1
|
Li S, Mao L, Song L, Xia X, Wang Z, Cheng Y, Lai J, Tang X, Chen X. Extracellular Vesicles Derived from Glioma Stem Cells Affect Glycometabolic Reprogramming of Glioma Cells Through the miR-10b-5p/PTEN/PI3K/Akt Pathway. Stem Cell Rev Rep 2024; 20:779-796. [PMID: 38294721 DOI: 10.1007/s12015-024-10677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Glioma is one of the most prevalently diagnosed types of primary malignant brain tumors. Glioma stem cells (GSCs) are crucial in glioma recurrence. This study aims to elucidate the mechanism by which extracellular vehicles (EVs) derived from GSCs modulate glycometabolic reprogramming in glioma. METHODS Xenograft mouse models and cell models of glioma were established and treated with GSC-EVs. Additionally, levels and activities of PFK1, LDHA, and FASN were assessed to evaluate the effect of GSC-EVs on glycometabolic reprogramming in glioma. Glioma cell proliferation, invasion, and migration were evaluated using MTT, EdU, Colony formation, and Transwell assays. miR-10b-5p expression was determined, with its target gene PTEN and downstream pathway PI3K/Akt evaluated. The involvement of miR-10b-5p and the PI3K/Akt pathway in the effect of GSC-EVs on glycometabolic reprogramming was tested through joint experiments. RESULTS GSC-EVs facilitated glycometabolic reprogramming in glioma mice, along with enhancing glucose uptake, lactate level, and adenosine monophosphate-to-adenosine triphosphate ratio. Moreover, GSC-EV treatment potentiated glioma cell proliferation, invasion, and migration, reinforced cell resistance to temozolomide, and raised levels and activities of PFK1, LDHA, and FASN. miR-10b-5p was highly-expressed in GSC-EV-treated glioma cells while being carried into glioma cells by GSC-EVs. miR-10b-5p targeted PTEN and activated the PI3K/Akt pathway, hence stimulating glycometabolic reprogramming. CONCLUSION GSC-EVs target PTEN and activate the PI3K/Akt pathway through carrying miR-10b-5p, subsequently accelerating glycometabolic reprogramming in glioma, which might provide new insights into glioma treatment.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Lifang Mao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Lvmeng Song
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xiaochao Xia
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zihao Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yinchuan Cheng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
2
|
Pierfelice TV, Lazarevic M, Mitic D, Nikolic N, Radunovic M, Iezzi G, Piattelli A, Milasin J. Red Light and 5% Aminolaevulinic Acid (5%) Inhibit Proliferation and Migration of Dysplastic Oral Keratinocytes via ROS Production: An In Vitro Study. Gels 2023; 9:604. [PMID: 37623059 PMCID: PMC10453269 DOI: 10.3390/gels9080604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Undiagnosed and untreated oral precancerous lesions often progress into malignancies. Photodynamic therapy (PDT) might be a minimally invasive alternative to conventional treatments. 5-aminolevulinic acid (5-ALA) is one of the most commonly used photosensitizers in PDT, and it is effective on many cancer types. However, its hydrophilic characteristic limits cell membrane crossing. In the present study, the effect of a newly formulated gel containing 5% 5-ALA in combination with red light (ALAD-PDT) on a premalignant oral mucosa cell line was investigated. The dysplastic oral keratinocyte (DOK) cells were incubated with ALAD at different concentrations (0.1, 0.5, 1, and 2 mM) at two different times, 45 min or 4 h, and then irradiated for 7 min with a 630 nm LED (25 J/cm2). MTT assay, flow cytometry, wound healing assay, and quantitative PCR (qPCR) were performed. ALAD-PDT exerted inhibitory effects on the proliferation and migration of DOK cells by inducing ROS and necrosis. mRNA analysis showed modulation of apoptosis-related genes' expression (TP53, Bcl-2, survivin, caspase-3, and caspase-9). Furthermore, there was no difference between the shorter and longer incubation times. In conclusion, the inhibitory effect of the ALAD-PDT protocol observed in this study suggests that ALAD-PDT could be a promising novel treatment for oral precancerous lesions.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (T.V.P.); (G.I.)
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Milos Lazarevic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| | - Dijana Mitic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| | - Milena Radunovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (T.V.P.); (G.I.)
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Guadalupe, Spain
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (M.L.); (D.M.); (N.N.); (J.M.)
| |
Collapse
|
3
|
Pinelli R, Ferrucci M, Biagioni F, Berti C, Bumah VV, Busceti CL, Puglisi-Allegra S, Lazzeri G, Frati A, Fornai F. Autophagy Activation Promoted by Pulses of Light and Phytochemicals Counteracting Oxidative Stress during Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1183. [PMID: 37371913 DOI: 10.3390/antiox12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Caterina Berti
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Martin, TN 38237, USA
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Frati
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
4
|
Pinelli R, Ferrucci M, Berti C, Biagioni F, Scaffidi E, Bumah VV, Busceti CL, Lenzi P, Lazzeri G, Fornai F. The Essential Role of Light-Induced Autophagy in the Inner Choroid/Outer Retinal Neurovascular Unit in Baseline Conditions and Degeneration. Int J Mol Sci 2023; 24:ijms24108979. [PMID: 37240326 DOI: 10.3390/ijms24108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Caterina Berti
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Elena Scaffidi
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry College of Sciences San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Knoxville, TN 37996, USA
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| |
Collapse
|
5
|
Wang Z, Zhang P, Jiang H, Sun B, Luo H, Jia A. Ursolic Acid Enhances the Sensitivity of MCF-7 and MDA-MB-231 Cells to Epirubicin by Modulating the Autophagy Pathway. Molecules 2022; 27:3399. [PMID: 35684339 PMCID: PMC9182048 DOI: 10.3390/molecules27113399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is the leading cause of cancer death among women in the world, and its morbidity and mortality are increasing year by year. Epirubicin (EPI) is a commonly used drug for the treatment of breast cancer but unfortunately can cause cardiac toxicity in patients because of dose accumulation. Therefore, there is an urgent need for new therapies to enhance the sensitivity of breast cancer cells to EPI. In this study, we found ursolic acid (UA) can significantly improve the drug sensitivity of human breast cancer MCF-7/MDA-MB-231 cells to EPI. Next, we observed that the co-treatment of UA and EPI can up-regulate the expression of autophagy-related proteins Beclin-1, LC3-II/LC3-I, Atg5, and Atg7, and decrease the expression levels of PI3K and AKT, which indicates that the potential mechanism should be carried out by the regulating class III PI3K(VPS34)/Beclin-1 pathway and PI3K/AKT/mTOR pathway. Furthermore, we found the autophagy inhibitor 3-methyladenine (3-MA) could significantly reverse the inhibitory effect of co-treatment of UA and EPI on MCF-7 and MDA-MB-231 cells. These findings indicate that UA can dramatically enhance the sensitivity of MCF-7 and MDA-MB-231 cells to EPI by modulating the autophagy pathway. Our study may provide a new therapeutic strategy for combination therapy.
Collapse
Affiliation(s)
- Zhennan Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Pingping Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Huan Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
| | - Huaizhi Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
| | - Aiqun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| |
Collapse
|