1
|
Vidyadhari A, Singh N, Singh AK, Ralli T, Solanki P, Mirza MA, Parvez S, Kohli K. Investigation of Luliconazole-Loaded Mucoadhesive Electrospun Nanofibers for Anticandidal Activity in the Management of Vaginal Candidiasis. ACS OMEGA 2023; 8:42102-42113. [PMID: 38024758 PMCID: PMC10652273 DOI: 10.1021/acsomega.3c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
In this study, we fabricated and evaluated luliconazole-loaded electrospun nanofibers for anticandidal activity in the management of vaginal candidiasis. Polycaprolactone (PCL)/gelatin nanofibers were designed by the electrospinning technique, and the Box-Behnken design (BBD) was adopted for optimization to get tailored fibers. The luliconazole (LCZ) drug was mixed into different concentrations (2.5, 5, 7.5, and 10%) of tea tree oil (TT oil) and loaded into the PCL/gelatin nanofibrous mats. The effective anticandidal potential of nanofiber samples were analyzed by the disk-diffusion method. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), XRD analysis, and in silico study were performed. The entrapment efficiency, swelling degree, mechanical strength, contact angle, mucoadhesion, drug release, and permeation study were assessed. The average diameter of the PCL/gelatin-optimized nanofiber was 153 nm. SEM reflected that the fabricated nanofibers were uniform and bead-free. FTIR and DSC analyzed the interaction and physical entrapment of the drug in the polymeric fibers. The entrapment efficiency of the drug-loaded nanofiber was found to be 89.2 ± 0.8%. Maximum swelling percentages at 4 h were 40.8, 18.9, and 14.0% and contact angles were 46.5°, 62.95°, and 65.78° for the blank, TT oil-loaded, and drug-loaded nanofiber, respectively, which indicated the hydrophilic nature of the fibers. The drug-loaded nanofiber had a high tensile strength with satisfactory mucoadhesive property that led to its adhesion to the vaginal mucosa with no tear. The drug-loaded nanofiber had a cumulative drug release of 67.7 ± 3.4% in 48 h, and the 12.8 ± 0.53 mm of zone of inhibition (ZOI) in 48 h illustrated an effective anticandidal activity. The TT oil-loaded nanofiber also exhibited a small ZOI of 4.3 ± 0.30 mm, indicating a synergistic effect to the antifungal activity of the drug-loaded nanofiber. LCZ-loaded nanofibers can emerge as a novel approach for vaginal drug delivery in the treatment of candida infection. Thus, this pharmaceutical investigation can help in formulating preclinical and clinical models.
Collapse
Affiliation(s)
- Arya Vidyadhari
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nidhi Singh
- Department
of Pharmaceutics, National Institute of
Pharmaceutical Education and Research (NIPER), Kolkata, Jadavpur 700032, India
| | - Avinash Kumar Singh
- Department
of Pharmaceutical Medicine (Division of Pharmacology), School of Pharmaceutical
Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Tanya Ralli
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pratima Solanki
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi 110067, India
| | - M Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Kanchan Kohli
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Director,
Research & Publication, Lloyd Institute
of Management and Technology (Pharm.), Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
2
|
Abou Chacra L, Fenollar F. Exploring the global vaginal microbiome and its impact on human health. Microb Pathog 2021; 160:105172. [PMID: 34500016 DOI: 10.1016/j.micpath.2021.105172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Around the world, more than 175,000,000 women are diagnosed every year with gynaecological disease, in many cases contributing to high morbidity and mortality. For this reason, knowledge of the composition of the vaginal microbiome and its variations represents a real health challenge, as this is key to improving therapeutic management. This review traces the history of the poorly known vaginal microbiome and focuses on the latest findings concerning this ecosystem. Studies in the past decade have targeted complex bacterial communities within the vagina. However, due to the development of technology and the emergence of next generation sequencing (NGS), the exact definition of the vaginal microbiome has changed and can no longer be linked solely to the presence of bacteria. In order to reach a global view of the vaginal microbiome, it is essential to take into account all microorganisms that the vagina harbours, including fungi, viruses, archaea, and candidate phyla radiation. Although these communities represent only a minimal percentage of the vaginal microbiome, they may act as modifiers of its basic physiology and may play a key role in the maintenance of microbial communities, as well as metabolic and immune functions. Studies of the complex interactions between these different microorganisms have recently begun and are not yet fully understood. Results to date indicate that these microbial communities together constitute the first line of defence against infections. On the other hand, the slightest disturbance in this microbiome may lead to disease. For this reason, enhanced knowledge of these associations is critical to better identify predispositions to certain illnesses, which may open new therapeutic avenues. Currently however, only the tip of the iceberg is understood and current research on this ecosystem is revolutionising our knowledge and understanding of human health and disease.
Collapse
Affiliation(s)
- Linda Abou Chacra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Florence Fenollar
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
3
|
Kalia N, Singh J, Sharma S, Kaur M. Impact of SNPs interplay across the locus of MBL2, between MBL and Dectin-1 gene, on women's risk of developing recurrent vulvovaginal infections. Cell Biosci 2019; 9:35. [PMID: 31080578 PMCID: PMC6505208 DOI: 10.1186/s13578-019-0300-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Human mannose binding lectin (MBL) and dendritic cell-associated C-type lectin-1 (Dectin-1) are the two prototypical PRRs of innate immunity, whose direct role in recurrent vulvovaginal infections (RVVI) defense has been defined. Previously, MBL insufficiency was proposed as a possible risk factor for the rapid progression of RVVI while, Dectin-1 was found to be playing an active role in the defense. However, the complete genetic bases for the observed low MBL levels are still lacking as our previous studies in harmony with others demonstrated the un-expected genotype–phenotype patterns. This suggested the presence of unidentified regulatory variants that may modulate sMBL levels and risk of RVVI. Therefore, the present study was designed for more inclusive locus-wide MBL2 analysis and for the possible non-linear interaction analysis of two PRRs that may impact RVVI susceptibility. Methods The present study has extended the previous findings by investigating (1) the role of chosen additional SNPs falling in the 5′ near region relating to sMBL levels and RVVI susceptibility, using polymerase chain reaction-restriction fragment length polymorphism, (2) interactions among SNPs within gene by comprehensive locus-wide haplotype analyses of two MBL2 blocks, (3) gene–gene interaction analyses between two PRRs, using multifactor dimensionality reduction. Results rs11003124_G, rs7084554_C, rs36014597_G, and rs11003123_A were observed as the minor alleles in the representative North Indian cohort. RVVI cases and its types showed an appreciably high frequency of C allele, its homozygosity and heterozygosity, explaining the observed dominant mode of inheritance of rs7084554 polymorphism in contributing 1.81 fold risk of RVVI. The rs36014597 polymorphism showed the overdominant mode of inheritance, which further depicts that the carrier of a heterozygous genotype of this polymorphism had more extreme phenotype than either of its homozygous carriers in developing 4.07 fold risk of RVVI. sMBL levels significantly varied for rs11003124, rs36014597 and rs11003123 polymorphisms in bacterial vaginosis, while for rs7084554 polymorphism in mixed infection. Independent analysis of 5′ and 3′ haplotype blocks suggested the risk-modifying effect of all the 5′ additional variants, Y/X secretor polymorphism and 3′-UTR SNP i.e. rs10824792. Combined 5′/3′ haplotype analyses depicted the importance of rs36014597; an additional 5′ variant, Y/X and rs10824792 polymorphisms from both the blocks in regulating sMBL levels and RVVI risk. Three gene–gene interaction models involving uni-variant, bi-variant and tri-variant appeared as significant predictors of RVVI risk with cross-validation consistency of 10/10, 9/10 and 5/10, respectively. Conclusions The study presented a low-cost reproducible screening design for additional 5′ variants i.e. rs11003124, rs7084554, rs36014597 and rs11003123 of MBL2 that can act as markers of susceptibility for RVVI or any other diseases. Two additional 5′ variants of MBL2 i.e. rs7084554 and rs36014597 were suggested as novel molecular markers that may contribute to RVVI risk by varying sMBL levels. Variants of two blocks were found to have more of a combined effect than the independent effect in modulating RVVI susceptibility and sMBL levels. The study presented weak synergistic interaction between MBL2 and CLEC7A in association with RVVI risk. The preliminary data will establish the foundation for the investigation of within gene and between genes interaction analyses towards RVVI susceptibility. Electronic supplementary material The online version of this article (10.1186/s13578-019-0300-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Namarta Kalia
- 1Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- 1Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Sujata Sharma
- 2Department of Obstetrics & Gynaecology, Bebe Nanki Mother and Child Care Centre, Government Medical College, Amritsar, India
| | - Manpreet Kaur
- 3Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
4
|
Kalia N, Singh J, Sharma S, Kaur M. SNPs in 3'-UTR region of MBL2 increases susceptibility to recurrent vulvovaginal infections by altering sMBL levels. Immunobiology 2018; 224:42-49. [PMID: 30482481 DOI: 10.1016/j.imbio.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
Recurrent vulvovaginal infections (RVVI), owing to their adverse health consequences, have become a serious dilemma worldwide. Low serum levels of Mannose-Binding Lectin (sMBL), a main component of innate immunity, was found to be associated with RVVI risk, though complete genetic bases are still elusive. To reveal unrecognised regulatory variants, 3'-UTR region of MBL2 with six putative functional SNPs i.e. rs10824792, rs2120132, rs2120131, rs2165813, rs2099903 and rs2099902 was sequenced and genotyped in the present study for 109 RVVI cases and age matched healthy controls. sMBL levels were measured by enzyme-linked immunosorbent assay. The homozygous CC genotype of rs10824792 polymorphism was found to be conferring risk (OR = 2.94) of developing RVVI. Significantly high frequency of corresponding CC genotype was found in Vulvovaginal Candidiasis (VVC) and Mixed Infections (MI) relative to controls. Significantly insufficient sMBL levels were observed in RVVI and its types (Bacterial Vaginosis, VVC and MI) than controls. sMBL levels varied for rs10824792 SNP as expected from the genetic analyses. Six marker haplotype analyses have shown CTTGCT, the haplotype containing only risk allele of rs10824792, conferred risk of RVVI and its types by lowering sMBL levels. In conclusion, a 3'-UTR SNP i.e. rs10824792 was identified as novel associated genetic marker for contributing low sMBL levels and RVVI risk. Our findings contribute to the novel future research directions for the development of emerging MBL substitution as effectual therapy for RVVI.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, India.
| | - Sujata Sharma
- Department of Gynaecology & Obstetrics, Bebe Nanki Mother and Child Care Centre, Government Medical College, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
5
|
Obiero J, Rulisa S, Ogongo P, Wiysonge CS. Nifuratel-Nystatin combination for the treatment of mixed infections of bacterial vaginosis, vulvovaginal candidiasis, and trichomonal vaginitis. Hippokratia 2018. [DOI: 10.1002/14651858.cd013012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jael Obiero
- Institute of Primate Research; Department of Reproductive Health and Biology; Nairobi Kenya
| | - Stephen Rulisa
- University of Rwanda; Department of Obstetrics and gynecology, School of Medicine and Pharmacy; BP 655 Kigali Rwanda
| | - Paul Ogongo
- Institute of Primate Research; Tropical and Infectious Diseases; P.O Box 24481 -00502, Karen Nairobi Kenya
| | - Charles S Wiysonge
- South African Medical Research Council; Cochrane South Africa; Francie van Zijl Drive, Parow Valley Cape Town Western Cape South Africa 7505
| |
Collapse
|
6
|
Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol 2017; 168:802-810. [PMID: 28263903 DOI: 10.1016/j.resmic.2017.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/19/2022]
Abstract
Candida spp. are part of the normal vaginal microflora in 20-30% of healthy women. However, if the balance between these yeasts and the host is disturbed, Candida spp. can cause vulvovaginal candidiasis (VVC), with Candida albicans being the major causative agent. Different studies have been performed in order to better understand Candida's dual lifestyle in the vagina. The potential of C. albicans to switch from the yeast cell morphology to its hyphal form is considered a key element in VVC pathogenesis. Candida spp. also express other virulence factors, such as hydrolytic extracellular enzymes and heat shock proteins and can form biofilms.
Collapse
Affiliation(s)
- Mathieu Cauchie
- Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Stefanie Desmet
- Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Microbiology and Immunology, KU Leuven - University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Microbiology and Immunology, KU Leuven - University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit Rev Microbiol 2015; 42:905-27. [PMID: 26690853 DOI: 10.3109/1040841x.2015.1091805] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vulvovaginal candidiasis (VVC) is an infection caused by Candida species that affects millions of women every year. Although Candida albicans is the main cause of VVC, the identification of non-Candida albicans Candida (NCAC) species, especially Candida glabrata, as the cause of this infection, appears to be increasing. The development of VVC is usually attributed to the disturbance of the balance between Candida vaginal colonization and host environment by physiological or nonphysiological changes. Several host-related and behavioral risk factors have been proposed as predisposing factors for VVC. Host-related factors include pregnancy, hormone replacement, uncontrolled diabetes, immunosuppression, antibiotics, glucocorticoids use and genetic predispositions. Behavioral risk factors include use of oral contraceptives, intrauterine device, spermicides and condoms and some habits of hygiene, clothing and sexual practices. Despite a growing list of recognized risk factors, much remains to be elucidated as the role of host versus microorganisms, in inducing VVC and its recurrence. Thus, this review provides information about the current state of knowledge on the risk factors that predispose to VVC, also including a revision of the epidemiology and microbiology of VVC, as well as of Candida virulence factors associated with vaginal pathogenicity.
Collapse
Affiliation(s)
- Bruna Gonçalves
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Carina Ferreira
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Carlos Tiago Alves
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Mariana Henriques
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Joana Azeredo
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Sónia Silva
- a CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| |
Collapse
|
8
|
Liu MB, Xu SR, He Y, Deng GH, Sheng HF, Huang XM, Ouyang CY, Zhou HW. Diverse vaginal microbiomes in reproductive-age women with vulvovaginal candidiasis. PLoS One 2013; 8:e79812. [PMID: 24265786 PMCID: PMC3827160 DOI: 10.1371/journal.pone.0079812] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most prevalent vaginal infectious diseases, and there are controversial reports regarding the diversity of the associated vaginal microbiota. We determined the vaginal microbial community in patients with VVC, bacterial vaginosis (BV), and mixed infection of VVC and BV using Illumina sequencing of 16S rRNA tags. Our results revealed for the first time the highly variable patterns of the vaginal microbiome from VVC patients. In general, the alpha-diversity results of species richness and evenness showed the following order: normal control < VVC only < mixed BV and VVC infection < BV only. The beta-diversity comparison of community structures also showed an intermediate composition of VVC between the control and BV samples. A detailed comparison showed that, although the control and BV communities had typical patterns, the vaginal microbiota of VVC is complex. The mixed BV and VVC infection group showed a unique pattern, with a relatively higher abundance of Lactobacillus than the BV group and higher abundance of Prevotella, Gardnerella, and Atopobium than the normal control. In contrast, the VVC-only group could not be described by any single profile, ranging from a community structure similar to the normal control (predominated with Lactobacillus) to BV-like community structures (abundant with Gardnerella and Atopobium). Treatment of VVC resulted in inconsistent changes of the vaginal microbiota, with four BV/VVC samples recovering to a higher Lactobacillus level, whereas many VVC-only patients did not. These results will be useful for future studies on the role of vaginal microbiota in VVC and related infectious diseases.
Collapse
Affiliation(s)
- Mu-Biao Liu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Su-Rong Xu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan He
- Microbial Ecology Lab, Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guan-Hua Deng
- Microbial Ecology Lab, Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua-Fang Sheng
- Microbial Ecology Lab, Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xue-Mei Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cai-Yan Ouyang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Wei Zhou
- Microbial Ecology Lab, Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|