory Technology, Dar-es-Salaam Institute of Technology, Bibititi and Morogoro Rd Junction, P.O. Box 2958, Dar-es-salaam 11101, Tanzania
| | - Huang Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Junqi Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Hongxiang Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Abulimiti Abudukadier
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Amina Rafique Hafiza
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
5
|
Peltek S, Bannikova S, Khlebodarova TM, Uvarova Y, Mukhin AM, Vasiliev G, Scheglov M, Shipova A, Vasilieva A, Oshchepkov D, Bryanskaya A, Popik V. The Transcriptomic Response of Cells of the Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci 2024; 25:12059. [PMID: 39596128 PMCID: PMC11594194 DOI: 10.3390/ijms252212059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of the thermophilic bacterium Geobacillus icigianus was analyzed immediately after THz irradiation (0.23 W/cm2, 130 μm, 15 min) and at 10 min after its completion. THz irradiation does not affect the activity of heat shock protein genes and diminishes the activity of genes whose products are involved in peptidoglycan recycling, participate in redox reactions, and protect DNA and proteins from damage, including genes of chaperone protein ClpB and of DNA repair protein RadA, as well as genes of catalase and kinase McsB. Gene systems responsible for the homeostasis of transition metals (copper, iron, and zinc) proved to be the most sensitive to THz irradiation; downregulation of these systems increased significantly 10 min after the end of the irradiation. It was also hypothesized that some negative effects of THz radiation on metabolism in G. icigianus cells are related to disturbances in activities of gene systems controlled by metal-sensitive transcription factors.
Collapse
Affiliation(s)
- Sergey Peltek
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Svetlana Bannikova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Tamara M. Khlebodarova
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Yulia Uvarova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Aleksey M. Mukhin
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Gennady Vasiliev
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Mikhail Scheglov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| | - Aleksandra Shipova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Asya Vasilieva
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Dmitry Oshchepkov
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Alla Bryanskaya
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Vasily Popik
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| |
Collapse
|
6
|
Zhao Q, Tan QG, Wang WX, Zhang P, Ye Z, Huang L, Zhang W. Metabolome analysis revealed the critical role of betaine for arsenobetaine biosynthesis in the marine medaka (Oryzias melastigma). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124612. [PMID: 39053800 DOI: 10.1016/j.envpol.2024.124612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Arsenobetaine (AsB), a non-toxic arsenic (As) compound found in marine fish, structurally resembles betaine (GB), a common methyl donor in organisms. This study investigates the potential role of GB in AsB synthesis in marine medaka (Oryzias melastigma) using metabolomic analysis. Dietary exposure to arsenate (As(V)) and varying GB concentrations (0.05% and 0.1% in diets) increased total As and AsB bioaccumulation, particularly in marine medaka muscle. Metabolomic analysis revealed that GB played a crucial role in promoting up-regulation in methylthioadenosine (MTA) by modulating the methionine cycle and down-regulation in glutathione (GSH) by modulating the glutathione cycle. Methionine metabolism and GSH, potentially binding again to exogenous GB, could synchronously produce more non-toxic AsB. Combining verification experiments of differential metabolites of Escherichia coli in vitro, GB, GSH, S-adenosylmethionine (SAM), and arsenocholine (AsC) entered methionine and glutathione metabolism pathways to generate more AsB. These findings underscore the GB's crucial regulatory role in modulating the synthesis of AsB. This study provides vital insights into the interplay between the structural analogs GB and AsB, offering specific strategies to enhance the detoxification mechanisms of marine fish in As-contaminated environments.
Collapse
Affiliation(s)
- Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Peng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Taboada-Castro H, Hernández-Álvarez AJ, Escorcia-Rodríguez JM, Freyre-González JA, Galán-Vásquez E, Encarnación-Guevara S. Rhizobium etli CFN42 and Sinorhizobium meliloti 1021 bioinformatic transcriptional regulatory networks from culture and symbiosis. FRONTIERS IN BIOINFORMATICS 2024; 4:1419274. [PMID: 39263245 PMCID: PMC11387232 DOI: 10.3389/fbinf.2024.1419274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Rhizobium etli CFN42 proteome-transcriptome mixed data of exponential growth and nitrogen-fixing bacteroids, as well as Sinorhizobium meliloti 1021 transcriptome data of growth and nitrogen-fixing bacteroids, were integrated into transcriptional regulatory networks (TRNs). The one-step construction network consisted of a matrix-clustering analysis of matrices of the gene profile and all matrices of the transcription factors (TFs) of their genome. The networks were constructed with the prediction of regulatory network application of the RhizoBindingSites database (http://rhizobindingsites.ccg.unam.mx/). The deduced free-living Rhizobium etli network contained 1,146 genes, including 380 TFs and 12 sigma factors. In addition, the bacteroid R. etli CFN42 network contained 884 genes, where 364 were TFs, and 12 were sigma factors, whereas the deduced free-living Sinorhizobium meliloti 1021 network contained 643 genes, where 259 were TFs and seven were sigma factors, and the bacteroid Sinorhizobium meliloti 1021 network contained 357 genes, where 210 were TFs and six were sigma factors. The similarity of these deduced condition-dependent networks and the biological E. coli and B. subtilis independent condition networks segregates from the random Erdös-Rényi networks. Deduced networks showed a low average clustering coefficient. They were not scale-free, showing a gradually diminishing hierarchy of TFs in contrast to the hierarchy role of the sigma factor rpoD in the E. coli K12 network. For rhizobia networks, partitioning the genome in the chromosome, chromids, and plasmids, where essential genes are distributed, and the symbiotic ability that is mostly coded in plasmids, may alter the structure of these deduced condition-dependent networks. It provides potential TF gen-target relationship data for constructing regulons, which are the basic units of a TRN.
Collapse
Affiliation(s)
| | | | | | | | - Edgardo Galán-Vásquez
- Institute of Applied Mathematics and in Systems (IIMAS), National Autonomous University of México, Mexico City, Mexico
| | | |
Collapse
|
8
|
Cai Y, Zhang X. The atypical organization of the luxI/R family genes in AHL-driven quorum-sensing circuits. J Bacteriol 2024; 206:e0043023. [PMID: 38240569 PMCID: PMC10882985 DOI: 10.1128/jb.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.
Collapse
Affiliation(s)
- Yuyuan Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Park H, Faulkner M, Toogood HS, Chen GQ, Scrutton N. Online Omics Platform Expedites Industrial Application of Halomonas bluephagenesis TD1.0. Bioinform Biol Insights 2023; 17:11779322231171779. [PMID: 37200674 PMCID: PMC10185862 DOI: 10.1177/11779322231171779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/20/2023] Open
Abstract
Multi-omic data mining has the potential to revolutionize synthetic biology especially in non-model organisms that have not been extensively studied. However, tangible engineering direction from computational analysis remains elusive due to the interpretability of large datasets and the difficulty in analysis for non-experts. New omics data are generated faster than our ability to use and analyse results effectively, resulting in strain development that proceeds through classic methods of trial-and-error without insight into complex cell dynamics. Here we introduce a user-friendly, interactive website hosting multi-omics data. Importantly, this new platform allows non-experts to explore questions in an industrially important chassis whose cellular dynamics are still largely unknown. The web platform contains a complete KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis derived from principal components analysis, an interactive bio-cluster heatmap analysis of genes, and the Halomonas TD1.0 genome-scale metabolic (GEM) model. As a case study of the effectiveness of this platform, we applied unsupervised machine learning to determine key differences between Halomonas bluephagenesis TD1.0 cultivated under varied conditions. Specifically, cell motility and flagella apparatus are identified to drive energy expenditure usage at different osmolarities, and predictions were verified experimentally using microscopy and fluorescence labelled flagella staining. As more omics projects are completed, this landing page will facilitate exploration and targeted engineering efforts of the robust, industrial chassis H bluephagenesis for researchers without extensive bioinformatics background.
Collapse
Affiliation(s)
- Helen Park
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Nigel Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Cui S, Zhou W, Tang X, Zhang Q, Yang B, Zhao J, Mao B, Zhang H. The Effect of Proline on the Freeze-Drying Survival Rate of Bifidobacterium longum CCFM 1029 and Its Inherent Mechanism. Int J Mol Sci 2022; 23:13500. [PMID: 36362285 PMCID: PMC9653706 DOI: 10.3390/ijms232113500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2024] Open
Abstract
Amino acids, which are important compatible solutes, play a significant role in probiotic lyophilization. However, studies on the functions of Bifidobacterium during freeze-drying are limited. Therefore, in this study, we compared the freeze-drying survival rate of Bifidobacterium longum CCFM 1029 cultivated in different media containing different kinds of compatible solutes. We found that the addition of 21 g/L proline to the culture media substantially improved the freeze-drying survival rate of B. longum CCFM 1029 from 18.61 ± 0.42% to 38.74 ± 1.58%. Interestingly, this change has only been observed when the osmotic pressure of the external culture environment is increased. Under these conditions, we found that proline accumulation in this strain increased significantly. This change also helped the strain to maintain its membrane integrity and the activity of some key enzymes during freeze-drying. Overall, these results show that the addition of proline can help the strain resist a tough environment during lyophilization. The findings of this study provide preliminary data for producers of probiotics who wish to achieve higher freeze-drying survival rates during industrial production.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenrui Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Guo J, Deng X, Zhang Y, Song S, Zhao T, Zhu D, Cao S, Baryshnikov PI, Cao G, Blair HT, Chen C, Gu X, Liu L, Zhang H. The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress. Int J Mol Sci 2022; 23:ijms23179905. [PMID: 36077302 PMCID: PMC9456535 DOI: 10.3390/ijms23179905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of flagellar proteins in Brucella species likely evolved through genetic transference from other microorganisms, and contributed to virulence, adaptability, and biofilm formation. Despite significant progress in defining the molecular mechanisms behind flagellar gene expression, the genetic program controlling biofilm formation remains unclear. The flagellar transcriptional factor (FtcR) is a master regulator of the flagellar system’s expression, and is critical for B. melitensis 16M’s flagellar biogenesis and virulence. Here, we demonstrate that FtcR mediates biofilm formation under hyperosmotic stress. Chromatin immunoprecipitation with next-generation sequencing for FtcR and RNA sequencing of ftcR-mutant and wild-type strains revealed a core set of FtcR target genes. We identified a novel FtcR-binding site in the promoter region of the osmotic-stress-response regulator gene betI, which is important for the survival of B. melitensis 16M under hyperosmotic stress. Strikingly, this site autoregulates its expression to benefit biofilm bacteria’s survival under hyperosmotic stress. Moreover, biofilm reduction in ftcR mutants is independent of the flagellar target gene fliF. Collectively, our study provides new insights into the extent and functionality of flagellar-related transcriptional networks in biofilm formation, and presents phenotypic and evolutionary adaptations that alter the regulation of B. melitensis 16M to confer increased tolerance to hyperosmotic stress.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Peter Ivanovic Baryshnikov
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary, Altai State Agricultural University, 656000 Barnaul, Russia
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China
| | - Hugh T. Blair
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinli Gu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| |
Collapse
|
12
|
Lee J, Shin E, Yeom JH, Park J, Kim S, Lee M, Lee K. Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium. Microb Pathog 2022; 165:105460. [DOI: 10.1016/j.micpath.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
|
13
|
Gregory GJ, Boyd EF. Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J 2021; 19:1014-1027. [PMID: 33613867 PMCID: PMC7876524 DOI: 10.1016/j.csbj.2021.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria have evolved mechanisms that allow them to adapt to changes in osmolarity and some species have adapted to live optimally in high salinity environments such as in the marine ecosystem. Most bacteria that live in high salinity do so by the biosynthesis and/or uptake of compatible solutes, small organic molecules that maintain the turgor pressure of the cell. Osmotic stress response mechanisms and their regulation among marine heterotrophic bacteria are poorly understood. In this review, we discuss what is known about compatible solute metabolism and transport and new insights gained from studying marine bacteria belonging to the family Vibrionaceae.
Collapse
Affiliation(s)
| | - E. Fidelma Boyd
- Corresponding author at: Department of Biological Sciences, 341 Wolf Hall, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|