1
|
Shi F, Fan M, Li H, Li S, Wang S. Xanthone Dimers in Angiosperms, Fungi, Lichens: Comprehensive Review of Their Sources, Structures, and Pharmacological Properties. Molecules 2025; 30:967. [PMID: 40005277 PMCID: PMC11858044 DOI: 10.3390/molecules30040967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Xanthone dimers, a distinctive class of natural metabolites renowned for their unique structures, are abundantly present in a diverse array of angiosperms, fungi, and lichens. These compounds not only exhibit remarkable diversity but also possess a broad spectrum of biological activities. In this comprehensive review spanning from 1966 to 2024, we synthesized the relevant literature to delve into the natural occurrence, biological potency, molecular structure and chemical diversity of xanthone dimers. The aim of this review is to serve as an insightful reference point for future scientific inquiries into xanthone dimers and their potential applications.
Collapse
Affiliation(s)
- Fengzhi Shi
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| | - Min Fan
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| | - Haifeng Li
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China
| | - Shiwei Li
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| | - Shuang Wang
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| |
Collapse
|
2
|
Shi FZ, Fang YD, Fan M, Jiang XJ, Wang S, Wei GZ. Cytotoxic depsidones and xanthones from Garcinia esculenta Y. H. Li. Fitoterapia 2024; 172:105779. [PMID: 38104910 DOI: 10.1016/j.fitote.2023.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Six new compounds, including two depsidones garciculendepsidones A and B (1 and 2), one prenylated xanthone garciculenxanthone (3) and three dimeric xanthones bigarciculenxanthones A-C (4-6), were isolated from the twigs and leaves of Garcinia esculenta Y. H. Li. Their structures were elucidated based on comprehensive analyses of spectral data, including HRESIMS, 1D and 2D NMR, and ECD calculation. All the isolates were tested for their cytotoxicity against five human cancer cell lines (myeloid leukemia HL-60, lung cancer A-549 cells, hepatocellular carcinoma SMMC-7721, breast cancer MDA-MB-231 and colon cancer SW480), among them, compounds 3-5 displayed cytotoxic potential, especially garciculenxanthone (3) had the lowest IC50 value of 8.2 μm for lung cancer A-549 cells.
Collapse
Affiliation(s)
- Feng-Zhi Shi
- College of Pharmacy, Dili University, Dali 671000, People's Republic of China
| | - Yin-Dong Fang
- BioBioPha Co., Ltd., Kunming 650201, People's Republic of China; Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming 650201, People's Republic of China
| | - Min Fan
- College of Pharmacy, Dili University, Dali 671000, People's Republic of China
| | - Xian-Jun Jiang
- BioBioPha Co., Ltd., Kunming 650201, People's Republic of China; Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming 650201, People's Republic of China
| | - Shuang Wang
- College of Pharmacy, Dili University, Dali 671000, People's Republic of China.
| | - Guo-Zhu Wei
- BioBioPha Co., Ltd., Kunming 650201, People's Republic of China; Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming 650201, People's Republic of China.
| |
Collapse
|
3
|
Li B, Tan T, Chu W, Zhang Y, Ye Y, Wang S, Qin Y, Tang J, Cao X. Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Drug Deliv 2022; 29:75-88. [PMID: 34964421 PMCID: PMC8735879 DOI: 10.1080/10717544.2021.2018523] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 10/26/2022] Open
Abstract
Breast cancer is one of the most common types of cancer in female patients with high morbidity and mortality. Multi-drug chemotherapy has significant advantages in the treatment of malignant tumors, especially in reducing drug toxicity, increasing drug sensitivity and reducing drug resistance. The objective of this research is to fabricate lipid nanoemulsions (LNs) for the co-delivery of PTX and docosahexaenoic acid (DHA) with folic acid (FA) decorating (PTX/DHA-FA-LNs), and investigate the anti-tumor activity of the PTX/DHA-FA-LNs against breast cancer both in vitro and in vivo. PTX/DHA-FA-LNs showed a steady release of PTX and DHA from the drug delivery system (DDS) without any burst effect. Furthermore, the PTX/DHA-FA-LNs exhibited a dose-dependent cytotoxicity and a higher rate of apoptosis as compared with the other groups in MCF-7 cells. The cellular uptake study revealed that this LNs were more readily uptaken by MCF-7 cells and M2 macrophages in vitro. Additionally, the targeted effect of PTX/DHA-FA-LNs was aided by FA receptor-mediated endocytosis, and its cytotoxicity was proportional to the cellular uptake efficiency. The anti-tumor efficiency results showed that PTX/DHA-FA-LNs significant inhibited tumor volume growth, prolonged survival time, and reduced toxicity when compared with the other groups. These results indicated that DHA increases the sensitivity of tumor cells and tumor-associated macrophages (ATM2) to PTX, and synergistic effects of folate modification in breast cancer treatment, thus PTX/DHA-FA-LNs may be a promising nanocarrier for breast cancer treatment.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Weiwei Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Ying Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanzi Ye
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yan Qin
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
4
|
Triyasa KS, Diantini A, Barliana MI. A Review of Herbal Medicine-Based Phytochemical of Garcinia as Molecular Therapy for Breast Cancer. Drug Des Devel Ther 2022; 16:3573-3588. [PMID: 36248245 PMCID: PMC9554952 DOI: 10.2147/dddt.s358229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
Data from globocan statistic in 2020 indicate that breast cancer has become highest incidence rate of cancer. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) are known immunohistochemistry (IHC) markers that mediate cell growth and survival signaling. Furthermore, regulator proteins, receptors, and their downstream signaling pathways have emerged as critical components in breast cancer formation and proliferation, and have become well-established therapeutic targets and the core focus of breast cancer therapy research. Garcinia is a big genus in the Clusiaceae family that contains a wide spectrum of biologically active metabolites for the chemical composition of their isolated fruits, stem barks, seeds, leaves, and roots, have resulted including polyisoprenylated benzophenones, polyphenols, bioflavonoids, xanthones, lactones, and triterpenes. This review article aimed to analyze the potential of Garcinia phytochemicals as a molecular therapy of breast cancer. The results showed that phytochemicals of Garcinia (i.e., α-mangostin, Cambogin, Gambogic Acid [GA], Garcinol, Griffipavixanthone, Friedolanostane triterpenoid, Hexane, Neobractatin, 7-Epiclusianone, xanthochymol - guttiferone E, and isoxanthochymol - cycloxanthochymol) have anticancer properties, including apoptosis, inhibition of proliferation, and metastasis. This review is important to provide information regarding phytochemicals of Garcinia as an alternative treatment for breast cancer patients. This article selected 28 article researches based on inclusion criteria with the keyword “Garcinia” and “Breast cancer”, in English, and available in full text and abstract searching on PubMed.
Collapse
Affiliation(s)
- Komang Suma Triyasa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa Intan Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia,Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia,Correspondence: Melisa Intan Barliana, Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM. 21, Jatinangor, Bandung, 45363, Indonesia, Email
| |
Collapse
|
5
|
Sun J, Gao J, Wang L, Wang J. Griffipavixanthone Enhances Chemosensitivity to Cisplatin in Human Non-Small Lung Cancer A549 and H157 Cells. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1521.1527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Wang Z, Liang X, Xiong A, Ding L, Li W, Yang L, Wu X, Shi H, Zhou Y, Wang Z. Helichrysetin and TNF‑α synergistically promote apoptosis by inhibiting overactivation of the NF‑κB and EGFR signaling pathways in HeLa and T98G cells. Int J Mol Med 2021; 47:49. [PMID: 33576459 PMCID: PMC7891838 DOI: 10.3892/ijmm.2021.4882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) has different effects on apoptosis depending on activation or inactivation of the nuclear factor‑κB (NF‑κB) and epidermal growth factor receptor (EGFR) signaling pathways. Helichrysetin, a natural chalcone, inhibits NF‑κB nuclear translocation in mouse pancreatic β cells. The present study aimed to identify the effect of helichrysetin on activation of the NF‑κB and EGFR signaling pathways induced by TNF‑α, and the synergistic effect of helichrysetin and TNF‑α on apoptosis of HeLa and T98G cells. Cell proliferation was measured by Cell Counting Kit‑8 assay, while apoptosis was measured by Hoechst 33258 and Annexin V/PI staining. NF‑κB activity was detected by luciferase assay, protein expression was measured by western blotting and mRNA expression was detected by quantitative PCR assay. The results revealed that in HeLa and T98G cells helichrysetin blocked the increased phosphorylation of NF‑κB p65 induced by TNF‑α. Although helichrysetin alone decreased cell viability, helichrysetin and TNF‑α synergistically decreased cell viability. Helichrysetin, not TNF‑α, promoted apoptosis, while the combination of helichrysetin and TNF‑α synergistically increased apoptosis. In addition, helichrysetin and TNF‑α synergistically enhanced the activation of caspase‑3 and poly‑(ADP‑ribose)‑polymerase compared with helichrysetin alone. Helichrysetin inhibited the phosphorylation of transforming growth factor‑β activated kinase (TAK1), IκB kinase‑α/β (IKK‑α/β), NF‑κB p65 and EGFR induced by TNF‑α. Consistent with the inhibition of NF‑κB activation, the increased TNF‑α‑induced mRNA expression levels of TNF‑α, IL‑1β, CCL2, CCL5 and CXCL10 were significantly downregulated by helichrysetin. Therefore, helichrysetin and TNF‑α synergistically promoted apoptosis by inhibiting TAK1/IKK/NF‑κB and TAK1/EGFR signaling pathways in HeLa and T98G cells, indicating a potential therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Zhiying Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaohui Liang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Aizhen Xiong
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lili Ding
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Wei Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Li Yang
- Institute of Interdisciplinary Integrative Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yue Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
7
|
Tao S, Li H, Ma X, Lian B, He J, Gao Y, Li J. Methylation-Mediated Silencing of MicroRNA-497 Promotes Breast Cancer Progression Through Up-Regulation of Mucin1. Front Oncol 2020; 10:552099. [PMID: 33194611 PMCID: PMC7645108 DOI: 10.3389/fonc.2020.552099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Potential anti-tumor effects of microRNA-497 (miR-497) have been highlighted in various malignancies including breast cancer. However, little is known about the function of miR-497 and its putative target mucin1 (MUC1) in breast cancer. The present study explored how miR-497 regulates breast cancer progression in a MUC1-dependent manner. Methods Expression of miR-497 and MUC1 was determined in breast cancer tissues and cells. Methylation specific polymerase chain reaction was used to measure the methylation status of CpG islands of miR-497 promoter, while chromatin immunoprecipitation assay was used to detect recruitment of methyltransferase to the promoter region of miR-497. Alteration in expression of miR-497 (overexpression) and MUC1 (up- and down-regulation) was performed to examine their roles in breast cancer biology in vitro and in vivo. The binding affinity between miR-497 and MUC1 was investigated through a bioinformatics database and dual luciferase reporter gene assay. Results MiR-497 was down-regulated and MUC1 was up-regulated in breast cancer tissues and cell lines. Besides, methylation induced a down-regulation of miR-497 in breast cancer. The bioinformatics analysis and dual luciferase reporter gene assay indicated that miR-497 targeted MUC1. Overexpression of miR-497 inhibited breast cancer cell proliferation and invasion and promoted the apoptosis of breast cancer cells by down-regulating MUC1. The inhibitory action of miR-497 on tumor growth was validated in vivo. Conclusion In conclusion, miR-497 down-regulated MUC1 expression and subsequently suppressed breast cancer progression, highlighting miR-497 to be a potential biomarker and therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Shuang Tao
- Department of Breast Surgery, Changzhou No. 7 People's Hospital, Changzhou, China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiuzhen Ma
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Lian
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiale He
- Ningxia Medical University, Yinchuan, China
| | - Yali Gao
- Ningxia Medical University, Yinchuan, China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Xiong K, Zhang Y, Wen Q, Luo J, Lu Y, Wu Z, Wang B, Chen Y, Zhao L, Fu S. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int J Pharm 2020; 589:119875. [PMID: 32919003 DOI: 10.1016/j.ijpharm.2020.119875] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Multi-drug chemotherapy has been one of the most popular strategies for the treatment of malignant tumors, and has achieved desirable therapeutic outcomes. The objective of the present study is to develop biodegradable PCEC nanoparticles (NPs) for the co-delivery of paclitaxel (PTX) and curcumin (CUR), and investigate the antitumor effect of the drug delivery system (DDS: PTX-CUR-NPs) against breast cancer both in vitro and in vivo. The prepared PTX-CUR-NPs had a small size of 27.97 ± 1.87 nm with a low polydispersity index (PDI, 0.197 ± 0.040). The results exhibited slow release of PTX and CUR from the DDS without any burst effect. Further, the PTX-CUR-NPs displayed a dose-dependent cytotoxicity in MCF-7 cells with a higher apoptosis rate (64.29% ± 1.97%) as compared to that of free drugs (PTX + CUR, 34.21% ± 0.81%). The cellular uptake study revealed that the drug loaded PCEC polymeric nanoparticles were more readily uptaken by tumor cells in vitro. To evaluate the in vivo anti-tumor effect, the PTX-CUR-NPs were intravenously administered to BALB/c nude mouse xenografted with MCF-7 cells and the results exhibited significant inhibition of tumor growth with prolonged survival time and reduced side effect when compared with free drugs (PTX + CUR). Moreover, the administration of PTX-CUR-NPs treatment led to lower Ki67 expression (p < 0.05), and enhanced TUNEL positivity (higher apoptosis, p < 0.01) in tumor cells as compared to other treatment groups, suggesting the therapeutic efficacy of the DDS. Altogether, the present study suggests that the DDS PTX-CUR-NPs could be employed for the effective treatment of breast cancers in near future.
Collapse
Affiliation(s)
- Kang Xiong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Zhang
- Department of Oncology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jia Luo
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ZhouXue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - BiQiong Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|