1
|
Govindasamy B, Muthu M, Gopal J, Chun S. A review on the impact of TRAIL on cancer signaling and targeting via phytochemicals for possible cancer therapy. Int J Biol Macromol 2023; 253:127162. [PMID: 37788732 DOI: 10.1016/j.ijbiomac.2023.127162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.
Collapse
Affiliation(s)
- Balasubramani Govindasamy
- Department of Product Development, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Sechul Chun
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Chen J, Li L, Huangfu L, Du H, Ji X, Xing X, Ji J. Death receptor 5 promotes tumor progression in gastric cancer. FEBS Open Bio 2023; 13:2375-2388. [PMID: 37879960 PMCID: PMC10699099 DOI: 10.1002/2211-5463.13725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Death receptor 5 (DR5) can inhibit malignant proliferation via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in many cancers. Here we examined the expression and sublocalization of DR5 in gastric cancer, as well as its effects on clinical prognosis and cellular processes. Our analysis included a cohort of 240 gastric cancer patients. Bioinformatic analysis showed a significant correlation between DR5 and DNA replication, tumor mutation burden (TMB), and tumor stemness. Unlike death receptor 4 (DR4TRAIL-R1), DR5 was expressed in the cytoplasm and nucleus, and was found to be positively correlated with lymphovascular invasion, lymph node metastasis, and TNM stage. Patients with positive DR5 had worse overall survival (OS) (P = 0.006). The multivariate Cox model showed that DR5 is an independent poor prognostic factor (hazard ratio = 1.693). Furthermore, knockdown of DR5 inhibited aggressive behaviors, including proliferation and metastasis in gastric cancer cells, and inhibited lung metastasis in vivo. In summary, nuclear localization of DR5 expression is a poor prognosis factor in gastric cancer and promotes growth, invasion, and metastasis of tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Junbing Chen
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Lin Li
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
- Department of Gastroenterology, Aerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijingChina
| | - Longtao Huangfu
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Hong Du
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xin Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| |
Collapse
|
3
|
Espinosa-Gil S, Ivanova S, Alari-Pahissa E, Denizli M, Villafranca-Magdalena B, Viñas-Casas M, Bolinaga-Ayala I, Gámez-García A, Faundez-Vidiella C, Colas E, Lopez-Botet M, Zorzano A, Lizcano JM. MAP kinase ERK5 modulates cancer cell sensitivity to extrinsic apoptosis induced by death-receptor agonists. Cell Death Dis 2023; 14:715. [PMID: 37919293 PMCID: PMC10622508 DOI: 10.1038/s41419-023-06229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Death receptor ligand TRAIL is a promising cancer therapy due to its ability to selectively trigger extrinsic apoptosis in cancer cells. However, TRAIL-based therapies in humans have shown limitations, mainly due inherent or acquired resistance of tumor cells. To address this issue, current efforts are focussed on dissecting the intracellular signaling pathways involved in resistance to TRAIL, to identify strategies that sensitize cancer cells to TRAIL-induced cytotoxicity. In this work, we describe the oncogenic MEK5-ERK5 pathway as a critical regulator of cancer cell resistance to the apoptosis induced by death receptor ligands. Using 2D and 3D cell cultures and transcriptomic analyses, we show that ERK5 controls the proteostasis of TP53INP2, a protein necessary for full activation of caspase-8 in response to TNFα, FasL or TRAIL. Mechanistically, ERK5 phosphorylates and induces ubiquitylation and proteasomal degradation of TP53INP2, resulting in cancer cell resistance to TRAIL. Concordantly, ERK5 inhibition or genetic deletion, by stabilizing TP53INP2, sensitizes cancer cells to the apoptosis induced by recombinant TRAIL and TRAIL/FasL expressed by Natural Killer cells. The MEK5-ERK5 pathway regulates cancer cell proliferation and survival, and ERK5 inhibitors have shown anticancer activity in preclinical models of solid tumors. Using endometrial cancer patient-derived xenograft organoids, we propose ERK5 inhibition as an effective strategy to sensitize cancer cells to TRAIL-based therapies.
Collapse
Affiliation(s)
- Sergio Espinosa-Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Saska Ivanova
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Melek Denizli
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Beatriz Villafranca-Magdalena
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Maria Viñas-Casas
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Idoia Bolinaga-Ayala
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrés Gámez-García
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Claudia Faundez-Vidiella
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Miguel Lopez-Botet
- University Pompeu Fabra, Barcelona, Spain
- Immunology laboratory, Dpt. of Pathology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Antonio Zorzano
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain
| | - José Miguel Lizcano
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
| |
Collapse
|
4
|
Khodayari Moez E, Warkentin MT, Brhane Y, Lam S, Field JK, Liu G, Zulueta JJ, Valencia K, Mesa-Guzman M, Nialet AP, Atkar-Khattra S, Davies MPA, Grant B, Murison K, Montuenga LM, Amos CI, Robbins HA, Johansson M, Hung RJ. Circulating proteome for pulmonary nodule malignancy. J Natl Cancer Inst 2023; 115:1060-1070. [PMID: 37369027 PMCID: PMC10483334 DOI: 10.1093/jnci/djad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Although lung cancer screening with low-dose computed tomography is rolling out in many areas of the world, differentiating indeterminate pulmonary nodules remains a major challenge. We conducted one of the first systematic investigations of circulating protein markers to differentiate malignant from benign screen-detected pulmonary nodules. METHODS Based on 4 international low-dose computed tomography screening studies, we assayed 1078 protein markers using prediagnostic blood samples from 1253 participants based on a nested case-control design. Protein markers were measured using proximity extension assays, and data were analyzed using multivariable logistic regression, random forest, and penalized regressions. Protein burden scores (PBSs) for overall nodule malignancy and imminent tumors were estimated. RESULTS We identified 36 potentially informative circulating protein markers differentiating malignant from benign nodules, representing a tightly connected biological network. Ten markers were found to be particularly relevant for imminent lung cancer diagnoses within 1 year. Increases in PBSs for overall nodule malignancy and imminent tumors by 1 standard deviation were associated with odds ratios of 2.29 (95% confidence interval: 1.95 to 2.72) and 2.81 (95% confidence interval: 2.27 to 3.54) for nodule malignancy overall and within 1 year of diagnosis, respectively. Both PBSs for overall nodule malignancy and for imminent tumors were substantially higher for those with malignant nodules than for those with benign nodules, even when limited to Lung Computed Tomography Screening Reporting and Data System (LungRADS) category 4 (P < .001). CONCLUSIONS Circulating protein markers can help differentiate malignant from benign pulmonary nodules. Validation with an independent computed tomographic screening study will be required before clinical implementation.
Collapse
Affiliation(s)
- Elham Khodayari Moez
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Matthew T Warkentin
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - John K Field
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Geoffrey Liu
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Javier J Zulueta
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai Morningside Hospital, Icahn School of Medicine, New York, NY, USA
| | - Karmele Valencia
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Miguel Mesa-Guzman
- Thoracic Surgery Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Andrea Pasquier Nialet
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Michael P A Davies
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Benjamin Grant
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Kiera Murison
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Luis M Montuenga
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Hilary A Robbins
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Laudisi F, Pacifico T, Maresca C, Luiz-Ferreira A, Antonelli S, Ortenzi A, Colantoni A, Di Grazia A, Franzè E, Colella M, Di Fusco D, Sica GS, Monteleone I, Monteleone G, Stolfi C. Rafoxanide sensitizes colorectal cancer cells to TRAIL-mediated apoptosis. Biomed Pharmacother 2022; 155:113794. [PMID: 36271571 DOI: 10.1016/j.biopha.2022.113794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) remains a leading causes of cancer-related death in the world, mainly due to the lack of effective treatment of advanced disease. TNF-related apoptosis-inducing ligand (TRAIL)-driven cell death, a crucial event in the control of tumor growth, selectively targets malignant rather than non-transformed cells. However, the fact that cancer cells, including CRC cells, are either intrinsically resistant or acquire resistance to TRAIL, represents a major hurdle to the use of TRAIL-based strategies in the clinic. Agents able to overcome CRC cell resistance to TRAIL have thus great therapeutic potential and many researchers are making efforts to identify TRAIL sensitizers. The anthelmintic drug rafoxanide has recently emerged as a potent anti-tumor molecule for different cancer types and we recently reported that rafoxanide restrained the proliferation of CRC cells, but not of normal colonic epithelial cells, both in vitro and in a preclinical model mimicking sporadic CRC. As these findings were linked with the induction of endoplasmic reticulum stress, a phenomenon involved in the regulation of various components of the TRAIL-driven apoptotic pathway, we sought to determine whether rafoxanide could restore the sensitivity of CRC cells to TRAIL. Our data show that rafoxanide acts as a selective TRAIL sensitizer in vitro and in a syngeneic experimental model of CRC, by decreasing the levels of c-FLIP and survivin, two key molecules conferring TRAIL resistance. Collectively, our data suggest that rafoxanide could potentially be deployed as an anti-cancer drug in the combinatorial approaches aimed at overcoming CRC cell resistance to TRAIL-based therapies.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Anderson Luiz-Ferreira
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of Biotechnology, Federal University of Catalão (UFCAT), Catalão, GO, Brazil
| | - Sara Antonelli
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
6
|
Gene Expression Profiles of Multiple Synchronous Lesions in Lung Adenocarcinoma. Cells 2021; 10:cells10123484. [PMID: 34943992 PMCID: PMC8700398 DOI: 10.3390/cells10123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Many studies support a stepwise continuum of morphologic changes between atypical adenomatous hyperplasia (AAH) and lung adenocarcinoma (ADC). Here we characterized gene expression patterns and the association of differentially expressed genes and immune tumor microenvironment behaviors in AAH to ADC during ADC development. Tumor tissues from nine patients with ADC and synchronous multiple ground glass nodules/lesions (GGN/Ls) were analyzed using RNA sequencing. Using clustering, we identified genes differentially and sequentially expressed in AAH and ADC compared to normal tissues. Functional enrichment analysis using gene ontology terms was performed, and the fraction of immune cell types was estimated. We identified up-regulated genes (ACSL5 and SERINC2) with a stepwise change of expression from AAH to ADC and validated those expressions by quantitative PCR and immunohistochemistry. The immune cell profiles revealed increased B cell activities and decreased natural killer cell activities in AAH and ADC. A stepwise change of differential expression during ADC development revealed potential effects on immune function in synchronous precursors and in tumor lesions in patients with lung cancer.
Collapse
|
7
|
Zhang H, Qin G, Zhang C, Yang H, Liu J, Hu H, Wu P, Liu S, Yang L, Chen X, Zhao X, Wang L, Zhang Y. TRAIL promotes epithelial-to-mesenchymal transition by inducing PD-L1 expression in esophageal squamous cell carcinomas. J Exp Clin Cancer Res 2021; 40:209. [PMID: 34167551 PMCID: PMC8223376 DOI: 10.1186/s13046-021-01972-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-associated apoptosis-inducing ligand (TRAIL) was initially considered an immunity guard; however, its function remains controversial. Besides immune cells, lung and colon cancer cells have also been reported to express TRAIL, which can promote tumor invasion and metastasis. However, the biological function and underlying mechanism of action of TRAIL in esophageal squamous cell carcinoma (ESCC) remain poorly elucidated. METHODS The ESCC cells stemness, migration, and proliferation ability was assessed by sphere formation, Transwell, and CCK8 assay. The stemness- and epithelial-mesenchymal transition (EMT)- related genes expression levels were analyzed by Western blot and RT-qPCR. The signal activation was conducted by Western blot. The xenograft mouse experiments and lung metastasis model were performed to confirm our findings in vitro. RESULTS Herein, we found that TRAIL is a negative predictor in patients with ESCC. To further investigate the biological function of TRAIL, we established TRAIL knockdown and overexpression ESCC cell lines and found that TRAIL induced EMT and promoted tumor aggressiveness. Furthermore, we demonstrated that TRAIL- overexpressing cells upregulated PD-L1 expression, which was dependent on the p-ERK/STAT3 signaling pathway. We obtained similar results when using recombinant human TRAIL. Finally, we validated the biological role and mechanism of action of TRAIL in vivo. CONCLUSIONS These findings demonstrate that TRAIL promotes ESCC progression by enhancing PD-L1 expression, which induces EMT. This may explain the failure of TRAIL preclinical trials.
Collapse
Affiliation(s)
- Huanyu Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Guohui Qin
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Huiyun Yang
- School of Life Sciences, Zhengzhou University, 450052, Zhengzhou, China
| | - Jinyan Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Hongwei Hu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Peng Wu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Li Yang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
| | - Xinfeng Chen
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Henan, 450052, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450052, Zhengzhou, China.
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, 450052, Zhengzhou, China.
| |
Collapse
|
8
|
Oh YT, Sun SY. Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
Affiliation(s)
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA;
| |
Collapse
|
9
|
Snajdauf M, Havlova K, Vachtenheim J, Ozaniak A, Lischke R, Bartunkova J, Smrz D, Strizova Z. The TRAIL in the Treatment of Human Cancer: An Update on Clinical Trials. Front Mol Biosci 2021; 8:628332. [PMID: 33791337 PMCID: PMC8006409 DOI: 10.3389/fmolb.2021.628332] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
TRAIL (tumor-necrosis factor related apoptosis-inducing ligand, CD253) and its death receptors TRAIL-R1 and TRAIL-R2 selectively trigger the apoptotic cell death in tumor cells. For that reason, TRAIL has been extensively studied as a target of cancer therapy. In spite of the promising preclinical observations, the TRAIL–based therapies in humans have certain limitations. The two main therapeutic approaches are based on either an administration of TRAIL-receptor (TRAIL-R) agonists or a recombinant TRAIL. These approaches, however, seem to elicit a limited therapeutic efficacy, and only a few drugs have entered the phase II clinical trials. To deliver TRAIL-based therapies with higher anti-tumor potential several novel TRAIL-derivates and modifications have been designed. These novel drugs are, however, mostly preclinical, and many problems continue to be unraveled. We have reviewed the current status of all TRAIL-based monotherapies and combination therapies that have reached phase II and phase III clinical trials in humans. We have also aimed to introduce all novel approaches of TRAIL utilization in cancer treatment and discussed the most promising drugs which are likely to enter clinical trials in humans. To date, different strategies were introduced in order to activate anti-tumor immune responses with the aim of achieving the highest efficacy and minimal toxicity.In this review, we discuss the most promising TRAIL-based clinical trials and their therapeutic strategies.
Collapse
Affiliation(s)
- Martin Snajdauf
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Klara Havlova
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
10
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
11
|
Hwangbo H, Choi EO, Kim MY, Kwon DH, Ji SY, Lee H, Hong SH, Kim GY, Hwang HJ, Hong SH, Choi YH. Suppression of tumor growth and metastasis by ethanol extract of Angelica dahurica Radix in murine melanoma B16F10 cells. Biosci Trends 2020; 14:23-34. [PMID: 32092745 DOI: 10.5582/bst.2019.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dong-eui University, Busan, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|
12
|
Ivanova S, Polajnar M, Narbona-Perez AJ, Hernandez-Alvarez MI, Frager P, Slobodnyuk K, Plana N, Nebreda AR, Palacin M, Gomis RR, Behrends C, Zorzano A. Regulation of death receptor signaling by the autophagy protein TP53INP2. EMBO J 2019; 38:embj.201899300. [PMID: 30979779 DOI: 10.15252/embj.201899300] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
TP53INP2 positively regulates autophagy by binding to Atg8 proteins. Here, we uncover a novel role of TP53INP2 in death-receptor signaling. TP53INP2 sensitizes cells to apoptosis induced by death receptor ligands. In keeping with this, TP53INP2 deficiency in cultured cells or mouse livers protects against death receptor-induced apoptosis. TP53INP2 binds caspase-8 and the ubiquitin ligase TRAF6, thereby promoting the ubiquitination and activation of caspase-8 by TRAF6. We have defined a TRAF6-interacting motif (TIM) and a ubiquitin-interacting motif in TP53INP2, enabling it to function as a scaffold bridging already ubiquitinated caspase-8 to TRAF6 for further polyubiquitination of caspase-8. Mutations of key TIM residues in TP53INP2 abrogate its interaction with TRAF6 and caspase-8, and subsequently reduce levels of death receptor-induced apoptosis. A screen of cancer cell lines showed that those with higher protein levels of TP53INP2 are more prone to TRAIL-induced apoptosis, making TP53INP2 a potential predictive marker of cancer cell responsiveness to TRAIL treatment. These findings uncover a novel mechanism for the regulation of caspase-8 ubiquitination and reveal TP53INP2 as an important regulator of the death receptor pathway.
Collapse
Affiliation(s)
- Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.,Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Mira Polajnar
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Munich Cluster for System Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Alvaro Jesus Narbona-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria Isabel Hernandez-Alvarez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Institut Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Petra Frager
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Konstantin Slobodnyuk
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natalia Plana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,ICREA, Insitució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Manuel Palacin
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.,CIBER de Enfermedades Raras, Barcelona, Spain
| | - Roger R Gomis
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,ICREA, Insitució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,CIBERONC, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.,Munich Cluster for System Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.,Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Kim BR, Park SH, Jeong YA, Na YJ, Kim JL, Jo MJ, Jeong S, Yun HK, Oh SC, Lee DH. RUNX3 enhances TRAIL-induced apoptosis by upregulating DR5 in colorectal cancer. Oncogene 2019; 38:3903-3918. [PMID: 30692634 DOI: 10.1038/s41388-019-0693-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022]
Abstract
RUNX3 is frequently inactivated by DNA hypermethylation in numerous cancers. Here, we show that RUNX3 has an important role in modulating apoptosis in immediate response to tumor necrosis factor-related apoptosis-including ligand (TRAIL). Importantly, no combined effect of TRAIL and RUNX3 was observed in non-cancerous cells. We investigated the expression of the death receptors (DRs) DR4 and DR5, which are related to TRAIL resistance. Overexpression of RUNX3 increased DR5 expression via induction of the reactive oxygen species (ROS)-endoplasmic reticulum (ER) stress-effector CHOP. Reduction of DR5 markedly decreased apoptosis enhanced by the combined therapy of TRAIL and RUNX3. Interestingly, RUNX3 induced reactive oxygen species production by inhibiting SOD3 transcription via binding to the Superoxide dismutase 3 (SOD3) promoter. Additionally, the combined effect of TRAIL and RUNX3 decreased tumor growth in xenograft models. Our results demonstrate a direct role for RUNX3 in TRAIL-induced apoptosis via activation of DR5 and provide further support for RUNX3 as an anti-tumor.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon A Jeong
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Na
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Jee Jo
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Kyeong Yun
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Cheul Oh
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Dae-Hee Lee
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Yan Y, Liu S, Li M, Zhao Y, Shao X, Hang M, Bu X. Recombinant Newcastle disease virus expressing human IFN-λ1 (rL-hIFN-λ1)-induced apoptosis of A549 cells is connected to endoplasmic reticulum stress pathways. Thorac Cancer 2018; 9:1437-1452. [PMID: 30246439 PMCID: PMC6209783 DOI: 10.1111/1759-7714.12857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND IFN-λs are a kind of cytokine with anti-tumor, immunomodulatory, and anti-proliferative activity. Recent studies have shown that the recombinant Newcastle disease virus expresses human IFN-λ1 (rL-hIFN-λ1), which plays a role in gastric cancer cell apoptosis. Endoplasmic reticulum stress (ERS) induces autophagy and apoptosis in tumor cells. In this study, we explored the relationship between ERS and rL-hIFN-λ1-induced apoptosis of lung adenocarcinoma A549 cells and its underlying mechanism. METHODS First, we investigated the effect of rL-hIFN-λ1 on cellular proliferation, migration, and proteins associated with ERS, autophagy, and apoptosis of A549. Second, after administration of the ERS inhibitor, the associated proteins induced by rL-hIFN-λ1 were detected. Finally, a subcutaneous mouse model was used to examine the effect of rL-hIFN-λ1 on tumor growth and the ERS and apoptosis associated proteins in tumor tissues. RESULTS The results showed that the proliferation and migration of A549 cells, and tumor tissue growth were significantly inhibited and the ERS, autophagy, and apoptosis associated proteins were upregulated in the experimental group. Additionally, both 4-PBA and knockdown of PERK or CHOP reduced the levels of rL-hIFN-λ1-induced autophagy and apoptosis-associated proteins. BCL-2 knockdown caused autophagy and apoptosis associated protein upregulation. CONCLUSIONS In summary, rL-hIFN-λ1 inhibited cell proliferation and activated ERS, autophagy, and apoptosis in A549 cells and tissues, and when ERS pathways were blocked, the inhibiting effect was even more pronounced. Therefore, the recombinant Newcastle disease virus rL-hIFN-λ1-induced apoptosis of A549 cells is connected to ER stress and could be a promising therapeutic agent for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Sha Liu
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Mi Li
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Yinghai Zhao
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Xiaomei Shao
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Min Hang
- Clinical Medicine College, Jiangsu University, Zhenjiang, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Comprehensive expression analysis of TNF-related apoptosis-inducing ligand and its receptors in colorectal cancer: Correlation with MAPK alterations and clinicopathological associations. Pathol Res Pract 2018; 214:826-834. [DOI: 10.1016/j.prp.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
|
16
|
Pathway-focused PCR array profiling of CAL-27 cell with over-expressed ZNF750. Oncotarget 2017; 9:566-575. [PMID: 29416636 PMCID: PMC5787490 DOI: 10.18632/oncotarget.23075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Zinc-finger protein 750 (ZNF750) is the potential anti-cancer gene in oral squamous cell carcinoma (OSCC). The present study was to investigate the expression changes of ZNF750 in OSCC tissue and to reveal the induction of altered mRNA expression profiles caused by over-expressed ZNF750 in CAL-27 cell. The expression level of ZNF750 in tissue specimens from OSCC patients was detected by immunohistochemistry. Gene expression profiling was performed using Human Signal Transduction PathwayFinder RT2 Profiler™ PCR Array. The expression changes of 84 key genes representing 10 signal transduction pathways in human following over-expressed ZNF750 in CAL-27 cell was examined. The expression of ZNF750 protein was reduced in OSCC tissues. The R2 PCR Array analysis revealed that 39 of the 84 examined genes that changed at least a two-fold between control and ZNF750 groups. These genes related to oxidative stress, WNT, JAK/STAT, TGFβ, NF-kappaB (NFκB), p53, Notch, Hedgehog, PPAR and Hypoxia signaling. ZNF750 could inhibit the candidate genes ATF4, SQSTM1, HMOX1, CCND1, TNF-alpha, TNFSF10 and FOSL1 but activate CDKN1A and EMP1. Our studies suggest that ZNF750 can regulate signaling pathways that related to proliferation, cell cycle, inflammation and oxidative stress in CAL-27 cell.
Collapse
|
17
|
Yang P, Li WL, Zhou JX, Yang YB, Jin XX. Peritoneum as the sole distant metastatic site of lung adenosquamous cell carcinoma: a case report. J Med Case Rep 2017; 11:274. [PMID: 28950878 PMCID: PMC5615803 DOI: 10.1186/s13256-017-1431-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/20/2017] [Indexed: 01/31/2023] Open
Abstract
Background Peritoneum metastasis of lung cancer is a rare event which, in addition to the peritoneum, usually involves multiple metastatic tissues. Here we report a case of a patient with lung adenosquamous cell carcinoma with the peritoneum as the sole distant metastatic site. Case presentation An 82-year-old Han Chinese man, in the teaching profession, was diagnosed with lung adenosquamous cell carcinoma in the upper lobe of his left lung with the involvement of ipsilateral hilar and mediastinal lymph nodes, and was initially staged as IIIa (cT2N2M0). Molecular testing identified a mutation at KRAS G12A. Due to his poor physical condition, our patient was given gamma knife radiotherapy with a total dose of 28.0 Gy. Two weeks later, our patient was diagnosed as peritoneal metastasis identified by using magnetic resonance imaging and confirmed with ascitic cytology and peritoneal histology. No other distant metastatic sites such as liver, brain, bone, paranephroi, and lungs were found. Subsequently, our patient received palliative intraperitoneal chemotherapy, and died within 2 months. Conclusions Our patient represented a rare case of lung adenosquamous cell carcinoma harboring the KRAS G12A mutation, which metastasized distantly to the peritoneum only, and progressed rapidly.
Collapse
Affiliation(s)
- Pan Yang
- Department of Pathology, Ningbo University School of Medicine, Ningbo, China
| | - Wei-Liang Li
- Department of Respiratory Medicine, Mingzhou Hospital, Zhejiang University, No. 168 West Taian Road, Ningbo, 315199, China.
| | - Jeff-X Zhou
- Department of Pathology, Ningbo University School of Medicine, Ningbo, China
| | - Yu-Bo Yang
- Department of Respiratory Medicine, 113th Hospital of PLA, No. 377 East Zhongshan Road, Ningbo, 315040, China
| | - Xia-Xiang Jin
- Department of Pathology, 113th Hospital of PLA, No. 377 East Zhongshan Road, Ningbo, 315040, China
| |
Collapse
|
18
|
von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 2017; 17:352-366. [PMID: 28536452 DOI: 10.1038/nrc.2017.28] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery that the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis of cancer cells without causing toxicity in mice has led to the in-depth study of pro-apoptotic TRAIL receptor (TRAIL-R) signalling and the development of biotherapeutic drug candidates that activate TRAIL-Rs. The outcome of clinical trials with these TRAIL-R agonists has, however, been disappointing so far. Recent evidence indicates that many cancers, in addition to being TRAIL resistant, use the endogenous TRAIL-TRAIL-R system to their own advantage. However, novel insight on two fronts - how resistance of cancer cells to TRAIL-based pro-apoptotic therapies might be overcome, and how the pro-tumorigenic effects of endogenous TRAIL might be countered - gives reasonable hope that the TRAIL system can be harnessed to treat cancer. In this Review we assess the status quo of our understanding of the biology of the TRAIL-TRAIL-R system - as well as the gaps therein - and discuss the opportunities and challenges in effectively targeting this pathway.
Collapse
Affiliation(s)
- Silvia von Karstedt
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonella Montinaro
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
19
|
Gao Y, Wang B, Gao S. BRD7 Acts as a Tumor Suppressor Gene in Lung Adenocarcinoma. PLoS One 2016; 11:e0156701. [PMID: 27580131 PMCID: PMC5007050 DOI: 10.1371/journal.pone.0156701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/18/2016] [Indexed: 02/02/2023] Open
Abstract
Lung cancer is one of the most malignant tumors and the leading cause of cancer-related deaths worldwide. Among lung cancers, 40% are diagnosed as adenocarcinoma. Bromodomain containing 7 (BRD7) is a member of bromodomain-containing protein family. It was proved to be downregulated in various cancers. However, the role of BRD7 in lung adenocarcinoma is still unknown. Western blot and qRT-PCR was performed to measure the BRD7 expression in lung adenocarcinoma tissues and cells. CCK8 and migration assay was done to detect the functional role of BRD7 in lung adenocarcinoma. In this study, we showed that the expression of BRD7 was downregulated in lung adenocarcinoma tissues and cells. The lower of BRD7 levels in patients with lung adenocarcinoma was associated with shortened disease-free survival. Furthermore, overexpression of BRD7 inhibited lung adenocarcinoma cell proliferation and migration. Inhibition of BRD7 expression promoted cell proliferation and migration by activating ERK phosphorylation. Overexpression of BRD7 inhibited cyclin D and myc expression. Our findings are consistent with a tumor suppressor role for BRD7 in lung adenocarcinoma tumorigenesis.
Collapse
Affiliation(s)
- Yushun Gao
- Department of thoracic surgical oncology, cancer institute (hospital), Chinese academy of medical sciences, Peking union medical college, Beijing, 100021, China
| | - Bing Wang
- Department of thoracic surgical oncology, cancer institute (hospital), Chinese academy of medical sciences, Peking union medical college, Beijing, 100021, China
| | - Shugeng Gao
- Department of thoracic surgical oncology, cancer institute (hospital), Chinese academy of medical sciences, Peking union medical college, Beijing, 100021, China
- * E-mail:
| |
Collapse
|