1
|
In-depth characterization of a new patient-derived xenograft model for metaplastic breast carcinoma to identify viable biologic targets and patterns of matrix evolution within rare tumor types. Clin Transl Oncol 2021; 24:127-144. [PMID: 34370182 PMCID: PMC8732292 DOI: 10.1007/s12094-021-02677-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022]
Abstract
Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype with rapid growth, high rates of metastasis, recurrence and drug resistance, and diverse molecular and histological heterogeneity. Patient-derived xenografts (PDXs) provide a translational tool and physiologically relevant system to evaluate tumor biology of rare subtypes. Here, we provide an in-depth comprehensive characterization of a new PDX model for MBC, TU-BcX-4IC. TU-BcX-4IC is a clinically aggressive tumor exhibiting rapid growth in vivo, spontaneous metastases, and elevated levels of cell-free DNA and circulating tumor cell DNA. Relative chemosensitivity of primary cells derived from TU-BcX-4IC was performed using the National Cancer Institute (NCI) oncology drug set, crystal violet staining, and cytotoxic live/dead immunofluorescence stains in adherent and organoid culture conditions. We employed novel spheroid/organoid incubation methods (Pu·MA system) to demonstrate that TU-BcX-4IC is resistant to paclitaxel. An innovative physiologically relevant system using human adipose tissue was used to evaluate presence of cancer stem cell-like populations ex vivo. Tissue decellularization, cryogenic-scanning electron microscopy imaging and rheometry revealed consistent matrix architecture and stiffness were consistent despite serial transplantation. Matrix-associated gene pathways were essentially unchanged with serial passages, as determined by qPCR and RNA sequencing, suggesting utility of decellularized PDXs for in vitro screens. We determined type V collagen to be present throughout all serial passage of TU-BcX-4IC tumor, suggesting it is required for tumor maintenance and is a potential viable target for MBC. In this study we introduce an innovative and translational model system to study cell–matrix interactions in rare cancer types using higher passage PDX tissue.
Collapse
|
2
|
Down-Regulation of the Proteoglycan Decorin Fills in the Tumor-Promoting Phenotype of Ionizing Radiation-Induced Senescent Human Breast Stromal Fibroblasts. Cancers (Basel) 2021; 13:cancers13081987. [PMID: 33924197 PMCID: PMC8074608 DOI: 10.3390/cancers13081987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Ionizing radiation (a typical remedy for breast cancer) results in the premature senescence of the adjacent to the neoplastic cells stromal fibroblasts. Here, we showed that these senescent fibroblasts are characterized by the down-regulation of the small leucine-rich proteoglycan decorin, a poor prognostic factor for the progression of the disease. Decorin down-regulation is mediated by secreted growth factors in an autocrine and paracrine (due to the interaction with breast cancer cells) manner, with bFGF and VEGF being the key players of this regulation in young and senescent breast stromal fibroblasts. Autophagy activation increases decorin mRNA levels, indicating that impaired autophagy is implicated in the reduction in decorin in this cell model. Decorin down-regulation acts additively to the already tumor-promoting phenotype of ionizing radiation-induced prematurely senescent human stromal fibroblasts, confirming that stromal senescence is a side-effect of radiotherapy that should be taken into account in the design of anticancer treatments. Abstract Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.
Collapse
|
3
|
Jyothsna KM, Sarkar P, Jha KK, A S LK, Raghunathan V, Bhat R. A biphasic response of polymerized Type 1 collagen architectures to dermatan sulfate. J Biomed Mater Res A 2021; 109:1646-1656. [PMID: 33687134 DOI: 10.1002/jbm.a.37160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Collagen I, the most abundant extracellular matrix (ECM) protein in vertebrate tissues provides mechanical durability to tissue microenvironments and regulates cell function. Its fibrillogenesis in biological milieu is predominantly regulated by dermatan sulfate proteoglycans, proteins conjugated with iduronic acid-containing dermatan sulfate (DS) glycosaminoglycans (GAG). Although DS is known to regulate tissue function through its modulation of Coll I architecture, a precise understanding of the latter remains elusive. We investigated this problem by visualizing the fibrillar pattern of fixed Coll I gels polymerized in the presence of varying concentrations of DS using second harmonic generation microscopy. Measuring mean second harmonic generation signal (which estimates the ordering of the fibrils), and surface occupancy (which estimates the space occupied by fibrils) supported by confocal reflectance microscopy, our observations indicated that the effect on fibril pattern of DS is contextual upon the latter's concentrations: Lower levels of DS resulted in sparse disorganized fibrils; higher levels restore organization, with fibrils occupying greater space. An appropriate change in elasticity as a result of DS levels was also observed through atomic force microscopy. Examination of dye-based GAG staining and scanning electron microscopy suggested distinct constitutions of Coll I gels when polymerized with higher and lower levels of DS. We observed that adhesion of the invasive ovarian cancer cells SKOV3 decreased for lower DS levels but was partially restored at higher DS levels. Our study shows how the Coll I gel pattern-tuning of DS is of relevance for understanding its biomaterial applications and possibly, pathophysiological functions.
Collapse
Affiliation(s)
- Konkada Manattayil Jyothsna
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Purba Sarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Keshav Kumar Jha
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India.,Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Lal Krishna A S
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Reszegi A, Horváth Z, Karászi K, Regős E, Postniková V, Tátrai P, Kiss A, Schaff Z, Kovalszky I, Baghy K. The Protective Role of Decorin in Hepatic Metastasis of Colorectal Carcinoma. Biomolecules 2020; 10:1199. [PMID: 32824864 PMCID: PMC7465536 DOI: 10.3390/biom10081199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022] Open
Abstract
Decorin, the prototype member of the small leucine-rich proteoglycan gene family of extracellular matrix (ECM) proteins, acts as a powerful tumor suppressor by inducing the p21Waf1/Cip1 cyclin-dependent kinase inhibitor, as well as through its ability to directly bind and block the action of several tyrosine kinase receptors. Our previous studies suggested that the lack of decorin promotes hepatic carcinogenesis in mice. Based on this, we set out to investigate whether excess decorin may protect against the liver metastases of colon carcinoma. We also analyzed the effect of decorin in tissue microarrays of human colon carcinoma liver metastasis and examined whether the tumor cells can directly influence the decorin production of myofibroblasts. In humans, low levels of decorin in the liver facilitated the development of colon carcinoma metastases in proportion with more aggressive phenotypes, indicating a possible antitumor action of the proteoglycan. In vitro, colon carcinoma cells inhibited decorin expression in LX2 hepatic stellate cells. Moreover, liver-targeted decorin delivery in mice effectively attenuated metastasis formation of colon cancer. Overexpressed decorin reduced the activity of multiple receptor tyrosine kinases (RTKs) including the epidermal growth factor receptor (EGFR), an important player in colorectal cancer (CRC) pathogenesis. Downstream of that, we observed weakened signaling of ERK1/2, PLCγ, Akt/mTOR, STAT and c-Jun pathways, while p38 MAPK/MSK/CREB and AMPK were upregulated culminating in enhanced p53 function. In conclusion, decorin may effectively inhibit metastatic tumor formation in the liver.
Collapse
Affiliation(s)
- Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Katalin Karászi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Eszter Regős
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Victoria Postniková
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | | | - András Kiss
- 2nd Department of Pathology, Semmelweis University, H-1091 Budapest, Hungary; (A.K.); (Z.S.)
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, H-1091 Budapest, Hungary; (A.K.); (Z.S.)
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| |
Collapse
|
5
|
Nyman MC, Jokilammi AB, Boström PC, Kurki SH, Sainio AO, Grenman SE, Orte KJ, Hietanen SH, Elenius K, Järveläinen HT. Decorin Expression in Human Vulva Carcinoma: Oncosuppressive Effect of Decorin cDNA Transduction on Carcinoma Cells. J Histochem Cytochem 2019; 67:511-522. [PMID: 31009269 DOI: 10.1369/0022155419845373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The extracellular matrix proteoglycan decorin is well-known for its oncosuppressive activity. Here, decorin expression was examined in human vulva carcinoma tissue samples and in primary and commercial cell lines representing this malignant disease. Furthermore, the effect of adenovirus-mediated decorin cDNA (Ad-DCN) transduction on the viability, proliferation, and the expression and activity of the epidermal growth factor receptor (ErbB/HER) family members of the cell lines were investigated. Using in situ hybridization and immunohistochemistry for decorin, it was demonstrated that malignant cells in human vulva carcinoma tissues lack decorin expression. This result was true independently on tumor stage, grade or human papillomavirus status. RT-qPCR analyses showed that the human vulva carcinoma cell lines used in this study were also negative for decorin expression. Transduction of the cell lines with Ad-DCN caused a marked reduction in cell viability, while the proliferation of the cells was not affected. Experiments examining potential mechanisms behind the oncosuppressive effect of Ad-DCN transduction revealed that ErbB2/HER2 expression and activity in carcinoma cells were markedly downregulated. In conclusion, the results of this study showed that human vulva carcinoma cells lack decorin expression, and that Ad-DCN transduction of these cells induces oncosuppressive activity in part via downregulation of ErbB2/HER2.
Collapse
Affiliation(s)
- Marie C Nyman
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anne B Jokilammi
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pia C Boström
- Department of Pathology, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Samu H Kurki
- Auria Biobank, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Annele O Sainio
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Seija E Grenman
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Katri J Orte
- Department of Pathology, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Sakari H Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Klaus Elenius
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland.,Medicity Research Laboratory, Turku, Finland
| | - Hannu T Järveläinen
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland
| |
Collapse
|
6
|
Liu G, Fei F, Qu J, Wang X, Zhao Y, Li Y, Zhang S. iTRAQ-based proteomic analysis of DMH-induced colorectal cancer in mice reveals the expressions of β-catenin, decorin, septin-7, and S100A10 expression in 53 cases of human hereditary polyposis colorectal cancer. Clin Transl Oncol 2019; 21:220-231. [PMID: 29956073 DOI: 10.1007/s12094-018-1912-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE The aim of this study is to explore the roles of β-catenin, decorin, septin-7, and S100A10 expression in colorectal cancer development. METHODS Twenty-five BALB/c mice were divided into five groups; four groups were administrated N,N-dimethylhydrazine for 0, 10, 15, and 20 weeks, and one group was administrated normal saline for 20 weeks. The colons were collected for histopathological analysis. Protein samples prepared from the frozen colon tissues of mice treated with N,N-dimethylhydrazine for the different time points were evaluated using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique coupled with the 2D liquid chromatography-tandem mass spectrometry analysis. Based on the proteomic analysis results, immunohistochemical staining of β-catenin, decorin, septin-7, and S100A10 was performed in paraffin-embedded mice colorectal tissue, and 53 cases of human hereditary polyposis colorectal cancer samples. RESULTS Colorectal cancer was observed in mice treated with N,N-dimethylhydrazine for 20 weeks, and adenomas were observed in mice subjected to the 10-, and 15-week treatments. Seventy-two differentially expressed proteins were involved in the development of cancer as per the iTRAQ and spectrometry analysis. In normal epithelium, adenoma, and cancer from human hereditary polyposis colorectal cancer, S100A10 expression (c2 = 100.989, P = 0.000) was highest in cancer, whereas decorin (c2 = 12.852, P = 0.002) and septin-7 (c2 = 66.519, P = 0.002) expressions were highest in the normal epithelium, which was confirmed via immunohistochemical staining. CONCLUSIONS The subcellular localization of β-catenin and decorin, septin-7, and S100A10 expressions are associated with the development of colorectal cancer in mice after N,N-dimethylhydrazine treatment and in human hereditary polyposis colorectal cancers.
Collapse
Affiliation(s)
- G Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - F Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - J Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - X Wang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Y Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Y Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - S Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China.
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
7
|
Yu Q, Xin K, Miao Y, Li Z, Fu S, Hu S, Zhang Q, Zhou S. Anti-tumor responses to hypofractionated radiation in mice grafted with triple negative breast cancer is associated with decorin induction in peritumoral muscles. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1150-1157. [PMID: 30124739 DOI: 10.1093/abbs/gmy094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most lethal one for all types of breast cancer. Though radiotherapy is an efficient treatment, long-term survival rate of TNBC patients is still suboptimal. Hyprofractionated radiotherapy, an improved radiotherapy, has made an inspiring result in clinic. However, the mechanism underlying TNBC treated with hyprofractionated radiotherapy is not clear. Decorin (DCN) is a small poteoglycan of matrix which has an inhibitory effect on the breast cancer and is secreted by muscle under certain conditions. In this study, we demonstrated that peritumoral muscles secrete more DCN at higher dose irradiation than that at conventional irradiation dose in TNBC tumor-bearing mice. Thus, it indicates that DCN secreted from peritumoral muscle may be one of the reasons why hyprofractionated radiotherapy could inhibit the growth of TNBC more effectively. Moreover, we also indicated that the up-regulated DCN attenuated lung metastasis of TNBC. In conclusion, we demonstrated that hypofractionated radiation promotes the secretion of DCN in peritumoral muscle, thus enhancing the inhibitory effect on TNBC, which might help to optimize the strategy of radiotherapy for TNBC patients in the future.
Collapse
Affiliation(s)
- Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kedao Xin
- Department of Radiation Oncology, Suzhou Science and Technology Town Hospital, Suzhou, China
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yu Miao
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhaobin Li
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shudong Hu
- Department of Radiology, The Affiliated of Renmin Hospital, Jiangsu University, Zhenjiang, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
8
|
Zhao H, Wang H, Kong F, Xu W, Wang T, Xiao F, Wang L, Huang D, Seth P, Yang Y, Wang H. Oncolytic Adenovirus rAd.DCN Inhibits Breast Tumor Growth and Lung Metastasis in an Immune-Competent Orthotopic Xenograft Model. Hum Gene Ther 2018; 30:197-210. [PMID: 30032645 DOI: 10.1089/hum.2018.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of advanced breast cancer patients develop distal metastasis, including lung and bone metastasis. However, effective therapeutic strategies to prevent metastasis are still lacking. Decorin is a natural inhibitor of transforming growth factor β, which plays a pivotal role in tumor metastasis. An oncolytic adenovirus expressing decorin, rAd.DCN, has been developed previously. In an immune-competent breast tumor (4T1) model, intratumoral (i.t.) as well as intravenous (i.v.) delivery of rAd.DCN inhibited growth of orthotopic tumors and spontaneous lung metastasis. It was shown that i.t. delivery of rAd.DCN produced higher levels of transgene expression and evoked stronger oncolysis of the tumors compared to i.v. delivery. However, i.v. delivery resulted in higher amount of virus accumulation in the lungs and produced stronger responses to prevent tumor lung metastasis. Oncolytic adenovirus-mediated decorin expression in the tumors downregulated the decorin target genes and decreased epithelial mesenchymal transition markers. Decorin expression in lung tissues also increased Th1 cytokine expression, such as interleukin (IL)-2, IL-12, and tumor necrosis factor α, and decreased Th2 cytokines, such as transforming growth factor β and IL-6. Moreover, rAd.DCN treatment induced strong systemic inflammatory responses and upregulated CD8+ T lymphocytes. In conclusion, rAd.DCN inhibits tumor growth and lung metastasis of breast cancer via regulating wnt/β-catenin, vascular endothelial growth factor (VEGF), and Met pathways, and modulating the antitumor inflammatory and immune responses. Considering that i.v. delivery was much more effective in preventing lung metastasis, systemic delivery of rAd.DCN might be a promising strategy to treat breast cancer lung metastasis.
Collapse
Affiliation(s)
- Huiqiang Zhao
- 1 Department of Cadre Health Care, Navy General Hospital, Beijing, P.R. China.,2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hao Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Fanxuan Kong
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Weidong Xu
- 3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Tao Wang
- 4 Breast Cancer Department, PLA 307 Hospital, Beijing, P.R. China
| | - Fengjun Xiao
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Lisheng Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Dandan Huang
- 5 Stem Cell Laboratory, Ningbo No. 2 Hospital, Ningbo, P.R. China
| | - Prem Seth
- 3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Yuefeng Yang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China.,3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Hua Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
9
|
Sainio AO, Järveläinen HT. Decorin-mediated oncosuppression - a potential future adjuvant therapy for human epithelial cancers. Br J Pharmacol 2018; 176:5-15. [PMID: 29488209 PMCID: PMC6284329 DOI: 10.1111/bph.14180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Currently, the multifaceted role of the extracellular matrix (ECM) in tumourigenesis has been realized. One ECM macromolecule exhibiting potent oncosuppressive actions in tumourigenesis is decorin, the prototype of the small leucine-rich proteoglycan gene family. The actions of decorin include its ability to function as an endogenous pan-receptor tyrosine kinase inhibitor, a regulator of both autophagy and mitophagy, as well as a modulator of the immune system. In this review, we will discuss these topics in more detail. We also provide a summary of preclinical studies exploring the value of decorin-mediated oncosuppression, as a potential future adjuvant therapy for epithelial cancers. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Annele Orvokki Sainio
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Hannu Tapio Järveläinen
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500, Pori, Finland
| |
Collapse
|