1
|
Li J, Xie W, Chen JM, Xu CZ, Huang YL, Chen S, Liu CY, Lu YQ, Zou ZY. Clinical and functional characterization of a novel STUB1 mutation in a Chinese spinocerebellar ataxia 48 pedigree. Orphanet J Rare Dis 2024; 19:471. [PMID: 39707479 DOI: 10.1186/s13023-024-03456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Spinocerebellar ataxias (SCAs) encompass a wide spectrum of inherited neurodegenerative diseases, primarily characterized by pathological changes in the cerebellum, spinal cord, and brainstem degeneration. Autosomal dominant spinocerebellar ataxia type 48 (SCA48) is a newly identified subtype of SCA, marked by early-onset ataxia and cognitive impairment, and is associated with mutations in the STIP1 homology and U-box-containing protein 1 (STUB1) gene. The STUB1 gene encodes the protein CHIP (C-terminus of HSC70-interacting protein) which functions as E3 ubiquitin ligase and is crucial to the development of neural systems. RESULTS Here, we reported a Chinese SCA48 family exhibited typical features and defined a novel missense mutation STUB1 c.755A>C (CHIP p. Y252S) through whole-exome sequencing. The variant was interpreted as a variant of uncertain significance, so we conducted a series of experiments using minigene plasmids to evaluate the pathogenicity of the variant. We found that the variant STUB1 c.755A>C caused a significant reduction of CHIP level and the loss function of ubiquitin ligase activity as the pathogenic STUB1 mutations reported before. Besides, we also found that the CHIP p. Y252S could cause tau aggregation, which is considered to contribute to the progression of neurodegenerative disorders. CONCLUSIONS We diagnose the SCA48 pedigree in China and highlight the role of decreased ubiquitination and increased tau aggregation in the pathogenesis of the novel STUB1 c.755C>A mutation.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Wenyi Xie
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jian-Min Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chun-Zuan Xu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ya-Li Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ying-Qian Lu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Earnshaw R, Zhang YT, Heymann G, Fujisawa K, Hui S, Kapadia M, Kalia LV, Kalia SK. Disease-associated mutations in C-terminus of HSP70 interacting protein (CHIP) impair its ability to negatively regulate mitophagy. Neurobiol Dis 2024; 200:106625. [PMID: 39117117 DOI: 10.1016/j.nbd.2024.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
C-terminus of HSP70 interacting protein (CHIP) is an E3 ubiquitin ligase and HSP70 cochaperone. Mutations in the CHIP encoding gene are the cause of two neurodegenerative conditions: spinocerebellar ataxia autosomal dominant type 48 (SCA48) and autosomal recessive type 16 (SCAR16). The mechanisms underlying CHIP-associated diseases are currently unknown. Mitochondrial dysfunction, specifically dysfunction in mitochondrial autophagy (mitophagy), is increasingly implicated in neurodegenerative diseases and loss of CHIP has been demonstrated to result in mitochondrial dysfunction in multiple animal models, although how CHIP is involved in mitophagy regulation has been previously unknown. Here, we demonstrate that CHIP acts as a negative regulator of the PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy pathway, promoting the degradation of PINK1, impairing Parkin translocation to the mitochondria, and suppressing mitophagy in response to mitochondrial stress. We also show that loss of CHIP enhances neuronal mitophagy in a PINK1 and Parkin dependent manner in Caenorhabditis elegans. Furthermore, we find that multiple disease-associated mutations in CHIP dysregulate mitophagy both in vitro and in vivo in C. elegans neurons, a finding which could implicate mitophagy dysregulation in CHIP-associated diseases.
Collapse
Affiliation(s)
- Rebecca Earnshaw
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yu Tong Zhang
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Gregory Heymann
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Kazuko Fujisawa
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Sarah Hui
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Neurology, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, 399 Bathurst Street, Toronto M5T 2S8, ON, Canada.
| |
Collapse
|
3
|
Sharma R, Mondal P, Srinivasula SM. CARPs regulate STUB1 and its pathogenic mutants aggregation kinetics by mono-ubiquitination. FEBS J 2023. [PMID: 36853170 DOI: 10.1111/febs.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The development of neurological pathologies is linked to the accumulation of protein aggregates like alpha-synuclein in Parkinson's disease and tau protein in Alzheimer's disease. Mono- or di-ubiquitination of these molecules has been reported to stabilize aggregates and contribute to the disorders. STIP1 Homologous and U-Box-containing protein 1 (STUB1) is a multifunctional protein that maintains proteostasis and insulin signalling. In spinocerebellar ataxia 16 (SCAR16), an autosomal recessive neurodegenerative disease, mutations in and aggregation of STUB1 are reported. Despite the well-accepted neuroprotective role of STUB1, very little is known of regulatory mechanisms that control the dynamics of STUB1 aggregate assembly. Here, we report that CARP2, a ubiquitin ligase, is a novel regulator of STUB1. CARP2 interacts and mono-ubiquitinates STUB1. Furthermore, we found that CARP2 regulates STUB1 through its TPR motif, a domain that is also associated with HSP70. Modification of STUB1 by CARP2 leads to detergent-insoluble aggregate formation. Importantly, pathogenic mutants of STUB1 are more prone than the wild-type to CARP2-mediated aggregate assembly. Hence our findings revealed CARPs (CARP1 & CARP2) as novel regulators of STUB1 and controlled its cytosolic versus aggregate dynamics.
Collapse
Affiliation(s)
- Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Prema Mondal
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| |
Collapse
|
4
|
Intermediate repeat expansions of TBP and STUB1: Genetic modifier or pure digenic inheritance in spinocerebellar ataxias? Genet Med 2023; 25:100327. [PMID: 36422518 DOI: 10.1016/j.gim.2022.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE CAG/CAA repeat expansions in TBP>49 are responsible for spinocerebellar ataxia (SCA) type 17 (SCA17). We previously detected cosegregation of STUB1 variants causing SCA48 with intermediate alleles of TBP in 2 families. This cosegregation questions the existence of SCA48 as a monogenic disease. METHODS We systematically sequenced TBP repeats in 34 probands of dominant ataxia families with STUB1 variants. In addition, we searched for pathogenic STUB1 variants in probands with expanded alleles of TBP>49 (n = 2) or intermediate alleles of TBP≥40 (n = 47). RESULTS STUB1 variants were found in half of the TBP40-49 cohort. Mirroring this finding, TBP40-49 alleles were detected in 40% of STUB1 probands. The longer the TBP repeat length, the more likely the occurrence of cognitive impairment (P = .0129) and the faster the disease progression until death (P = .0003). Importantly, 13 STUB1 probands presenting with the full SCA48 clinical phenotype had normal TBP37-39 alleles, excluding digenic inheritance as the sole mode. CONCLUSION We show that intermediate TBP40-49 alleles act as disease modifiers of SCA48 rather than a STUB1/TBP digenic model. This distinction from what has been proposed before has crucial consequences for genetic counseling in SCA48.
Collapse
|
5
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Ju DT, Van Thao D, Lu CY, Ali A, Shibu MA, Chen RJ, Day CH, Shih TC, Tsai CY, Kuo CH, Huang CY. Protective effects of CHIP overexpression and Wharton's jelly mesenchymal-derived stem cell treatment against streptozotocin-induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:1979-1987. [PMID: 35442559 DOI: 10.1002/tox.23544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Diabetic neuropathy is a common complication of diabetes mellitus, posing a challenge in treatment. Previous studies have indicated the protective role of mesenchymal stem cells against several disorders. Although they can repair nerve injury, their key limitation is that they reduce viability under stress conditions. We recently observed that overactivation of the carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP) considerably rescued cell viability under hyperglycemic stress and played an essential role in promoting the beneficial effects of Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Thus, the present study was designed to unveil the protective effects of CHIP-overexpressing WJMSCs against neurodegeneration using in vivo animal model based study. In this study, western blotting observed that CHIP-overexpressing WJMSCs could rescue nerve damage observed in streptozotocin-induced diabetic rats by activating the AMPKα/AKT and PGC1α/SIRT1 signaling pathway. In contrast, these signaling pathways were downregulated upon silencing CHIP. Furthermore, CHIP-overexpressing WJMSCs inhibited inflammation induced in the brains of diabetic rats by suppressing the NF-κB, its downstream iNOS and cytokines signaling nexus and enhancing the antioxidant enzyme system. Moreover, TUNEL assay demonstrated that CHIP carrying WJMSCs suppressed the apoptotic cell death induced in STZ-induced diabetic group. Collectively, our findings suggests that CHIP-overexpressing WJMSCs might exerts beneficial effects, which may be considered as a therapeutic strategy against diabetic neuropathy complications.
Collapse
Affiliation(s)
- Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dao Van Thao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ayaz Ali
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tzu-Ching Shih
- Department of Biomedical Imaging and Radiological Science College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Yen Tsai
- Department of Pediatrics, China Medical University Beigang Hospital, Yunlin, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biological Science & Technology College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
7
|
Reis MC, Patrun J, Ackl N, Winter P, Scheifele M, Danek A, Nolte D. A Severe Dementia Syndrome Caused by Intron Retention and Cryptic Splice Site Activation in STUB1 and Exacerbated by TBP Repeat Expansions. Front Mol Neurosci 2022; 15:878236. [PMID: 35493319 PMCID: PMC9048483 DOI: 10.3389/fnmol.2022.878236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Heterozygous pathogenic variants in the STIP1 homologous and U-box containing protein 1 (STUB1) gene have been identified as causes of autosomal dominant inherited spinocerebellar ataxia type 48 (SCA48). SCA48 is characterized by an ataxic movement disorder that is often, but not always, accompanied by a cognitive affective syndrome. We report a severe early onset dementia syndrome that mimics frontotemporal dementia and is caused by the intronic splice donor variant c.524+1G>A in STUB1. Impaired splicing was demonstrated by RNA analysis and in minigene assays of mutated and wild-type constructs of STUB1. The most striking consequence of this splicing impairment was retention of intron 3 in STUB1, which led to an in-frame insertion of 63 amino acids (aa) (p.Arg175_Glu176ins63) into the highly conserved coiled-coil domain of its encoded protein, C-terminus of HSP70-interacting protein (CHIP). To a lesser extent, activation of two cryptic splice sites in intron 3 was observed. The almost exclusively used one, c.524+86, was not predicted by in silico programs. Variant c.524+86 caused a frameshift (p.Arg175fs*93) that resulted in a truncated protein and presumably impairs the C-terminal U-box of CHIP, which normally functions as an E3 ubiquitin ligase. The cryptic splice site c.524+99 was rarely used and led to an in-frame insertion of 33 aa (p.Arg175_Glu176ins33) that resulted in disruption of the coiled-coil domain, as has been previously postulated for complete intron 3 retention. We additionally detected repeat expansions in the range of reduced penetrance in the TATA box-binding protein (TBP) gene by excluding other genes associated with dementia syndromes. The repeat expansion was heterozygous in one patient but compound heterozygous in the more severely affected patient. Therefore, we concluded that the observed severe dementia syndrome has a digenic background, making STUB1 and TBP important candidate genes responsible for early onset dementia syndromes.
Collapse
Affiliation(s)
- Marlen Colleen Reis
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Julia Patrun
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Nibal Ackl
- Psychiatrische Dienste Thurgau, Münsterlingen, Switzerland
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Pia Winter
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Dagmar Nolte
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
- *Correspondence: Dagmar Nolte,
| |
Collapse
|
8
|
Pakdaman Y, Denker E, Austad E, Norton WHJ, Rolfsnes HO, Bindoff LA, Tzoulis C, Aukrust I, Knappskog PM, Johansson S, Ellingsen S. Chip Protein U-Box Domain Truncation Affects Purkinje Neuron Morphology and Leads to Behavioral Changes in Zebrafish. Front Mol Neurosci 2021; 14:723912. [PMID: 34630034 PMCID: PMC8497888 DOI: 10.3389/fnmol.2021.723912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin ligase CHIP (C-terminus of Hsc70-interacting protein) is encoded by STUB1 and promotes ubiquitination of misfolded and damaged proteins. CHIP deficiency has been linked to several diseases, and mutations in the human STUB1 gene are associated with recessive and dominant forms of spinocerebellar ataxias (SCAR16/SCA48). Here, we examine the effects of impaired CHIP ubiquitin ligase activity in zebrafish (Danio rerio). We characterized the zebrafish stub1 gene and Chip protein, and generated and characterized a zebrafish mutant causing truncation of the Chip functional U-box domain. Zebrafish stub1 has a high degree of conservation with mammalian orthologs and was detected in a wide range of tissues in adult stages, with highest expression in brain, eggs, and testes. In the brain, stub1 mRNA was predominantly detected in the cerebellum, including the Purkinje cell layer and granular layer. Recombinant wild-type zebrafish Chip showed ubiquitin ligase activity highly comparable to human CHIP, while the mutant Chip protein showed impaired ubiquitination of the Hsc70 substrate and Chip itself. In contrast to SCAR16/SCA48 patients, no gross cerebellar atrophy was evident in mutant fish, however, these fish displayed reduced numbers and sizes of Purkinje cell bodies and abnormal organization of Purkinje cell dendrites. Mutant fish also had decreased total 26S proteasome activity in the brain and showed behavioral changes. In conclusion, truncation of the Chip U-box domain leads to impaired ubiquitin ligase activity and behavioral and anatomical changes in zebrafish, illustrating the potential of zebrafish to study STUB1-mediated diseases.
Collapse
Affiliation(s)
- Yasaman Pakdaman
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Elsa Denker
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eirik Austad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - William H J Norton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, United Kingdom
| | - Hans O Rolfsnes
- Department of Biomedicine, Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ståle Ellingsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Chen HY, Hsu CL, Lin HY, Lin YF, Tsai SF, Ho YJ, Li YR, Tsai JW, Teng SC, Lin CH. Clinical and functional characterization of a novel STUB1 frameshift mutation in autosomal dominant spinocerebellar ataxia type 48 (SCA48). J Biomed Sci 2021; 28:65. [PMID: 34565360 PMCID: PMC8466936 DOI: 10.1186/s12929-021-00763-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterozygous pathogenic variants in STUB1 are implicated in autosomal dominant spinocerebellar ataxia type 48 (SCA48), which is a rare familial ataxia disorder. We investigated the clinical, genetic and functional characteristics of STUB1 mutations identified from a Taiwanese ataxia cohort. METHODS We performed whole genome sequencing in a genetically undiagnosed family with an autosomal dominant ataxia syndrome. Further Sanger sequencing of all exons and intron-exon boundary junctions of STUB1 in 249 unrelated patients with cerebellar ataxia was performed. The pathogenicity of the identified novel STUB1 variant was investigated. RESULTS We identified a novel heterozygous frameshift variant, c.832del (p.Glu278fs), in STUB1 in two patients from the same family. This rare mutation is located in the U-box of the carboxyl terminus of the Hsc70-interacting protein (CHIP) protein, which is encoded by STUB1. Further in vitro experiments demonstrated that this novel heterozygous STUB1 frameshift variant impairs the CHIP protein's activity and its interaction with the E2 ubiquitin ligase, UbE2D1, leading to neuronal accumulation of tau and α-synuclein, caspase-3 activation, and promoting cellular apoptosis through a dominant-negative pathogenic effect. The in vivo study revealed the influence of the CHIP expression level on the differentiation and migration of cerebellar granule neuron progenitors during cerebellar development. CONCLUSIONS Our findings provide clinical, genetic, and a mechanistic insight linking the novel heterozygous STUB1 frameshift mutation at the highly conserved U-box domain of CHIP as the cause of autosomal dominant SCA48. Our results further stress the importance of CHIP activity in neuronal protein homeostasis and cerebellar functions.
Collapse
Affiliation(s)
- Huan-Yun Chen
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, Number 7, Chung-Shan South Road, Taipei, 10051, Taiwan
| | - Yung-Feng Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jung Ho
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ye-Ru Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Center of Precision Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Number 7, Chung-Shan South Road, Taipei, 10051, Taiwan.
| |
Collapse
|
10
|
Ravel JM, Benkirane M, Calmels N, Marelli C, Ory-Magne F, Ewenczyk C, Halleb Y, Tison F, Lecocq C, Pische G, Casenave P, Chaussenot A, Frismand S, Tyvaert L, Larrieu L, Pointaux M, Drouot N, Bossenmeyer-Pourié C, Oussalah A, Guéant JL, Leheup B, Bonnet C, Anheim M, Tranchant C, Lambert L, Chelly J, Koenig M, Renaud M. Expanding the clinical spectrum of STIP1 homology and U-box containing protein 1-associated ataxia. J Neurol 2021; 268:1927-1937. [PMID: 33417001 DOI: 10.1007/s00415-020-10348-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND STUB1 has been first associated with autosomal recessive (SCAR16, MIM# 615768) and later with dominant forms of ataxia (SCA48, MIM# 618093). Pathogenic variations in STUB1 are now considered a frequent cause of cerebellar ataxia. OBJECTIVE We aimed to improve the clinical, radiological, and molecular delineation of SCAR16 and SCA48. METHODS Retrospective collection of patients with SCAR16 or SCA48 diagnosed in three French genetic centers (Montpellier, Strasbourg and Nancy). RESULTS Here, we report four SCAR16 and nine SCA48 patients from two SCAR16 and five SCA48 unrelated French families. All presented with slowly progressive cerebellar ataxia. Additional findings included cognitive decline, dystonia, parkinsonism and swallowing difficulties. The age at onset was highly variable, ranging from 14 to 76 years. Brain MRI showed marked cerebellar atrophy in all patients. Phenotypic findings associated with STUB1 pathogenic variations cover a broad spectrum, ranging from isolated slowly progressive ataxia to severe encephalopathy, and include extrapyramidal features. We described five new pathogenic variations, two previously reported pathogenic variations, and two rare variants of unknown significance in association with STUB1-related disorders. We also report the first pathogenic variation associated with both dominant and recessive forms of inheritance (SCAR16 and SCA48). CONCLUSION Even though differences are observed between the recessive and dominant forms, it appears that a continuum exists between these two entities. While adding new symptoms associated with STUB1 pathogenic variations, we insist on the difficulty of genetic counselling in STUB1-related pathologies. Finally, we underscore the usefulness of DAT-scan as an additional clue for diagnosis.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Mehdi Benkirane
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Nadège Calmels
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cecilia Marelli
- Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, University Montpellier, CHU, Montpellier, France
- MMDN, University Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Claire Ewenczyk
- Sorbonne Université, Institut du Cerveau et de la Moelle Épinière (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
- Service de génétique clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Yosra Halleb
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - François Tison
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, Bordeaux, France
- Centre Mémoire de Ressources et de Recherches, CHU de Bordeaux, Pôle de Neurosciences Cliniques, Bordeaux, France
| | - Claire Lecocq
- Service de Neurologie, Centre Hospitalier de Haguenau, Haguenau, France
| | - Guillaume Pische
- Service de Neurologie, Centre Hospitalier de Haguenau, Haguenau, France
| | | | - Annabelle Chaussenot
- Service de Génétique Médicale, Centre de Référence des Maladies Mitochondriales, Hôpital de l'Archet 2, Nice, France
| | | | | | - Lise Larrieu
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Morgane Pointaux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Carine Bossenmeyer-Pourié
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Abderrahim Oussalah
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Nancy, France
| | - Bruno Leheup
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Céline Bonnet
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Mathieu Anheim
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 avenue Molière, 67098, Cedex, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Christine Tranchant
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 avenue Molière, 67098, Cedex, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Laëtitia Lambert
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France
| | - Jamel Chelly
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale D'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, CHU Montpellier, EA7402, Montpellier, France.
- EA7402 Institut Universitaire de Recherche Clinique, Université de Montpellier, 641 Avenue du Doyen Gaston Giraud, 34093, Montpellier cedex 5, France.
| | - Mathilde Renaud
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France.
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, 54000, Nancy, France.
- Service de Neurologie, CHRU Nancy, Nancy, France.
| |
Collapse
|
11
|
Rossi M, van der Veen S, Merello M, Tijssen MAJ, van de Warrenburg B. Myoclonus-Ataxia Syndromes: A Diagnostic Approach. Mov Disord Clin Pract 2020; 8:9-24. [PMID: 33426154 DOI: 10.1002/mdc3.13106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background A myriad of disorders combine myoclonus and ataxia. Most causes are genetic and an increasing number of genes are being associated with myoclonus-ataxia syndromes (MAS), due to recent advances in genetic techniques. A proper etiologic diagnosis of MAS is clinically relevant, given the consequences for genetic counseling, treatment, and prognosis. Objectives To review the causes of MAS and to propose a diagnostic algorithm. Methods A comprehensive and structured literature search following PRISMA criteria was conducted to identify those disorders that may combine myoclonus with ataxia. Results A total of 135 causes of combined myoclonus and ataxia were identified, of which 30 were charted as the main causes of MAS. These include four acquired entities: opsoclonus-myoclonus-ataxia syndrome, celiac disease, multiple system atrophy, and sporadic prion diseases. The distinction between progressive myoclonus epilepsy and progressive myoclonus ataxia poses one of the main diagnostic dilemmas. Conclusions Diagnostic algorithms for pediatric and adult patients, based on clinical manifestations including epilepsy, are proposed to guide the differential diagnosis and corresponding work-up of the most important and frequent causes of MAS. A list of genes associated with MAS to guide genetic testing strategies is provided. Priority should be given to diagnose or exclude acquired or treatable disorders.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Sterre van der Veen
- Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina.,Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Marcelo Merello
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina.,Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina
| | - Marina A J Tijssen
- Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands.,Expertise Center Movement Disorders Groningen University Medical Center Groningen (UMCG) Groningen The Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
12
|
Chen BH, Chang YJ, Lin S, Yang WY. Hsc70/Stub1 promotes the removal of individual oxidatively stressed peroxisomes. Nat Commun 2020; 11:5267. [PMID: 33077711 PMCID: PMC7573593 DOI: 10.1038/s41467-020-18942-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/22/2020] [Indexed: 12/04/2022] Open
Abstract
Peroxisomes perform beta-oxidation of branched and very-long chain fatty acids, which leads to the formation of reactive oxygen species (ROS) within the peroxisomal lumen. Peroxisomes are therefore prone to ROS-mediated damages. Here, using light to specifically and acutely induce ROS formation within the peroxisomal lumen, we find that cells individually remove ROS-stressed peroxisomes through ubiquitin-dependent pexophagy. Heat shock protein 70 s mediates the translocation of the ubiquitin E3 ligase Stub1 (STIP1 Homology and U-Box Containing Protein 1) onto oxidatively-stressed peroxisomes to promote their selective ubiquitination and autophagic degradation. Artificially targeting Stub1 to healthy peroxisomes is sufficient to trigger pexophagy, suggesting a key role Stub1 plays in regulating peroxisome quality. We further determine that Stub1 mutants found in Ataxia patients are defective in pexophagy induction. Dysfunctional peroxisomal quality control may therefore contribute to the development of Ataxia. Pexophagy removes damaged peroxisomes, which are particularly prone to ROS formation. Here, the authors use light to induce peroxisome turnover by local ROS generation, showing STUB1 translocation is critical and might contribute to human disease.
Collapse
Affiliation(s)
- Bo-Hua Chen
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yao-Jen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, 106, Taiwan
| | - Wei Yuan Yang
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan. .,Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
13
|
Schuster S, Heuten E, Velic A, Admard J, Synofzik M, Ossowski S, Macek B, Hauser S, Schöls L. CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons. Dis Model Mech 2020; 13:13/10/dmm045096. [PMID: 33097556 PMCID: PMC7578354 DOI: 10.1242/dmm.045096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023] Open
Abstract
C-terminus of HSC70-interacting protein (CHIP) encoded by the gene STUB1 is a co-chaperone and E3 ligase that acts as a key regulator of cellular protein homeostasis. Mutations in STUB1 cause autosomal recessive spinocerebellar ataxia type 16 (SCAR16) with widespread neurodegeneration manifesting as spastic-ataxic gait disorder, dementia and epilepsy. CHIP-/- mice display severe cerebellar atrophy, show high perinatal lethality and impaired heat stress tolerance. To decipher the pathomechanism underlying SCAR16, we investigated the heat shock response (HSR) in primary fibroblasts of three SCAR16 patients. We found impaired HSR induction and recovery compared to healthy controls. HSPA1A/B transcript levels (coding for HSP70) were reduced upon heat shock but HSP70 remained higher upon recovery in patient- compared to control-fibroblasts. As SCAR16 primarily affects the central nervous system we next investigated the HSR in cortical neurons (CNs) derived from induced pluripotent stem cells of SCAR16 patients. We found CNs of patients and controls to be surprisingly resistant to heat stress with high basal levels of HSP70 compared to fibroblasts. Although heat stress resulted in strong transcript level increases of many HSPs, this did not translate into higher HSP70 protein levels upon heat shock, independent of STUB1 mutations. Furthermore, STUB1(-/-) neurons generated by CRISPR/Cas9-mediated genome editing from an isogenic healthy control line showed a similar HSR to patients. Proteomic analysis of CNs showed dysfunctional protein (re)folding and higher basal oxidative stress levels in patients. Our results question the role of impaired HSR in SCAR16 neuropathology and highlight the need for careful selection of proper cell types for modeling human diseases.
Collapse
Affiliation(s)
- S Schuster
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - E Heuten
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - A Velic
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - J Admard
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - M Synofzik
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - S Ossowski
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - B Macek
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - S Hauser
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - L Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| |
Collapse
|
14
|
CHIP as a therapeutic target for neurological diseases. Cell Death Dis 2020; 11:727. [PMID: 32908122 PMCID: PMC7481199 DOI: 10.1038/s41419-020-02953-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Carboxy-terminus of Hsc70-interacting protein (CHIP) functions both as a molecular co-chaperone and ubiquitin E3 ligase playing a critical role in modulating the degradation of numerous chaperone-bound proteins. To date, it has been implicated in the regulation of numerous biological functions, including misfolded-protein refolding, autophagy, immunity, and necroptosis. Moreover, the ubiquitous expression of CHIP in the central nervous system suggests that it may be implicated in a wide range of functions in neurological diseases. Several recent studies of our laboratory and other groups have highlighted the beneficial role of CHIP in the pathogenesis of several neurological diseases. The objective of this review is to discuss the possible molecular mechanisms that contribute to the pathogenesis of neurological diseases in which CHIP has a pivotal role, such as stroke, intracerebral hemorrhage, Alzheimer's disease, Parkinson's disease, and polyglutamine diseases; furthermore, CHIP mutations could also cause neurodegenerative diseases. Based on the available literature, CHIP overexpression could serve as a promising therapeutic target for several neurological diseases.
Collapse
|
15
|
Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment. Genet Med 2020; 22:1851-1862. [PMID: 32713943 DOI: 10.1038/s41436-020-0899-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48). METHODS We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance. RESULTS STUB1 variants were detected in 50 patients. Age at onset and severity were remarkably variable. Cognitive impairment, predominantly frontal syndrome, was observed in 54% of STUB1 variant carriers, including five families with Huntington or frontotemporal dementia disease-like phenotypes associated with ataxia, while no STUB1 variant was found in 115 patients with frontotemporal dementia. We report neuropathological findings of a STUB1 heterozygous patient, showing massive loss of Purkinje cells in the vermis and major loss in the cerebellar hemispheres without atrophy of the pons, hippocampus, or cerebral cortex. This screening of STUB1 variants revealed new features: (1) the majority of patients were women (70%) and (2) "second hits" in AFG3L2, PRKCG, and TBP were detected in three families suggesting synergic effects. CONCLUSION Our results reveal an unexpectedly frequent (7%) implication of STUB1 among dominantly inherited cerebellar ataxias, and suggest that the penetrance of STUB1 variants could be modulated by other factors, including sex and variants in other ataxia-related genes.
Collapse
|
16
|
Spinocerebellar ataxia type 48: last but not least. Neurol Sci 2020; 41:2423-2432. [PMID: 32342324 DOI: 10.1007/s10072-020-04408-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Biallelic mutations in STUB1, which encodes the E3 ubiquitin ligase CHIP, were originally described in association with SCAR16, a rare autosomal recessive spinocerebellar ataxia, so far reported in 16 kindreds. In the last 2 years, a new form of spinocerebellar ataxia (SCA48), associated with heterozygous mutations in the same gene, has been described in 12 kindreds with autosomal dominant inheritance. METHODS We reviewed molecular and clinical findings of both SCAR16 and SCA48 described patients. RESULTS AND CONCLUSION SCAR16 is characterized by early onset spastic ataxia and a wide disease spectrum, including cognitive dysfunction, hyperkinetic disorders, epilepsy, peripheral neuropathy, and hypogonadism. SCA48 is an adult-onset syndrome characterized by ataxia and cognitive-psychiatric features, variably associated with chorea, parkinsonism, dystonia, and urinary symptoms. SCA48, the last dominant ataxia to be described, could emerge as the most frequent among the SCAs due to conventional mutations. The overlap of several clinical signs between SCAR16 and SCA48 indicates the presence of a continuous clinical spectrum among recessively and dominantly inherited mutations of STUB1. Different kinds of mutations, scattered over the three gene domains, have been found in both disorders. Their pathogenesis and the relationship between SCA48 and SCAR16 remain to be clarified.
Collapse
|
17
|
Olszewska DA, Kinsella JA. Extending the Phenotypic Spectrum Associated with STUB1 Mutations: A Case of Dystonia. Mov Disord Clin Pract 2020; 7:318-324. [PMID: 32258232 PMCID: PMC7111583 DOI: 10.1002/mdc3.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations in the STIP1 homology and U-box containing protein 1 gene were first described in 2013 and lead to disorders with symptoms including ataxia and dysarthria, such as spinocerebellar autosomal-recessive ataxia type 16 (SCAR16), Gordon-Holmes syndrome, and spinocerebellar ataxia type 48. There have been 15 families described to date with SCAR16. CASES We describe a 45-year-old right-handed woman with dysarthria, ataxia, and cervical dystonia with SCAR16 with 2 compound heterozygous variants in the STIP1 homology and U-box containing protein 1 gene, and a family history significant for her 47-year-old sister with dysarthria and cognitive problems. CONCLUSION We present a comprehensive overview of the phenotypic data of all 15 families with SCAR16 and expand the phenotype by describing a third patient with SCAR16 and dystonia reported to date in the literature.
Collapse
Affiliation(s)
- Diana A. Olszewska
- Department of NeurologyDublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
- Department of NeurologySt. Vincent's University HospitalDublinIreland
| | | |
Collapse
|
18
|
Chen DH, Latimer C, Yagi M, Ndugga-Kabuye MK, Heigham E, Jayadev S, Meabon JS, Gomez CM, Keene CD, Cook DG, Raskind WH, Bird TD. Heterozygous STUB1 missense variants cause ataxia, cognitive decline, and STUB1 mislocalization. Neurol Genet 2020; 6:1-13. [PMID: 32211513 PMCID: PMC7073456 DOI: 10.1212/nxg.0000000000000397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify the genetic cause of autosomal dominant ataxia complicated by behavioral abnormalities, cognitive decline, and autism in 2 families and to characterize brain neuropathologic signatures of dominant STUB1-related ataxia and investigate the effects of pathogenic variants on STUB1 localization. METHODS Clinical and research-based exome sequencing was used to identify the causative variants for autosomal dominant ataxia in 2 families. Gross and microscopic neuropathologic evaluations were performed on the brains of 4 affected individuals in these families. RESULTS Mutations in STUB1 have been primarily associated with childhood-onset autosomal recessive ataxia, but here we report heterozygous missense variants in STUB1 (p.Ile53Thr and p.The37Leu) confirming the recent reports of autosomal dominant inheritance. Cerebellar atrophy on imaging and cognitive deficits often preceded ataxia. Unique neuropathologic examination of the 4 brains showed the marked loss of Purkinje cells (PCs) without microscopic evidence of significant pathology outside the cerebellum. The normal pattern of polarized somatodendritic STUB1 protein expression in PCs was lost, resulting in aberrant STUB1 localization in the distal PC dendritic arbors. CONCLUSIONS This study confirms a dominant inheritance pattern in STUB1-ataxia in addition to a recessive one and documents its association with cognitive and behavioral disability, including autism. In the most extensive analysis of cerebellar pathology in this disease, we demonstrate disruption of STUB1 protein in PCs as part of the underlying pathogenesis.
Collapse
Affiliation(s)
- Dong-Hui Chen
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Caitlin Latimer
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Mayumi Yagi
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Mesaki Kenneth Ndugga-Kabuye
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Elyana Heigham
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Suman Jayadev
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - James S Meabon
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Christopher M Gomez
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - C Dirk Keene
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - David G Cook
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Wendy H Raskind
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| | - Thomas D Bird
- Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle
| |
Collapse
|
19
|
Mol MO, van Rooij JGJ, Brusse E, Verkerk AJMH, Melhem S, den Dunnen WFA, Rizzu P, Cupidi C, van Swieten JC, Donker Kaat L. Clinical and pathologic phenotype of a large family with heterozygous STUB1 mutation. NEUROLOGY-GENETICS 2020; 6:e417. [PMID: 32337344 PMCID: PMC7164971 DOI: 10.1212/nxg.0000000000000417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
Objective To describe the clinical and pathologic features of a novel pedigree with heterozygous STUB1 mutation causing SCA48. Methods We report a large pedigree of Dutch decent. Clinical and pathologic data were reviewed, and genetic analyses (whole-exome sequencing, whole-genome sequencing, and linkage analysis) were performed on multiple family members. Results Patients presented with adult-onset gait disturbance (ataxia or parkinsonism), combined with prominent cognitive decline and behavioral changes. Whole-exome sequencing identified a novel heterozygous frameshift variant c.731_732delGC (p.C244Yfs*24) in STUB1 segregating with the disease. This variant was present in a linkage peak on chromosome 16p13.3. Neuropathologic examination of 3 cases revealed a consistent pattern of ubiquitin/p62-positive neuronal inclusions in the cerebellum, neocortex, and brainstem. In addition, tau pathology was present in 1 case. Conclusions This study confirms previous findings of heterozygous STUB1 mutations as the cause of SCA48 and highlights its prominent cognitive involvement, besides cerebellar ataxia and movement disorders as cardinal features. The presence of intranuclear inclusions is a pathologic hallmark of the disease. Future studies will provide more insight into its pathologic heterogeneity.
Collapse
Affiliation(s)
- Merel O Mol
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jeroen G J van Rooij
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Esther Brusse
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemieke J M H Verkerk
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patrizia Rizzu
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Chiara Cupidi
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Laura Donker Kaat
- Department of Neurology (M.O.M., J.G.J.v.R., E.B., S.M., J.C.v.S., L.D.K.); Department of Internal Medicine (J.G.J.v.R., A.J.M.H.V.), Erasmus Medical Center, Rotterdam; Department of Pathology and Medical Biology (W.F.A.d.D.), University Medical Centre Groningen, Groningen, the Netherlands; German Center for Neurodegenerative Diseases (DZNE) (P.R.), Tuebingen, Germany; IRCCS Centro Neurolesi "Bonino Pulejo" (C.C), Messina, Italy; and Department of Clinical Genetics (L.D.K.), Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Madrigal SC, McNeil Z, Sanchez-Hodge R, Shi CH, Patterson C, Scaglione KM, Schisler JC. Changes in protein function underlie the disease spectrum in patients with CHIP mutations. J Biol Chem 2019; 294:19236-19245. [PMID: 31619515 PMCID: PMC6916485 DOI: 10.1074/jbc.ra119.011173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Monogenetic disorders that cause cerebellar ataxia are characterized by defects in gait and atrophy of the cerebellum; however, patients often suffer from a spectrum of disease, complicating treatment options. Spinocerebellar ataxia autosomal recessive 16 (SCAR16) is caused by coding mutations in STUB1, a gene that encodes the multifunctional enzyme CHIP (C terminus of HSC70-interacting protein). The disease spectrum of SCAR16 includes a varying age of disease onset, cognitive dysfunction, increased tendon reflex, and hypogonadism. Although SCAR16 mutations span the multiple functional domains of CHIP, it is unclear whether the location of the mutation and the change in the biochemical properties of CHIP contributes to the clinical spectrum of SCAR16. In this study, we examined relationships between the clinical phenotypes of SCAR16 patients and the changes in biophysical, biochemical, and functional properties of the corresponding mutated protein. We found that the severity of ataxia did not correlate with age of onset; however, cognitive dysfunction, increased tendon reflex, and ancestry were able to predict 54% of the variation in ataxia severity. We further identified domain-specific relationships between biochemical changes in CHIP and clinical phenotypes and specific biochemical activities that associate selectively with either increased tendon reflex or cognitive dysfunction, suggesting that specific changes to CHIP-HSC70 dynamics contribute to the clinical spectrum of SCAR16. Finally, linear models of SCAR16 as a function of the biochemical properties of CHIP support the concept that further inhibiting mutant CHIP activity lessens disease severity and may be useful in the design of patient-specific targeted approaches to treat SCAR16.
Collapse
Affiliation(s)
- Sabrina C Madrigal
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Zipporah McNeil
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Rebekah Sanchez-Hodge
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | - Jonathan C Schisler
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
21
|
Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family. Neurogenetics 2019; 21:51-58. [PMID: 31741143 DOI: 10.1007/s10048-019-00595-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
SCA48 is a novel spinocerebellar ataxia (SCA) originally and recently characterized by prominent cerebellar cognitive-affective syndrome (CCAS) and late-onset ataxia caused by mutations on the STUB1 gene. Here, we report the first SCA48 case from Turkey with novel clinical features and diffusion tensor imaging (DTI) findings, used for the first time to evaluate a SCA48 patient. A 65-year-old female patient with slowly progressive cerebellar ataxia, cognitive impairment, behavioral changes, and a vertical family history was evaluated. Following the exclusion of repeat expansion ataxias, whole exome sequencing (WES) was performed. Brain magnetic resonance imaging (MRI), including DTI, and single-photon emission computed tomography (SPECT) were used to study the primarily affected tracts and regions. WES revealed the previously reported heterozygous truncating mutation in ubiquitin ligase domain of STUB1 (ENST00000219548:c.823_824delCT, ENSP00000219548:p.L275Dfs*16) leading to a frameshift. Patient's cognitive status was compatible with CCAS. Novel clinical features different from the original report include later onset chorea, dystonia, general slowness of movements, apraxia, and palilalia, some of which have been recently reported in two families with different STUB1 mutations. CCAS is a prominent and often early feature of SCA48 which may be followed years after the onset of the disease by other complex neurological signs and symptoms. DTI may be helpful for demonstrating the cerebello-frontal tracts, involved in CCAS-associated SCA48, the differential diagnosis of which may be challenging especially in its early years.
Collapse
|
22
|
Lieto M, Riso V, Galatolo D, De Michele G, Rossi S, Barghigiani M, Cocozza S, Pontillo G, Trovato R, Saccà F, Salvatore E, Tessa A, Filla A, Santorelli FM, De Michele G, Silvestri G. The complex phenotype of spinocerebellar ataxia type 48 in eight unrelated Italian families. Eur J Neurol 2019; 27:498-505. [PMID: 31571321 DOI: 10.1111/ene.14094] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Heterozygous mutations in the STUB1 gene have recently been associated with an autosomal dominant form of spinocerebellar ataxia (SCA) associated with cerebellar cognitive-affective syndrome (CCAS), named SCA48. METHODS Molecular screening was performed in a cohort of 235 unrelated patients with adult-onset, autosomal dominant (17) or sporadic (218) cerebellar ataxia, negative for pathological trinucleotide expansions in the common SCAs, FRDA and FXTAS loci, by using targeted multigene panels or whole-exome sequencing. Bioinformatics analyses, detailed neurological phenotyping and family segregation studies corroborated the pathogenicity of the novel STUB1 mutations. Clinico-diagnostic findings were reviewed to define the phenotypic spectrum. RESULTS Eight heterozygous STUB1 mutations were identified, six of which were novel in 11 patients from eight index families, giving an estimated overall frequency of 3.4% (8/235) for SCA48 in our study cohort, rising to 23.5% (4/17) when considering only familial cases. All our SCA48 patients had cerebellar ataxia and dysarthria associated with cerebellar atrophy on brain magnetic resonance imaging; of note, many cases were also associated with parkinsonism, chorea and dystonia. CCAS also occurred frequently, whereas definite signs of pyramidal tract dysfunction and peripheral nervous system involvement were absent. One SCA48 patient presented with hypogonadism, associated with other autoimmune endocrine dysfunctions. CONCLUSIONS Our results support SCA48 as a significant cause of adult-onset SCA. Besides CCAS, our SCA48 patients often showed movement disorders and other clinical manifestations previously described in SCAR16, linked to biallelic variants in the same gene, thus suggesting a continuous clinical spectrum and significant overlap amongst recessive and dominantly inherited mutations in STUB1.
Collapse
Affiliation(s)
- M Lieto
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - V Riso
- Area of Neuroscience, Institute of Neurology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - D Galatolo
- IRCCS Fondazione Stella Maris, Pisa, Italy
| | - G De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - S Rossi
- Area of Neuroscience, Institute of Neurology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | | | - S Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - G Pontillo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - R Trovato
- IRCCS Fondazione Stella Maris, Pisa, Italy
| | - F Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - E Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - A Tessa
- IRCCS Fondazione Stella Maris, Pisa, Italy
| | - A Filla
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - G De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - G Silvestri
- Area of Neuroscience, Institute of Neurology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| |
Collapse
|
23
|
Rinaldi L, Delle Donne R, Catalanotti B, Torres-Quesada O, Enzler F, Moraca F, Nisticò R, Chiuso F, Piccinin S, Bachmann V, Lindner HH, Garbi C, Scorziello A, Russo NA, Synofzik M, Stelzl U, Annunziato L, Stefan E, Feliciello A. Feedback inhibition of cAMP effector signaling by a chaperone-assisted ubiquitin system. Nat Commun 2019; 10:2572. [PMID: 31189917 PMCID: PMC6561907 DOI: 10.1038/s41467-019-10037-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of G-protein coupled receptors elevates cAMP levels promoting dissociation of protein kinase A (PKA) holoenzymes and release of catalytic subunits (PKAc). This results in PKAc-mediated phosphorylation of compartmentalized substrates that control central aspects of cell physiology. The mechanism of PKAc activation and signaling have been largely characterized. However, the modes of PKAc inactivation by regulated proteolysis were unknown. Here, we identify a regulatory mechanism that precisely tunes PKAc stability and downstream signaling. Following agonist stimulation, the recruitment of the chaperone-bound E3 ligase CHIP promotes ubiquitylation and proteolysis of PKAc, thus attenuating cAMP signaling. Genetic inactivation of CHIP or pharmacological inhibition of HSP70 enhances PKAc signaling and sustains hippocampal long-term potentiation. Interestingly, primary fibroblasts from autosomal recessive spinocerebellar ataxia 16 (SCAR16) patients carrying germline inactivating mutations of CHIP show a dramatic dysregulation of PKA signaling. This suggests the existence of a negative feedback mechanism for restricting hormonally controlled PKA activities.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University Federico II, 80131, Naples, Italy
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Federica Moraca
- Department of Chemical Sciences, University Federico II, 80131, Naples, Italy
| | - Robert Nisticò
- European Brain Research Institute, Rita Levi-Montalcini Foundation and Department of Biology, University Tor Vergata, 00143, Rome, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Sonia Piccinin
- European Brain Research Institute, Rita Levi-Montalcini Foundation and Department of Biology, University Tor Vergata, 00143, Rome, Italy
| | - Verena Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy
| | - Antonella Scorziello
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University Federico II, 80131, Naples, Italy
| | | | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz and BioTechMed-Graz, 8010, Graz, Austria
| | | | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, 80131, Naples, Italy.
| |
Collapse
|
24
|
Genis D, Ortega-Cubero S, San Nicolás H, Corral J, Gardenyes J, de Jorge L, López E, Campos B, Lorenzo E, Tonda R, Beltran S, Negre M, Obón M, Beltran B, Fàbregas L, Alemany B, Márquez F, Ramió-Torrentà L, Gich J, Volpini V, Pastor P. Heterozygous STUB1 mutation causes familial ataxia with cognitive affective syndrome (SCA48). Neurology 2018; 91:e1988-e1998. [PMID: 30381368 DOI: 10.1212/wnl.0000000000006550] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To describe a new spinocerebellar ataxia (SCA48) characterized by early cerebellar cognitive-affective syndrome (CCAS) and late-onset SCA. METHODS This is a descriptive study of a family that has been followed for more than a decade with periodic neurologic and neuropsychological examinations, MRI, brain SPECT perfusion, and genetic analysis. Whole exome sequencing was performed in 3 affected and 1 unaffected family member and subsequently validated by linkage analysis of chromosome 16p13.3. RESULTS Six patients fully developed cognitive-affective and complete motor cerebellar syndrome associated with vermian and hemispheric cerebellar atrophy, suggesting a continuum from a dysexecutive syndrome slowly evolving to a complete and severe CCAS with late truncal ataxia. Three presymptomatic patients showed focal cerebellar atrophy in the vermian, paravermian, and the medial part of cerebellar lobes VI and VII, suggesting that cerebellar atrophy preceded the ataxia, and that the neurodegeneration begins in cerebellar areas related to cognition and emotion, spreading later to the whole cerebellum. Among the candidate variants, only the frameshift heterozygous c.823_824delCT STUB1 (p.L275Dfs*16) pathogenic variant cosegregated with the disease. The p.L275Dfs*16 heterozygous STUB1 pathogenic variant leads to neurodegeneration and atrophy in cognition- and emotion-related cerebellar areas and reinforces the importance of STUB1 in maintaining cognitive cerebellar function. CONCLUSIONS We report a heterozygous STUB1 pathogenic genetic variant causing dominant cerebellar ataxia. Since recessive mutations in STUB1 gene have been previously associated with SCAR16, these findings suggest a previously undescribed SCA locus (SCA48; MIM# 618093).
Collapse
Affiliation(s)
- David Genis
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Sara Ortega-Cubero
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Hector San Nicolás
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Jordi Corral
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Josep Gardenyes
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Laura de Jorge
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Eva López
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Berta Campos
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Elena Lorenzo
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Raúl Tonda
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Sergi Beltran
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Montserrat Negre
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - María Obón
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Brigitte Beltran
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Laura Fàbregas
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Berta Alemany
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Fabián Márquez
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Lluís Ramió-Torrentà
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Jordi Gich
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Víctor Volpini
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Pau Pastor
- From the Unit of Ataxias, Spastic Paraparesis, and Rare Neurological Diseases (D.G., B.A.) and Neuropsychology Unit (J.G.), Neurology Service (F.M., L.R.-T.), Nuclear Medicine Unit (M.N.), Genetic Unit, Laboratori Clinic Territorial de Girona (M.O.), and MRI Center, Institute of Diagnostic Imaging (IDI), and Radiology Department (B.B.), University Hospital "Dr. Josep Trueta," Hospital de Santa Caterina, Parc Hospitalari Martí i Julià; Group of Investigation in Neurodegeneration and Neuroinflammation (D.G., B.A., F.M., L.R.-T., J.G.), Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona; Medical Sciences Department (B.A., L.R.-T.), University of Girona; Neurogenetics Laboratory, Division of Neurosciences (S.O.-C., E. Lorenzo, P.P.), Center for Applied Medical Research, University of Navarra, Pamplona; Department of Neurology and Neurosurgery (S.O.-C., H.S.N.), Hospital Universitario de Burgos (HUBU); CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (S.O.-C., E. Lorenzo, P.P.), Instituto de Salud Carlos III, Madrid; Molecular Diagnostic Centre for Hereditary Diseases (CDGM) (J.C., J.G., L.d.J., E. López, B.C., V.V.), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona; Centro Nacional de Análisis Genómico (CNAG-CRG) (R.T., S.B.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF) (R.T., S.B.), Barcelona; National Bioinformatics Institute (R.T.), Madrid; Clinical Psychology (L.F.), Hospital de Dia de Malalties Neurodegeneratives, Hospital de Santa Caterina, Parc Hospitalari Martí i Julià, Girona; and Movement Disorders Unit, Department of Neurology (P.P.), University Hospital Mutua de Terrassa, Barcelona, Spain.
| |
Collapse
|
25
|
Disrupted structure and aberrant function of CHIP mediates the loss of motor and cognitive function in preclinical models of SCAR16. PLoS Genet 2018; 14:e1007664. [PMID: 30222779 PMCID: PMC6160236 DOI: 10.1371/journal.pgen.1007664] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/27/2018] [Accepted: 08/28/2018] [Indexed: 02/03/2023] Open
Abstract
CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease. CHIP is a multi-functional protein that bridges two opposing cellular processes: protein refolding and protein degradation. Mutations in CHIP are drivers of a debilitating and fatal disease, called spinocerebellar ataxia autosomal recessive 16 (SCAR16). Patients with CHIP mutations suffer from pathologies in both the brain, neuroendocrine, and muscle systems. Why or how CHIP mutations drive disease is unclear. At this early stage in understanding SCAR16, it is imperative to establish preclinical models to help understand the pathophysiology and mechanism of the disease, as well as to use as a platform to design and test therapies. In this manuscript we identified the structural, biochemical, cellular, and in vivo repercussions of the first mutation described in SCAR16 patients using two rodent models engineered with CRISPR/Cas9 editing to mimic a disease-causing human mutation. We established a new framework to better understand diseases involving the loss of CHIP function, the spectrum of disease-causing mutations, and the affected pathways that, in turn, will allow precision medicine approaches to treat this disease.
Collapse
|
26
|
Gazulla J, Izquierdo-Alvarez S, Sierra-Martínez E, Marta-Moreno ME, Alvarez S. Inaugural cognitive decline, late disease onset and novel STUB1 variants in SCAR16. Neurol Sci 2018; 39:2231-2233. [DOI: 10.1007/s10072-018-3545-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022]
|
27
|
Lizama BN, Palubinsky AM, McLaughlin B. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues. Neurochem Int 2018; 117:139-155. [PMID: 28851515 PMCID: PMC5826822 DOI: 10.1016/j.neuint.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023]
Abstract
E3 ligases are essential scaffold proteins, facilitating the transfer of ubiquitin from E2 enzymes to lysine residues of client proteins via isopeptide bonds. The specificity of substrate binding and the expression and localization of E3 ligases can, however, endow these proteins with unique features with variable effects on mitochondrial, metabolic and CNS function. By comparing and contrasting two E3 ligases, Parkin and C-terminus of HSC70-Interacting protein (CHIP) we seek to highlight the biophysical properties that may promote mitochondrial dysfunction, acute stress signaling and critical developmental periods to cease in response to mutations in these genes. Encoded by over 600 human genes, RING-finger proteins are the largest class of E3 ligases. Parkin contains three RING finger domains, with R1 and R2 separated by an in-between region (IBR) domain. Loss-of-function mutations in Parkin were identified in patients with early onset Parkinson's disease. CHIP is a member of the Ubox family of E3 ligases. It contains an N-terminal TPR domain and forms unique asymmetric homodimers. While CHIP can substitute for mutated Parkin and enhance survival, CHIP also has unique functions. The differences between these proteins are underscored by the observation that unlike Parkin-deficient animals, CHIP-null animals age prematurely and have significantly impaired motor function. These properties make these E3 ligases appealing targets for clinical intervention. In this work, we discuss how biophysical and metabolic properties of these E3 ligases have driven rapid progress in identifying roles for E3 ligases in development, proteostasis, mitochondrial biology, and cell health, as well as new data about how these proteins alter the CNS proteome.
Collapse
Affiliation(s)
- Britney N Lizama
- Neuroscience Graduate Group, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States.
| | - Amy M Palubinsky
- Neuroscience Graduate Group, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States
| | - BethAnn McLaughlin
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States; Department of Pharmacology, Vanderbilt University Medical Center, 465 21st Ave S MRB III, Nashville, TN 37240, United States
| |
Collapse
|
28
|
Neuronal Preconditioning Requires the Mitophagic Activity of C-terminus of HSC70-Interacting Protein. J Neurosci 2018; 38:6825-6840. [PMID: 29934347 DOI: 10.1523/jneurosci.0699-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
The C terminus of HSC70-interacting protein (CHIP, STUB1) is a ubiquitously expressed cytosolic E3-ubiquitin ligase. CHIP-deficient mice exhibit cardiovascular stress and motor dysfunction before premature death. This phenotype is more consistent with animal models in which master regulators of autophagy are affected rather than with the mild phenotype of classic E3-ubiquitin ligase mutants. The cellular and biochemical events that contribute to neurodegeneration and premature aging in CHIP KO models remain poorly understood. Electron and fluorescent microscopy demonstrates that CHIP deficiency is associated with greater numbers of mitochondria, but these organelles are swollen and misshapen. Acute bioenergetic stress triggers CHIP induction and relocalization to mitochondria, where it plays a role in the removal of damaged organelles. This mitochondrial clearance is required for protection following low-level bioenergetic stress in neurons. CHIP expression overlaps with stabilization of the redox stress sensor PTEN-inducible kinase 1 (PINK1) and is associated with increased LC3-mediated mitophagy. Introducing human promoter-driven vectors with mutations in either the E3 ligase or tetracopeptide repeat domains of CHIP in primary neurons derived from CHIP-null animals enhances CHIP accumulation at mitochondria. Exposure to autophagy inhibitors suggests that the increase in mitochondrial CHIP is likely due to diminished clearance of these CHIP-tagged organelles. Proteomic analysis of WT and CHIP KO mouse brains (four male, four female per genotype) reveals proteins essential for maintaining energetic, redox, and mitochondrial homeostasis undergo significant genotype-dependent expression changes. Together, these data support the use of CHIP-deficient animals as a predictive model of age-related degeneration with selective neuronal proteotoxicity and mitochondrial failure.SIGNIFICANCE STATEMENT Mitochondria are recognized as central determinants of neuronal function and survival. We demonstrate that C terminus of HSC70-Interacting Protein (CHIP) is critical for neuronal responses to stress. CHIP upregulation and localization to mitochondria is required for mitochondrial autophagy (mitophagy). Unlike other disease-associated E3 ligases such as Parkin and Mahogunin, CHIP controls homeostatic and stress-induced removal of mitochondria. Although CHIP deletion results in greater numbers of mitochondria, these organelles have distorted inner membranes without clear cristae. Neuronal cultures derived from animals lacking CHIP are more vulnerable to acute injuries and transient loss of CHIP renders neurons incapable of mounting a protective response after low-level stress. Together, these data suggest that CHIP is an essential regulator of mitochondrial number, cell signaling, and survival.
Collapse
|
29
|
Pakdaman Y, Sanchez-Guixé M, Kleppe R, Erdal S, Bustad HJ, Bjørkhaug L, Haugarvoll K, Tzoulis C, Heimdal K, Knappskog PM, Johansson S, Aukrust I. In vitro characterization of six STUB1 variants in spinocerebellar ataxia 16 reveals altered structural properties for the encoded CHIP proteins. Biosci Rep 2017; 37:BSR20170251. [PMID: 28396517 PMCID: PMC5408658 DOI: 10.1042/bsr20170251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/24/2022] Open
Abstract
Spinocerebellar ataxia, autosomal recessive 16 (SCAR16) is caused by biallelic mutations in the STIP1 homology and U-box containing protein 1 (STUB1) gene encoding the ubiquitin E3 ligase and dimeric co-chaperone C-terminus of Hsc70-interacting protein (CHIP). It has been proposed that the disease mechanism is related to CHIP's impaired E3 ubiquitin ligase properties and/or interaction with its chaperones. However, there is limited knowledge on how these mutations affect the stability, folding, and protein structure of CHIP itself. To gain further insight, six previously reported pathogenic STUB1 variants (E28K, N65S, K145Q, M211I, S236T, and T246M) were expressed as recombinant proteins and studied using limited proteolysis, size-exclusion chromatography (SEC), and circular dichroism (CD). Our results reveal that N65S shows increased CHIP dimerization, higher levels of α-helical content, and decreased degradation rate compared with wild-type (WT) CHIP. By contrast, T246M demonstrates a strong tendency for aggregation, a more flexible protein structure, decreased levels of α-helical structures, and increased degradation rate compared with WT CHIP. E28K, K145Q, M211I, and S236T also show defects on structural properties compared with WT CHIP, although less profound than what observed for N65S and T246M. In conclusion, our results illustrate that some STUB1 mutations known to cause recessive SCAR16 have a profound impact on the protein structure, stability, and ability of CHIP to dimerize in vitro. These results add to the growing understanding on the mechanisms behind the disorder.
Collapse
Affiliation(s)
- Yasaman Pakdaman
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Monica Sanchez-Guixé
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Kleppe
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sigrid Erdal
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Helene J Bustad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Biomedical Laboratory Sciences and Chemical Engineering, Western Norway University of Applied Sciences, Bergen, Norway
| | - Kristoffer Haugarvoll
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ketil Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Per M Knappskog
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Aukrust
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Hayer SN, Deconinck T, Bender B, Smets K, Züchner S, Reich S, Schöls L, Schüle R, De Jonghe P, Baets J, Synofzik M. STUB1/CHIP mutations cause Gordon Holmes syndrome as part of a widespread multisystemic neurodegeneration: evidence from four novel mutations. Orphanet J Rare Dis 2017; 12:31. [PMID: 28193273 PMCID: PMC5307643 DOI: 10.1186/s13023-017-0580-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CHIP, the protein encoded by STUB1, is a central component of cellular protein homeostasis and interacts with several key proteins involved in the pathogenesis of manifold neurodegenerative diseases. This gives rise to the hypothesis that mutations in STUB1 might cause a far more multisystemic neurodegenerative phenotype than the previously reported cerebellar ataxia syndrome. METHODS Whole exome sequencing data-sets from n = 87 index subjects of two ataxia cohorts were screened for individuals with STUB1 mutations. In-depth phenotyping by clinical evaluation and neuroimaging was performed in mutation carriers. RESULTS We identified four novel STUB1 mutations in three affected subjects from two index families (frequency 2/87 = 2.3%). All three subjects presented with a severe multisystemic phenotype including severe dementia, spastic tetraparesis, epilepsy, and autonomic dysfunction in addition to cerebellar ataxia, plus hypogonadism in one index patient. Diffusion tensor imaging revealed degeneration of manifold supra- and infratentorial tracts. CONCLUSIONS Our findings provide clinical and imaging support for the notion that CHIP is a crucial converging point of manifold neurodegenerative processes, corresponding with its universal biological function in neurodegeneration. Further, our data reveal the second STUB1 family with ataxia plus hypogonadism reported so far, demonstrating that Gordon Holmes syndrome is indeed a recurrent manifestation of STUB1. However, it does not present in isolation, but as part of a broad multisystemic neurodegenerative process. This supports the notion that STUB1 disease should be conceptualized not by historical or clinical syndromic names, but as a variable multisystemic disease defined by disturbed function of the underlying STUB1 gene, which translates into a multidimensional gradual spectrum of variably associated clinical signs and symptoms.
Collapse
Affiliation(s)
- Stefanie Nicole Hayer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Tine Deconinck
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratories of Neurogenetics and Ultrastructural Neuropathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Katrien Smets
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratories of Neurogenetics and Ultrastructural Neuropathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics, Miami, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, USA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Peter De Jonghe
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratories of Neurogenetics and Ultrastructural Neuropathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Jonathan Baets
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratories of Neurogenetics and Ultrastructural Neuropathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| |
Collapse
|