1
|
Prati JM, Gianlorenço AC. A new vision of the role of the cerebellum in pain processing. J Neural Transm (Vienna) 2025; 132:537-546. [PMID: 39798004 DOI: 10.1007/s00702-024-02872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/13/2024] [Indexed: 01/13/2025]
Abstract
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing. The aim of this review is to present the current literature on the anatomical, physiological, and functional aspects of the cerebellum in pain processing and suggest functional mechanisms of pain processing based on the cerebellum and its connections with other brain structures. To achieve this, searches were conducted in databases to identify relevant studies on the topic. Studies with relevant data and information were collected and summarized. Current literature demonstrates that the cerebellum receives nociceptive afferents from different pathways and exhibits activity in different regions including the vermis, hemispheres, and deep cerebellar nuclei in pain processing. Through its connections with different brain regions, it is possible that the cerebellum participates in the multidimensional processing of pain, which may make it a potential therapeutic target for pain treatment.
Collapse
Affiliation(s)
- José Mário Prati
- Postgraduate Program of Physical Therapy, Department of Physical Therapy, Laboratory of Neuroscience and Neurological Rehabilitation, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Anna Carolyna Gianlorenço
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
2
|
Tang R, Jin Y, Xu K, Wu L, Chen X, Guo Y, Li G, Li J. Aberrant functional connectivity patterns in the pregenual anterior cingulate cortex and anterior midcingulate cortex of patients with irritable bowel syndrome accompanied by depressive symptoms. Brain Imaging Behav 2025; 19:279-290. [PMID: 39775692 DOI: 10.1007/s11682-024-00964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Irritable bowel syndrome (IBS) is a common brain-gut disorder often accompanied by depressive symptoms, with atrophy and hyperactivity of the anterior cingulate gyrus (ACC) being key drivers of both IBS and its psychiatric comorbidities. This study aimed to investigate the functional connectivity (FC) patterns of pregenual ACC (pgACC) and anterior midcingulate cortex (aMCC) in IBS patients with depressive symptoms (DEP-IBS). A whole-brain FC analysis was conducted using pgACC and aMCC as regions of interest in three groups: 28 DEP-IBS patients, 21 IBS patients without depressive symptoms (nDEP-IBS), and 36 matched healthy controls (HCs). Partial correlation and mediation analyses were performed between abnormal FC and clinical symptoms. The ability of aberrant FC to identify IBS and its psychiatric comorbidity was evaluated using receiver operating characteristic (ROC) curve. DEP-IBS patients exhibited increased pgACC-related FC in the left medial prefrontal cortex (mPFC) and aMCC-related FC in the right middle frontal gyrus, angular gyrus and cerebellum, while showing decreased aMCC-related FC in the right precentral gyrus, superior parietal gyrus and precuneus. Both patient groups demonstrated increased FC between aMCC and left dorsolateral prefrontal cortex (dlPFC), effectively distinguishing them from HCs (AUC = 0.755). The FC between pgACC and left mPFC partially mediated the relationship between gastrointestinal and depressive symptoms, effectively distinguishing DEP-IBS from nDEP-IBS patients (AUC = 0.808). Aberrant FC within the emotional arousal network may serve as a neurobiological marker for IBS with comorbid depression. Furthermore, abnormal FC between the aMCC and the dlPFC may underlie the neural mechanism of IBS.
Collapse
Affiliation(s)
- Ruoyu Tang
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yihan Jin
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kuanghui Xu
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liqiang Wu
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaofei Chen
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yun Guo
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guodong Li
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Li
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Li Y, Zheng Y, Rong L, Zhou Y, Zhu Z, Xie Q, Liang Z, Zhao X. Altered Function and Structure of the Cerebellum Associated with Gut-Brain Regulation in Crohn's Disease: a Structural and Functional MRI Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2285-2296. [PMID: 39096431 DOI: 10.1007/s12311-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 08/05/2024]
Abstract
This study employed structural and functional magnetic resonance imaging (MRI) to investigate changes in the function and structure of the cerebellum associated with gut-brain axis (GBA) regulation in patients diagnosed with Crohn's disease (CD). The study comprised 20 CD patients, including 12 with active disease (CD-A) and 8 in remission (CD-R), as well as 21 healthy controls. Voxel-based morphometry (VBM) was utilized for structural analysis of cerebellar gray matter volume, while independent component analysis (ICA) was applied for functional analysis of cerebellar functional connectivity (FC). The results showed significant GMV reduction in the left posterior cerebellar lobe across all CD patients compared to HCs, with more pronounced differences in the CD-A subgroup. Additionally, an increase in mean FC of the cerebellar network was observed in all CD patients, particularly in the CD-A subgroup, which demonstrated elevated FC in the vermis and bilateral posterior cerebellum. Correlation analysis revealed a positive relationship between cerebellar FC and the Crohn's Disease Activity Index (CDAI) and a trend toward a negative association with the reciprocal of the Self-rating Depression Scale (SDS) score in CD patients. The study's findings suggest that the cerebellum may play a role in the abnormal regulation of the GBA in CD patients, contributing to a better understanding of the neural mechanisms underlying CD and highlighting the cerebellum's potential role in modulating gut-brain interactions.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yanling Zheng
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lan Rong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Xiaohu Zhao
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Meng P, Cheng B, Pan C, Liu L, Cheng S, Yang X, Chen Y, Li C, Zhang H, Zhang Z, Zhang J, He D, Shi S, Chu X, Cai Q, Zhang N, Qin X, Zhao Y, Wei W, Jia Y, Wen Y, Zhang F. Evaluating the role of anxiety on the association between irritable bowel syndrome and brain volumes: a mediation analysis in the UK Biobank cohort. Brain Commun 2023; 5:fcad116. [PMID: 37091589 PMCID: PMC10116581 DOI: 10.1093/braincomms/fcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/24/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
There is a strong link between irritable bowel syndrome and brain volumes, yet, to date, research examining the mediators of this association has been little. Based on the phenotypic data of 15 248 participants from the UK Biobank, a two-stage mediation analysis was performed to assess the association among brain volumes, anxiety, and irritable bowel syndrome. In the first stage, we identified the candidate mediating role of anxiety for irritable bowel syndrome associated with brain volumes using regression models. Then, we quantified the magnitude of the mediation effects by evaluating the average causal-mediated effect and proportion of mediation through performing mediation analyses in the R package in the second stage. In the first stage, we identified the partly mediating role of anxiety in the association between irritable bowel syndrome and the volume of thalamus (P left = 1.16 × 10-4, P right = 2.41 × 10-4), and grey matter (P left = 3.22 × 10-2, P right = 1.18 × 10-2) in the VIIIa cerebellum. In the second stage, we observed that the proportion of the total effect of irritable bowel syndrome on volume of thalamus mediated by anxiety was 14.3% for the left region (β Average causal-mediated effect = -0.008, P Average causal-mediated effect = 0.004) and 14.6% for the right region (β Average causal-mediated effect = -0.007, P Average causal-mediated effect = 0.006). Anxiety mediated 30.8% for the left region (β Average causal-mediated effect = -0.013, P Average causal-mediated effect = 0.002) and 21.6% for the right region (β Average causal-mediated effect = -0.010, P Average causal-mediated effect x= 0.018) of the total effect of irritable bowel syndrome on the volume of grey matter in the VIIIa cerebellum. Our study revealed the indirect mediating role of anxiety in the association between irritable bowel syndrome and brain volumes, promoting our understanding of the functional mechanisms of irritable bowel syndrome and its related psychosocial factors.
Collapse
Affiliation(s)
| | | | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chun’e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Feng Zhang
- Correspondence to: Feng Zhang Key Laboratory of Trace Elements and Endemic Diseases National Health Commission of the People’s Republic of China School of Public Health, Health Science Center Xi’an Jiaotong University, No. 76 Yan Ta West Road, Xi’an 710061, China E-mail:
| |
Collapse
|
5
|
Zheng CJ, Van Drunen S, Egorova-Brumley N. Neural correlates of co-occurring pain and depression: an activation-likelihood estimation (ALE) meta-analysis and systematic review. Transl Psychiatry 2022; 12:196. [PMID: 35545623 PMCID: PMC9095719 DOI: 10.1038/s41398-022-01949-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
The relationship between pain and depression is thought to be bidirectional and the underlying neurobiology 'shared' between the two conditions. However, these claims are often based on qualitative comparisons of brain regions implicated in pain or depression, while focused quantitative studies of the neurobiology of pain-depression comorbidity are lacking. Particularly, the direction of comorbidity, i.e., pain with depression vs. depression with pain, is rarely addressed. In this systematic review (PROSPERO registration CRD42020219876), we aimed to delineate brain correlates associated with primary pain with concomitant depression, primary depression with concurrent pain, and equal pain and depression comorbidity, using activation likelihood estimation (ALE) meta-analysis. Neuroimaging studies published in English until the 28th of September 2021 were evaluated using PRISMA guidelines. A total of 70 studies were included, of which 26 reported stereotactic coordinates and were analysed with ALE. All studies were assessed for quality by two authors, using the National Institute of Health Quality Assessment Tool. Our results revealed paucity of studies that directly investigated the neurobiology of pain-depression comorbidity. The ALE analysis indicated that pain with concomitant depression was associated with the right amygdala, while depression with concomitant pain was related primarily to the left dorsolateral prefrontal cortex (DLPFC). We provide evidence that pain and depression have a cumulative negative effect on a specific set of brain regions, distinct for primary diagnosis of depression vs. pain.
Collapse
Affiliation(s)
| | | | - Natalia Egorova-Brumley
- The University of Melbourne, Parkville, VIC, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Nisticò V, Rossi RE, D'Arrigo AM, Priori A, Gambini O, Demartini B. Functional neuroimaging in Irritable Bowel Syndrome: a systematic review highlights common brain alterations with Functional Movement Disorders. J Neurogastroenterol Motil 2022; 28:185-203. [PMID: 35189600 PMCID: PMC8978134 DOI: 10.5056/jnm21079] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by recurring abdominal pain and altered bowel habits without detectable organic causes. This study aims to provide a comprehensive overview of the literature on functional neuroimaging in IBS and to highlight brain alterations similarities with other functional disorders - functional movement disorders in particular. We conducted the bibliographic search via PubMed in August 2020 and included 50 studies following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines for systematic reviews. Overall, our findings showed an aberrant activation and functional connectivity of the insular, cingulate, sensorimotor and frontal cortices, the amygdala and the hippocampus, suggesting an altered activity of the homeostatic and salience network and of the autonomous nervous system. Moreover, glutamatergic dysfunction in the anterior insula and hypothalamic pituitary axis dysregulation were often reported. These alterations seem to be very similar to those observed in patients with functional movement disorders. Hence, we speculate that different functional disturbances might share a common pathophysiology and we discussed our findings in the light of a Bayesian model framework.
Collapse
Affiliation(s)
- Veronica Nisticò
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Roberta E Rossi
- Gastro-intestinal Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Pathophysiology and Organ Transplant, Università degli Studi di Milano, Milan, Italy
| | - Andrea M D'Arrigo
- Department of Neurology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Alberto Priori
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,III Clinica Neurologica, ASST Santi Paolo e Carlo, Presidio San Paolo, Milan, Italy
| | - Orsola Gambini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Unità di Psichiatria 52, ASST Santi Paolo e Carlo, Presidio San Paolo, Milan, Italy
| | - Benedetta Demartini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Unità di Psichiatria 52, ASST Santi Paolo e Carlo, Presidio San Paolo, Milan, Italy
| |
Collapse
|
7
|
Chadwick A, Frazier A, Khan TW, Young E. Understanding the Psychological, Physiological, and Genetic Factors Affecting Precision Pain Medicine: A Narrative Review. J Pain Res 2021; 14:3145-3161. [PMID: 34675643 PMCID: PMC8517910 DOI: 10.2147/jpr.s320863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Precision pain medicine focuses on employing methods to assess each patient individually, identify their risk profile for disproportionate pain and/or the development of chronic pain, and optimize therapeutic strategies to target specific pathological processes underlying chronic pain. This review aims to provide a concise summary of the current body of knowledge regarding psychological, physiological, and genetic determinants of chronic pain related to precision pain medicine. METHODS Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we employed PubMed/Medline to identify relevant articles using primary database search terms to query articles such as: precision medicine, non-modifiable factors, pain, anesthesiology, quantitative sensory testing, genetics, pain medicine, and psychological. RESULTS Precision pain medicine provides an opportunity to identify populations at risk, develop personalized treatment strategies, and reduce side effects and cost through elimination of ineffective treatment strategies. As in other complex chronic health conditions, there are two broad categories that contribute to chronic pain risk: modifiable and non-modifiable patient factors. This review focuses on three primary determinants of health, representing both modifiable and non-modifiable factors, that may contribute to a patient's profile for risk of developing pain and most effective management strategies: psychological, physiological, and genetic factors. CONCLUSION Consideration of these three domains is already being integrated into patient care in other specialties, but by understanding the role they play in development and maintenance of chronic pain, we can begin to implement both precision and personalized treatment regimens.
Collapse
Affiliation(s)
- Andrea Chadwick
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew Frazier
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Talal W Khan
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Erin Young
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Yang L, Dun W, Li K, Yang J, Wang K, Liu H, Liu J, Zhang M. Altered amygdalar volume and functional connectivity in primary dysmenorrhoea during the menstrual cycle. Eur J Pain 2019; 23:994-1005. [PMID: 30664322 DOI: 10.1002/ejp.1368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Ling Yang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Radiology Department; Chong Qing General Hospital; Chong Qing China
| | - Wanghuan Dun
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Kang Li
- Radiology Department; Chong Qing General Hospital; Chong Qing China
| | - Jing Yang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Ke Wang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Hongjuan Liu
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Jixin Liu
- Center for Brain Imaging; School of Life Science and Technology; Xidian University; Xi'an China
| | - Ming Zhang
- Department of Medical Imaging; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
9
|
Lee IS, Preissl H, Enck P. How to Perform and Interpret Functional Magnetic Resonance Imaging Studies in Functional Gastrointestinal Disorders. J Neurogastroenterol Motil 2017; 23:197-207. [PMID: 28256119 PMCID: PMC5383114 DOI: 10.5056/jnm16196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Functional neuroimaging studies have revealed the importance of the role of cognitive and psychological factors and the dysregulation of the brain-gut axis in functional gastrointestinal disorder patients. Although only a small number of neuroimaging studies have been conducted in functional gastrointestinal disorder patients, and despite the fact that the neuroimaging technique requires a high level of knowledge, the technique still has a great deal of potential. The application of functional magnetic resonance imaging (fMRI) technique in functional gastrointestinal disorders should provide novel methods of diagnosing and treating patients. In this review, basic knowledge and technical/practical issues of fMRI will be introduced to clinicians.
Collapse
Affiliation(s)
- In-Seon Lee
- Psychosomatic Medicine and Psychotherapy Department, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paul Enck
- Psychosomatic Medicine and Psychotherapy Department, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
|
11
|
Case M, Zhang H, Mundahl J, Datta Y, Nelson S, Gupta K, He B. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease. NEUROIMAGE-CLINICAL 2016; 14:1-17. [PMID: 28116239 PMCID: PMC5226854 DOI: 10.1016/j.nicl.2016.12.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022]
Abstract
Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain. Simultaneous EEG-fMRI recordings revealed altered connectivity in sickle cell patients. Reduced activity observed in default mode network and executive control network. Patients' salience network strength increases with age; opposite seen in controls. EEG-fMRI parameters reflect disease severity in sickle cell patients.
Collapse
Key Words
- BOLD, blood-oxygen-level dependent
- CBA, cardioballistic artifact
- DMN, default mode network
- ECN, executive control network
- EEG
- EEG, electroencephalography
- FDR, false discovery rate
- FWHM, full width at half maximum
- Functional MRI
- GLM, general linear model
- HRF, hemodynamic response function
- ICA, independent component analysis
- MNI, montreal neurological institute
- OBS, optimal basis set
- PAG, periaqueductal gray
- PCA, principal component analysis
- PCC, posterior cingulate cortex
- PFC, prefrontal cortex
- Pain
- ROI, region of interest
- RSN, resting state networks
- Resting state networks
- SCD, sickle cell disease
- SMA, supplementary motor area
- Sickle cell disease
- fMRI, functional magnetic resonance imaging
Collapse
Affiliation(s)
- Michelle Case
- Department of Biomedical Engineering, University of Minnesota, USA
| | - Huishi Zhang
- Department of Biomedical Engineering, University of Minnesota, USA
| | - John Mundahl
- Department of Biomedical Engineering, University of Minnesota, USA
| | - Yvonne Datta
- Department of Medicine, University of Minnesota, USA
| | | | - Kalpna Gupta
- Department of Medicine, University of Minnesota, USA
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA
| |
Collapse
|
12
|
Claassen J, Labrenz F, Ernst T, Icenhour A, Langhorst J, Forsting M, Timmann D, Elsenbruch S. Altered Cerebellar Activity in Visceral Pain-Related Fear Conditioning in Irritable Bowel Syndrome. THE CEREBELLUM 2016; 16:508-517. [DOI: 10.1007/s12311-016-0832-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Chen CH, Lin CL, Kao CH. Irritable Bowel Syndrome Is Associated with an Increased Risk of Dementia: A Nationwide Population-Based Study. PLoS One 2016; 11:e0144589. [PMID: 26731277 PMCID: PMC4701489 DOI: 10.1371/journal.pone.0144589] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
Purpose Abnormal interaction in the brain–gut axis has emerged as one of the relevant pathophysiological mechanisms for the development of irritable bowel syndrome (IBS). Moreover, the brain–gut axis has recently been demonstrated to be crucial for the maintenance of cognitive performance. Therefore, we assessed the risk of dementia following diagnosis of IBS. Methods Using the Taiwan National Health Insurance Research Database (NHIRD) to obtain medical claims data from 2000 to 2011, we employed a random sampling method to enroll32 298 adult patients with IBS and frequency-matched them according to sex, age, and baseline year with 129 192 patients without IBS. Results The patients with IBS exhibited an increased risk of dementia [adjusted hazard ratio (aHR) = 1.26, 95% confidence interval (CI) = 1.17–1.35]after adjustment for age, sex, diabetes, hypertension, stroke, coronary artery disease (CAD), head injury, depression, and epilepsy, and the overall incidence of dementia for the cohorts with and without IBS was 4.86 and 3.41 per 1000 person-years, respectively. IBS was associated with an increased risk of dementia in patients older than 50 years in both male and female, and in those with comorbidity or without comorbidity. After adjustment for age, sex, and comorbidity, patients with IBS were also more likely to develop either non- Alzheimer’s disease (AD) dementia (aHR = 1.24, 95% CI = 1.15–1.33) or AD (aHR = 1.76, 95% CI = 1.28–2.43). Conclusions IBS is associated with an increased risk of dementia, and this effect is obvious only in patients who are ≥50 years old.
Collapse
Affiliation(s)
- Chien-Hua Chen
- Digestive Disease Center, Show-Chwan Memorial Hospital, Changhua, Taiwan
- Hungkuang University, Taichung, Taiwan
- Meiho University of Technology, Pingtung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Abstract
Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia, and bladder pain syndrome/interstitial cystitis has identified abnormalities in evoked brain responses, resting state activity, and connectivity, as well as in gray and white matter properties. Structural and functional alterations in brain regions of the salience, emotional arousal, and sensorimotor networks, as well as in prefrontal regions, are the most consistently reported findings. Some of these changes show moderate correlations with behavioral and clinical measures. Most recently, data-driven machine-learning approaches to larger data sets have been able to classify visceral pain syndromes from healthy control subjects. Future studies need to identify the mechanisms underlying the altered brain signatures of chronic visceral pain and identify targets for therapeutic interventions.
Collapse
|
15
|
Labrenz F, Icenhour A, Thürling M, Schlamann M, Forsting M, Timmann D, Elsenbruch S. Sex differences in cerebellar mechanisms involved in pain-related safety learning. Neurobiol Learn Mem 2015; 123:92-9. [PMID: 26004678 DOI: 10.1016/j.nlm.2015.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/20/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022]
Abstract
Recent studies have suggested that the cerebellum contributes to the central processing of pain, including pain-related learning and memory processes. As a complex experience with multiple emotional and cognitive facets, the response to pain and its underlying neural correlates differ between men and women. However, it remains poorly understood whether and to what extent sex differences exist in the cerebellar contribution to pain-related associative learning processes. In the present conditioning study with experimental abdominal pain as unconditioned stimuli (US), we assessed sex-dependent differences in behavioral and neural responses to conditioned warning and safety cues in healthy volunteers. The results revealed that in response to visual stimuli signaling safety from abdominal pain (CS(-)), women showed enhanced cerebellar activation in lobules I-IV, V, VI, VIIIa, IX and X as well as Crus II and the dentate nucleus, which are mostly representative of somatomotor networks. On the other hand, men showed enhanced neural activation in lobules I-IV, VI, VIIb, VIIIb, IX as well as Crus I and II in response to CS(-), which are representative of frontoparietal and ventral attention networks. No sex differences were observed in response to pain-predictive warning signals (CS(+)). Similarly, men and women did not differ in behavioral measures of conditioning, including conditioned changes in CS valence and contingency awareness. Together, we could demonstrate that the cerebellum is involved in associative learning processes of conditioned anticipatory safety from pain and mediates sex differences in the underlying neural processes. Given the high prevalence of chronic pain conditions in women, these results may contribute to improve our understanding of the acquisition and manifestation of chronic abdominal pain syndromes.
Collapse
Affiliation(s)
- Franziska Labrenz
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Adriane Icenhour
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Markus Thürling
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Marc Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany.
| |
Collapse
|
16
|
Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have we learned and where are we going? FUTURE NEUROLOGY 2014; 9:615-626. [PMID: 28163658 PMCID: PMC5289824 DOI: 10.2217/fnl.14.57] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advances in neuroimaging have helped illuminate our understanding of how the brain works in the presence of chronic pain, which often persists with unknown etiology or after the painful stimulus has been removed and any wounds have healed. Neuroimaging has enabled us to make great progress in identifying many of the neural mechanisms that contribute to chronic pain, and to pinpoint the specific regions of the brain that are activated in the presence of chronic pain. It has provided us with a new perception of the nature of chronic pain in general, leading researchers to move toward a whole-brain approach to the study and treatment of chronic pain, and to develop novel technologies and analysis techniques, with real potential for developing new diagnostics and more effective therapies. We review the use of neuroimaging in the study of chronic pain, with particular emphasis on magnetic resonance imaging.
Collapse
Affiliation(s)
- Katherine T Martucci
- Department of Anesthesiology, Perioperative & Pain Medicine, Division of Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 200, Palo Alto, CA 94304, USA
| | - Pamela Ng
- Department of Anesthesiology, Perioperative & Pain Medicine, Division of Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 200, Palo Alto, CA 94304, USA
| | - Sean Mackey
- Department of Anesthesiology, Perioperative & Pain Medicine, Division of Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 200, Palo Alto, CA 94304, USA
| |
Collapse
|
17
|
Xu FF, Huang Y, Wang XQ, Qiu YH, Peng YP. Modulation of immune function by glutamatergic neurons in the cerebellar interposed nucleus via hypothalamic and sympathetic pathways. Brain Behav Immun 2014; 38:263-71. [PMID: 24583232 DOI: 10.1016/j.bbi.2014.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/08/2014] [Accepted: 02/15/2014] [Indexed: 11/15/2022] Open
Abstract
Our recent work has shown that the cerebellar interposed nucleus (IN) contains glutamatergic neurons that send axons directly to the hypothalamus. In the present study, we aimed to demonstrate modulation of cellular and humoral immunity by glutamatergic neurons in the cerebellar IN by means of gene interventions of glutaminase (GLS), an enzyme for glutamate synthesis, and to reveal pathways transmitting the immunomodulation. Injection of GLS-shRNA lentiviral vector into bilateral cerebellar IN downregulated GLS expression in the IN. The silencing of GLS gene in the cerebellar IN decreased interleukin (IL)-2 and interferon (IFN)-γ production, B-cell number, and IgM antibody level in response to antigen bovine serum albumin (BSA). On the contrary, injection of GLS lentiviral vector into bilateral cerebellar IN upregulated GLS expression in the IN. The GLS gene overexpression in the IN caused opposite immune effects to the GLS gene knockdown. Simultaneously, the GLS gene silencing in the cerebellar IN reduced and the GLS overexpression elevated glutamate content in the hypothalamus, but they both did not affect glycine and GABA contents in the hypothalamus. In addition, the immune changes caused by the GLS gene interventions in the IN were accompanied by alteration in norepinephrine content in the spleen and mesenteric lymph nodes but not by changes in adrenocortical and thyroid hormone levels in serum. These findings indicate that glutamatergic neurons in the cerebellar IN regulate cellular and humoral immune responses and suggest that such immunoregulation may be conveyed by cerebellar IN-hypothalamic glutamatergic projections and sympathetic nerves that innervate lymphoid tissues.
Collapse
Affiliation(s)
- Fen-Fen Xu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yan Huang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
18
|
Ruscheweyh R, Kühnel M, Filippopulos F, Blum B, Eggert T, Straube A. Altered experimental pain perception after cerebellar infarction. Pain 2014; 155:1303-1312. [PMID: 24721690 DOI: 10.1016/j.pain.2014.04.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 02/03/2023]
Abstract
Animal studies have suggested that the cerebellum, in addition to its motor functions, also has a role in pain processing and modulation, possibly because of its extensive connections with the prefrontal cortex and with brainstem regions involved in descending pain control. Consistently, human imaging studies have shown cerebellar activation in response to painful stimulation. However, it is presently not clear whether cerebellar lesions affect pain perception in humans. In the present study, we used experimental pain testing to compare acute pain perception and endogenous pain inhibition in 30 patients 1 to 11 years after cerebellar infarction and in 30 sex- and age-matched healthy control subjects. Compared to controls, patients exhibited a significantly increased pain perception in response to acute heat stimuli (44 °C-48 °C, average pain intensity rating for patients 3.4±2.8 and for controls 1.5±1.7 [on a numeric rating scale of 0-10], P<.01) and to repeated 256 mN pinprick stimuli (1.3±1.9 vs. 0.6±1.0 [0-10], P<.05). Heat hyperalgesia in patients was more pronounced on the body side ipsilateral to the infarction. In addition, patients showed reduced offset analgesia (change in pain intensity rating: 0.0%±15.8% vs. -16.9%±36.3%, P<.05) and reduced placebo analgesia (change in pain intensity rating: -1.0±1.1 vs. -1.8±1.3 [0-10], P<.05) compared to controls. In contrast, heat and pressure pain thresholds were not significantly different between groups. These results show that, after cerebellar infarction, patients perceive heat and repeated mechanical stimuli as more painful than do healthy control subjects and have deficient activation of endogenous pain inhibitory mechanisms (offset and placebo analgesia). This suggests that the cerebellum has a previously underestimated role in human pain perception and modulation.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Department of Neurology, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Munich, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res 2014; 39:624-44. [PMID: 24590859 DOI: 10.1007/s11064-014-1266-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Abstract
The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Department, Melbourne School of Engineering, The University of Melbourne, Grattan Street, 3rd Floor, Room No. 344, Parkville, VIC, 3010, Australia,
| |
Collapse
|
20
|
Benson S, Kattoor J, Kullmann JS, Hofmann S, Engler H, Forsting M, Gizewski ER, Elsenbruch S. Towards understanding sex differences in visceral pain: Enhanced reactivation of classically-conditioned fear in healthy women. Neurobiol Learn Mem 2014; 109:113-21. [DOI: 10.1016/j.nlm.2013.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/03/2023]
|
21
|
Vermeulen W, Man JGD, Pelckmans PA, Winter BYD. Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol 2014; 20:1005-1020. [PMID: 24574773 PMCID: PMC3921524 DOI: 10.3748/wjg.v20.i4.1005] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic abdominal pain accompanying intestinal inflammation emerges from the hyperresponsiveness of neuronal, immune and endocrine signaling pathways within the intestines, the peripheral and the central nervous system. In this article we review how the sensory nerve information from the healthy and the hypersensitive bowel is encoded and conveyed to the brain. The gut milieu is continuously monitored by intrinsic enteric afferents, and an extrinsic nervous network comprising vagal, pelvic and splanchnic afferents. The extrinsic afferents convey gut stimuli to second order neurons within the superficial spinal cord layers. These neurons cross the white commissure and ascend in the anterolateral quadrant and in the ipsilateral dorsal column of the dorsal horn to higher brain centers, mostly subserving regulatory functions. Within the supraspinal regions and the brainstem, pathways descend to modulate the sensory input. Because of this multiple level control, only a small proportion of gut signals actually reaches the level of consciousness to induce sensation or pain. In inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients, however, long-term neuroplastic changes have occurred in the brain-gut axis which results in chronic abdominal pain. This sensitization may be driven on the one hand by peripheral mechanisms within the intestinal wall which encompasses an interplay between immunocytes, enterochromaffin cells, resident macrophages, neurons and smooth muscles. On the other hand, neuronal synaptic changes along with increased neurotransmitter release in the spinal cord and brain leads to a state of central wind-up. Also life factors such as but not limited to inflammation and stress contribute to hypersensitivity. All together, the degree to which each of these mechanisms contribute to hypersensitivity in IBD and IBS might be disease- and even patient-dependent. Mapping of sensitization throughout animal and human studies may significantly improve our understanding of sensitization in IBD and IBS. On the long run, this knowledge can be put forward in potential therapeutic targets for abdominal pain in these conditions.
Collapse
|
22
|
Cerebellar Contributions to Different Phases of Visceral Aversive Extinction Learning. THE CEREBELLUM 2013; 13:1-8. [DOI: 10.1007/s12311-013-0512-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|